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Three questions:

1. What is a spin liquid?
2. How to stabilize a spin liquid?

3. How to detect a spin liquid?



What is a spin liquid?

* Broad sense:

Magnet that doesn’t order’ down to

zero temperature and is distinct? Valence bond solid? No
from a trivial pgrqmqgnef3 Frozen product state due to disorder?
No

One dimension? Complicated

 Typically highly frustrated

* Broad cooperative paramagnet
regime, well below characteristic f
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Why are they interesting?

Fractionalized excitations

Excitations split into new
independent parts

Emergent gauge theories

Realizations of electromagnetism,
complete with new photon

Topological order

Long-range quantum
entangled ground states
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Quantum

What kind of models are known to have spin

liquid ground states?

e Classical models

* Triangular Ising AFM
* Pyrochlore Heisenberg AFM

* Spinice, ...

* Exactly solvable models
* Toric code,
 Kitaev's honeycomb model
 String-net models, ...

* Non-solvable models
« Kagome anti-ferromagnet
* Quantum spin ice
* J;-J, models, ...




Example: Classical Spin lce Y\ o=+
* Simplestrealization: . PN y
pyrochlore lattice N /
Anti-ferromagnetic E — ] Z O'l'O'j :II——--——————_
exchange a7y o -~
ipoles N, . —
form loops g V-B=0

? “Two in / ‘ Corner-sharing tetrahedra
two out”
rule

* Extensive ground state

?
' degeneracy
Tetrahedron * Classical spin liquid

Six ground states per tetrahedron




Example: Kitaev’s Honeycomb model

* Frustrated spin-1/2 model on
honeycomb lattice

. G
Two-spin Xxy(z)
—J Z 0'3/0'7{ interaction éé
— / ] x(y)z
ij), s only
* Frustration by interactions not
geometry \ y

Exactly solvable of a quantum

spin liquid with emergent
Majorana fermion excitations
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Example: Quantum spin ice

* Simplest realization:

H=Jz ) S7S7-d: ) (S+S7 +hc.)

v iy
Classical spin ice Term that induces
model quantum fluctuations

e Effective model:

. Perturbative in quantum part
12J7 _ _ _
-2 ) Pee(SFS3S5S,S5S; +he) Pies

ZZ  hexagons

Can map to U(1) lattice gauge theory; solve numerically

Emergent photon excitation
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Classical SI: emergent
magnetostatics
Quantum SI: emergent
electrodynamics

Hermele et al.,, Phys. Rev. B 69 064404 (2004), Benton et al, Phys. Rev. B86 075154 (2012)



Siq bi I iiY? Typical scenario

: Cooperative
' P
Classical spin liquids are unstable to | T
small perturbations, always “fine- |
tuned” |
|
|
e “Third-law”: Can’t have finite entropy <
density generically ! Paramagne
: : t >T
* Perturbations that lift degeneracy set T. ~ O(perturbation)

ordering scale

Instability can be toward
quantum spin liquid



Stability?

Stability is possible!
 Kitaev? Time-reversal symmetry
* Quantum spin ice? Any perturbation

e Still need to worry about energy
scales

Effective model of QSI

1243 otooto

ZZ  hexagons

Temperature/perturbations must be compared to
this

Kato & Onoda, Phys. Rev. Lett. 115 077202 (2015);

Motome & Nasu, JPS] 89 012002 (2020)

Phase diagram of QSI
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Signatures of spin liquids

* Lack of magnetic order Is disorder playing a
role?

* Shows broad excitation spectrum

Is temperature/energy
* Still dynamic at very low temperature low enough?

- ; 7
R Topologlcal response Conventional route:



Example: (Dy,Ho),Ti, O,

Additional terms
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* Fine-tuned; further neighbour/dipole
interactions lift degeneracy

* Freezes before order and/or quantum
effects

Result from simplest version of
th i

007)

Diffuse neutron
scattering on

Fennell et al., Science 326, 415-417
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 Evidence for significant
Exqmple: PrQZ r207 structural disorder

¢ Example ofquantum Spll’l ice?
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(HHO) [r.l.u] Kimura et al, Nat. Comm. 4 1934 (2013),

Spatial correlations (still) need detail Martin et al, Phys. Rev. X 7 041028
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Example: RuCl,

* Kitaev spin liquid is stable, but ...

* ... sub-dominant perturbations large
enough to destroy the spin liquid

r/IK|
> S-S+ KS)S) +T(SS] + 5757
<ij>€a6(7) T G 7 | —-03-02-0.1 0.0 0.1 02 0.3
eneric symmetry
Jackeli/Khaliullin ‘ allowed model J/IK]

From direct d-d Cross-term
overlap

Ligand Direct ++
mediated overlap ., Katakuri et al, New. J. Phys. 16, 013056 (2014)
C—p Rau, Lee & Kee, Phys. Rev. Lett. 112, 077204 (2014)
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Example: RuCl; in (tilted) magnetic field
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* Conventional explanation? Hard, since half-quantized
* This experiment has not yet been (independently) reproduced



Three ‘““‘answers”’

Magnet that doesn’t order down to
zero temperature and is distinct from
a trivial paramagnet

Look for highly frustrated
models (e.g. extensive
degeneracy), minimize any
perturbations

Go to low enough energy, be mindful of disorder,
look for fractionalized excitations and/or
topological responses
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