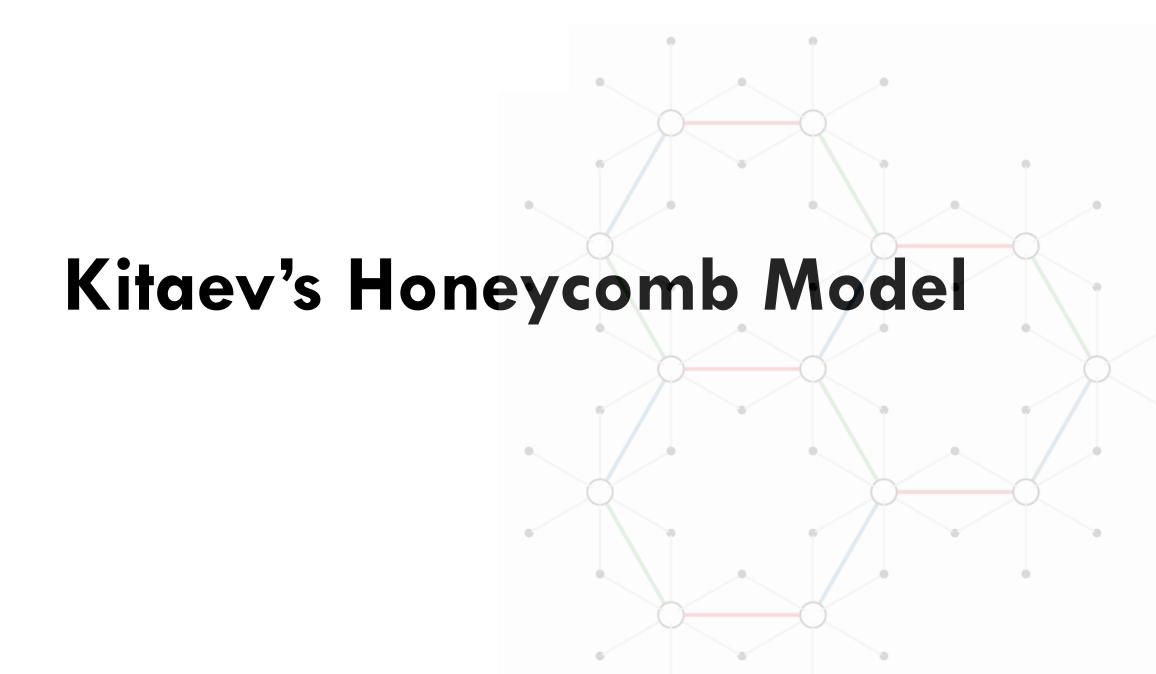
Tutorial:

Physics of the Kitaev Model and its Realization in Kitaev Materials

Jeffrey G. Rau

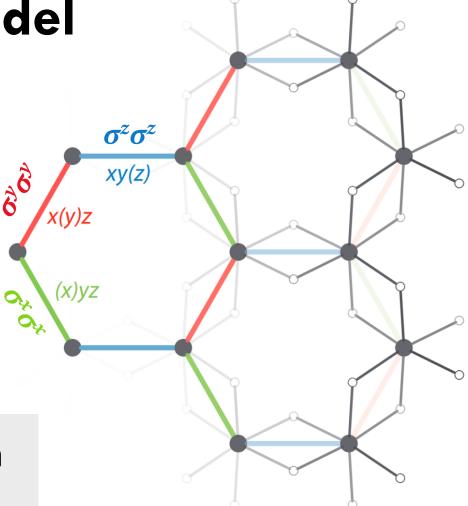
University of Windsor


1. Kitaev's honeycomb model

- i. Definition & Solution
- ii. Properties of the Kitaev Spin Liquid
- iii. Effect of a Magnetic Field
- iv. Generalizations (3D, disorder, ...)

2. Kitaev materials

- i. Jackeli-Khalliulin mechanism
- ii. Perturbations
- iii. RuCl₃


Kitaev's Honeycomb Model

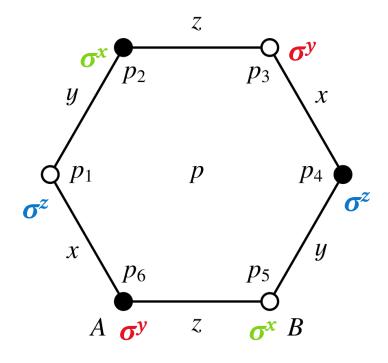
• Frustrated spin-1/2 model on honeycomb lattice

$$-J\sum_{\left\langle ij
ight
angle _{\gamma }}\sigma_{i}^{\gamma }\sigma_{j}^{\gamma }$$
 Two-spin interactions only

• Frustration by *interactions* not geometry

Exactly solvable of a quantum spin liquid with emergent Majorana fermion excitations

Plaquette symmetries


• Infinite number of conserved quantities

$$W_{p} = \sigma_{p_{1}}^{z} \sigma_{p_{2}}^{x} \sigma_{p_{3}}^{y} \sigma_{p_{4}}^{z} \sigma_{p_{5}}^{x} \sigma_{p_{6}}^{y}$$

• Commute with Hamiltonian and each other

$$[H, W_p] = 0$$
 $[W_p, W_{p'}] = 0$

- Eigenvalues +1, -1:
 - $2^{N/2}$ sectors each of size $2^{N/2}$

For N sites, there are N/2 plaquettes

Absence of magnetic order

 Plaquette symmetries imply no magnetic order

$$\{\sigma_i^\mu, W_p\} = 0$$
 Anti-
commutation relation

• *Elitzur's theorem:* Can't spontaneously break local symmetries

$$\langle \boldsymbol{\sigma}_i \rangle = 0$$

• Also valid for higher-S Kitaev models

$$\langle \Psi_0 | \sigma_i^{\mu} | \Psi_0 \rangle$$
 $W_p^2 = 1$
 $\langle \Psi_0 | \sigma_i^{\mu} W_p^2 | \Psi_0 \rangle$
 $\{ \sigma_i^{\mu}, W_p \} = 0$
 $-\langle \Psi_0 | W_p \sigma_i^{\mu} W_p | \Psi_0 \rangle$
Eigenstate of plaquette operators
 $-\langle \Psi_0 | \sigma_i^{\mu} | \Psi_0 \rangle$

Exact solution: Plan

$$D_i \equiv b_i^x b_i^y b_i^z c_i = 1$$
 $U_{ij} \equiv i b_i^\gamma b_j^\gamma$ $-J \sum_{\langle ij \rangle_{\gamma}} \sigma_i^\gamma \sigma_j^\gamma$ $iJ \sum_{\langle ij \rangle_{\gamma}} \left(i b_i^\gamma b_j^\gamma \right) c_i c_j$ $iJ \sum_{\langle ij \rangle_{\gamma}} U_{ij} c_i c_j$ $\sigma_i \equiv i b_i c_i$

 $u_{ij} = +1$

Free fermions (solvable)

$$H_0 = J \sum_{\langle ij \rangle_{\gamma}} ic_i c_j \qquad H[u] \equiv J \sum_{\langle ij \rangle_{\gamma}} iu_{ij} c_i c_j$$

$$H[u] \equiv J \sum_{\langle ij \rangle_{\gamma}} i u_{ij} c_i c_j$$

 $W_p = u_{p_1 p_2} u_{p_2 p_3} u_{p_3 p_4} u_{p_4 p_5} u_{p_5 p_6} u_{p_6 p_1}$

Majorana representation

• Highly suggestive: $2^{N/2}$ states per sector, *Majorana fermions?*

$$\sigma_i \equiv i b_i c_i$$
 $b_i \equiv (b_i^x, b_i^y, b_i^z)$

• Represent spin-1/2 as *four* Majoranas, subject to *constraint*

$$D_i \equiv b_i^x b_i^y b_i^z c_i = 1$$

• Satisfy the anti-commutation relations for for Majorana fermions

$$\{c_i, c_j\} = 2\delta_{ij}$$

$$\{c_i, \boldsymbol{b}_i\} = 0$$

$$\{b_i^{\mu}, b_j^{\nu}\} = 2\delta_{ij}\delta_{\mu\nu}$$

Relation to SU(2) slave fermions?

• How does the relate to the "usual" representation:

$$oldsymbol{\sigma}_i = f_i^\dagger oldsymbol{\sigma} f_i$$
 Complex fermions

• With constraint: $f_i^{\dagger} f_i = 1$

• Equivalent; just a change of basis

$$c = \frac{1}{\sqrt{2}} (f_{\uparrow} + f_{\uparrow}^{\dagger})$$

$$b^{x} = \frac{1}{i\sqrt{2}} (f_{\downarrow} - f_{\downarrow}^{\dagger})$$

$$b^{y} = -\frac{1}{\sqrt{2}} (f_{\downarrow} + f_{\downarrow}^{\dagger})$$

$$b^{z} = \frac{1}{i\sqrt{2}} (f_{\uparrow} - f_{\uparrow}^{\dagger})$$

One possible way to express Majoranas in terms of complex fermions

Hamiltonian in terms of Majoranas

• Substitute these in to Kitaev model:

$$ilde{H} = iJ \sum_{\langle ij \rangle_{\gamma}} \left(ib_i^{\gamma} b_j^{\gamma}\right) c_i c_j$$
 Defined in **extended** space, need to impose constraint

• If we can solve *this*, and get ground state $|\tilde{\Psi}_0\rangle$ then just need to *project* into physical subspace Really, any eigenstate

$$|\Psi_0\rangle = P |\tilde{\Psi}_0\rangle$$

Ground state of Kitaev model

Imposes constraint
$$D_i \equiv b_i^x b_i^y b_i^z c_i = 1$$

Link operators and Z₂ gauge structure

• To solve this, notice that the operators

$$U_{ij} \equiv ib_i^{\gamma}b_j^{\gamma}$$

• Commute with the Hamiltonian *and* with each other: **definite value in energy eigenstate**

Really, any eigenstate
$$U_{ij} | \tilde{\Psi}_0 \rangle = u_{ij} | \tilde{\Psi}_0 \rangle$$

• Two possible values: $u_{ij} = \pm 1$

$$[H, U_{ij}] = 0$$

$$[U_{ij}, U_{lk}] = 0$$

$$U_{ij}^2 = 1$$

Defines a \mathbb{Z}_2 gauge field for the c Majorana fermions

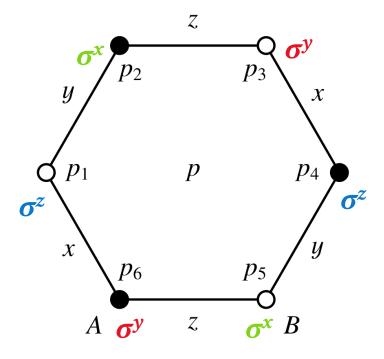
Z₂ Flux Operators

Under gauge transformation:

$$c_i
ightharpoonup z_i c_i \stackrel{z_i - \pm}{\longrightarrow}$$

Preserves spinoperators $\sigma_i \equiv ib_i c_i$

 $u_{ij} \rightarrow z_i z_j u_{ij}$


• What are the associated \mathbb{Z}_2 flux operators?

$$w_p = u_{p_1 p_2} u_{p_2 p_3} u_{p_3 p_4} u_{p_4 p_5} u_{p_5 p_6} u_{p_6 p_1}$$

Product of link variables around hexagon

• Gauge invariant quantities

$$W_{p} = \sigma_{p_{1}}^{z} \sigma_{p_{2}}^{x} \sigma_{p_{3}}^{y} \sigma_{p_{4}}^{z} \sigma_{p_{5}}^{x} \sigma_{p_{6}}^{y}$$

$$W_p \ket{\tilde{\Psi}_0} = w_p \ket{\tilde{\Psi}_0}$$

Flux sectors

- Gauge field is **static**: fluxes (and links) have *fixed* values
- Each of the $2^{N/2}$ choices of u_{ij} defines **flux sector**

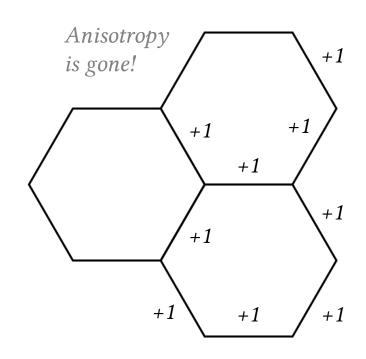
$$H[u]\equiv J\sum_{\langle ij
angle_{\gamma}}iu_{ij}c_{i}c_{j}$$
 Independent "block" of Hamiltonian

• Each flux sector is a *free fermion* problem! (efficiently solvable) $O(N^3)$

Ground state? Need to find flux sector with *lowest possible energy*.

Ground state flux sector & Lieb's Theorem

• Could brute force minimize; instead can use **Lieb's theorem**:


Ground sector state is **flux-free**

Depends on lattice structure

Simplest gauge choice

$$u_{ij} = +1$$

• Description is *free Majoranas* hopping on honeycomb lattice

$$H_0 = J \sum_{\langle ij \rangle_{\gamma}} i c_i c_j$$

Solution in flux-free sector

$$c_{r,\alpha} = \frac{1}{\sqrt{N}} \sum_{k} e^{ik \cdot r} c_{k,\alpha}$$

• Now problem is simple: Fourier transform, then diagonalize

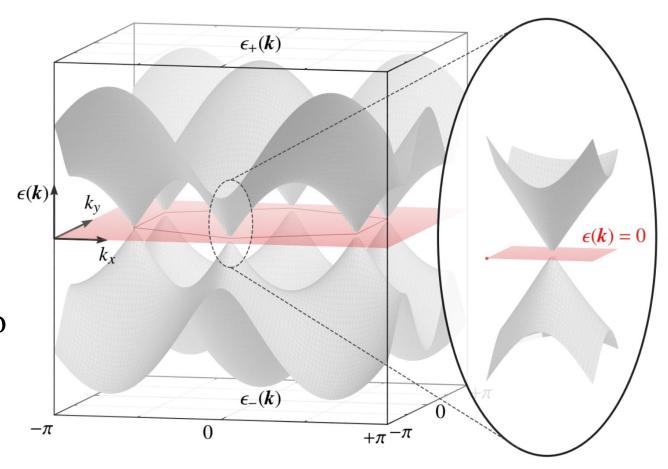
$$H_0 = J \sum_{\langle ij \rangle_{\gamma}} i c_i c_j = \frac{1}{2} \sum_{k>0} (c_{-k,A} c_{-k,B}) \begin{pmatrix} 0 & f(k) \\ f(k)^* & 0 \end{pmatrix} \begin{pmatrix} c_{k,A} \\ c_{k,B} \end{pmatrix}$$

$$f(\mathbf{k}) \equiv 2iJ\left(1 + e^{-i\mathbf{k}\cdot\mathbf{a}_1} + e^{-i\mathbf{k}\cdot\mathbf{a}_2}\right)$$

• Final dispersion has two bands:

$$\epsilon(\mathbf{k}) \equiv \pm |f(\mathbf{k})|$$

• Defines the ground state wave-function


We are done!

Flux-free spectrum

• What does the dispersion look like?

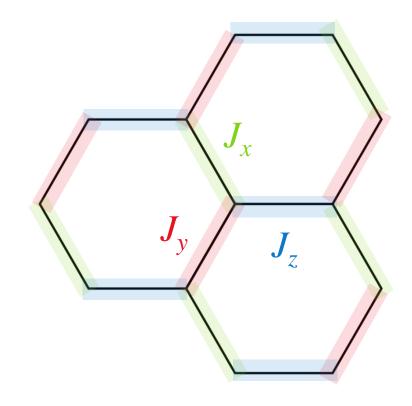
$$\epsilon(\mathbf{k}) \equiv \pm |f(\mathbf{k})|$$
$$f(\mathbf{k}) \equiv 2iJ \left(1 + e^{-i\mathbf{k}\cdot\mathbf{a}_1} + e^{-i\mathbf{k}\cdot\mathbf{a}_2}\right)$$

- **Dirac cones** near the corners o the Brillouin zone
- Same spectrum as graphene

Stable to (symmetric) perturbations

$$\epsilon(\boldsymbol{K}+\boldsymbol{q}) \approx \pm v|\boldsymbol{q}|$$

Anisotropic Kitaev model


• We solved the **isotropic** Kitaev model; can change coupling on bonds

$$J \sum_{\langle ij \rangle_{\gamma}} \sigma_{i}^{\gamma} \sigma_{j}^{\gamma} \rightarrow \sum_{\langle ij \rangle_{\gamma}} J_{\gamma} \sigma_{i}^{\gamma} \sigma_{j}^{\gamma}$$

$$\downarrow (ij)_{\gamma} \qquad \qquad \qquad \text{Different on different bonds}$$

Exact solution proceeds identically

- 1. Plaquette symmetries
- 2. Link operators, gauge field
- 3. Flux sectors, Lieb's theorem

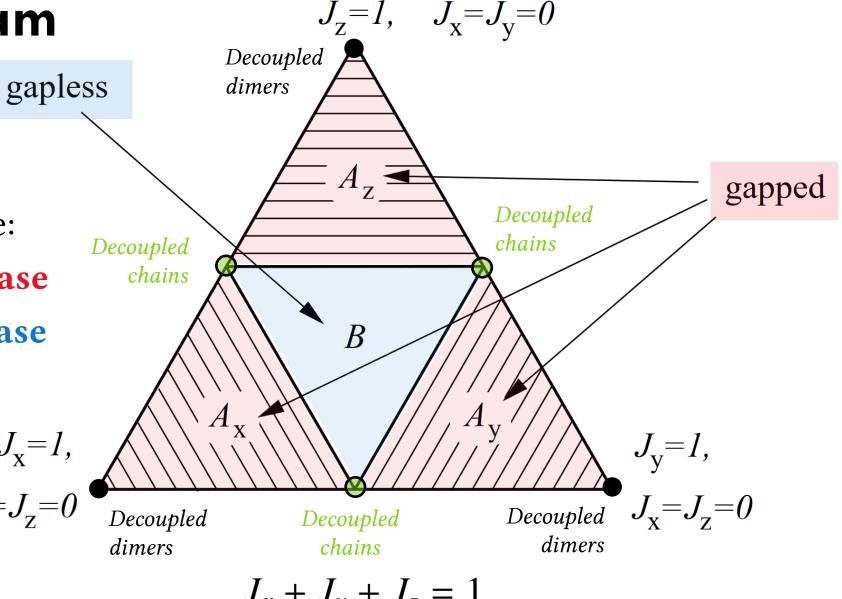
What changes?

Spectrum in flux-free sector

Anisotropic Kitaev Model (cont.)

• Still Majoranas hopping on honeycomb lattice, but now *bond-dependent*

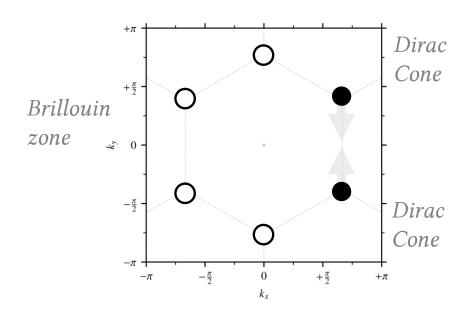
$$f(\mathbf{k}) = iJ(1 + e^{-i\mathbf{k}\cdot\mathbf{a}_1} + e^{-i\mathbf{k}\cdot\mathbf{a}_2}) \rightarrow i(\mathbf{J}_z + \mathbf{J}_y e^{-i\mathbf{k}\cdot\mathbf{a}_1} + \mathbf{J}_x e^{-i\mathbf{k}\cdot\mathbf{a}_2})$$

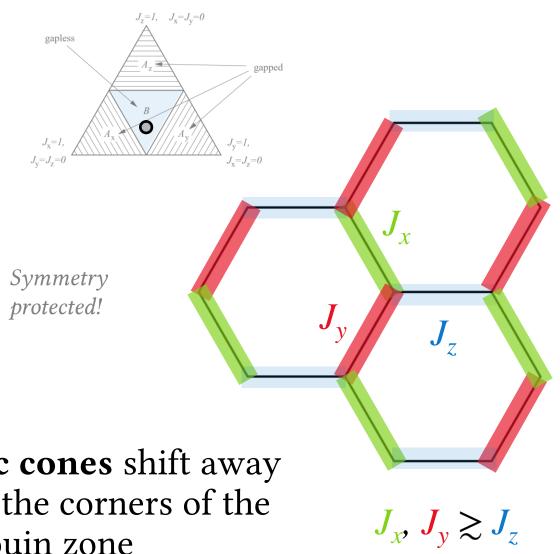

• Spectrum is still given by $\epsilon(\mathbf{k}) \equiv \pm |f(\mathbf{k})|$

How does this spectrum change when $J_x \neq J_y \neq J_z$?

Phase diagram

• Sign unimportant

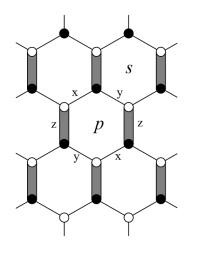

- *Two* types of phase:
- 1. Gapped "A" phase
- 2. Gapless "B" phase

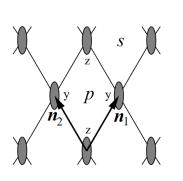


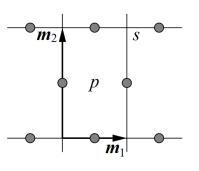
$$J_x + J_y + J_z = 1$$

Gapless "B" Phase

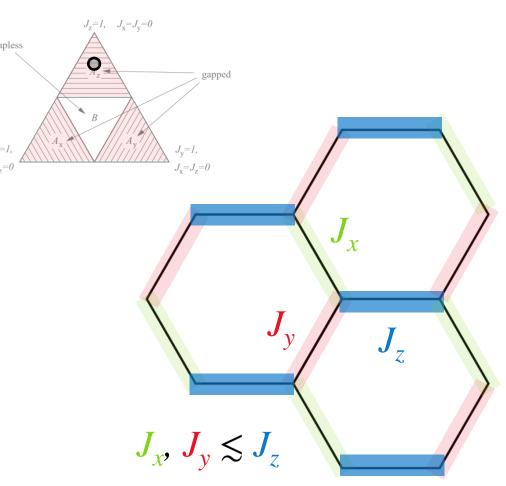
- Isotropic phase belongs to the "B" phase
- Small changes in couplings don't lift the Dirac cones






• Dirac cones shift away from the corners of the Brillouin zone

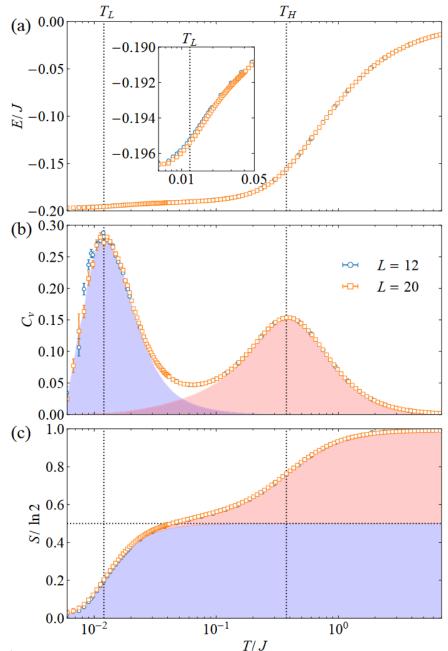
Gapped "A" Phase


- Make it anisotropic enough the Dirac cones meet
- They then *annihilate*, opening a **gap** in the spectrum
- Can be mapped to *toric code* model

Perturbation theory in \mathcal{J}_x , \mathcal{J}_y

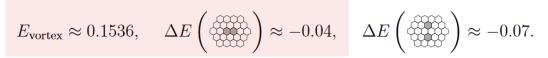
$$H_{\text{eff}} = -\frac{J_x^2 J_y^2}{16|J_z|^3} \sum_p Q_p$$

$$Q_p = \sigma_{\text{left}(p)}^y \sigma_{\text{right}(p)}^y \sigma_{\text{up}(p)}^z \sigma_{\text{down}(p)}^z$$


Properties of the Kitaev Spin Liquid

Thermodynamics:

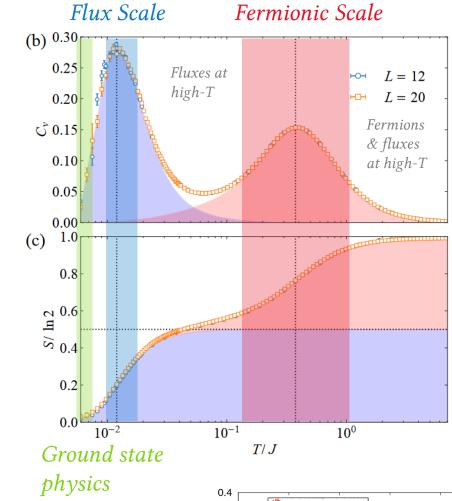
• Structure from exact solution allows for Monte Carlo simulation at *finite temperature*


Roughly: Sample flux sectors, by solving fermionic problem in each sector

• *Note:* Practically uses Jordan-Wigner form of solution

Excitations

- Two classes of excitations
 - **1. Majorana excitations:**Governed by dispersion in that flux sector
 - **2. Flux Excitations:** *Add* non-zero fluxes to system
- *Intertwined:* Majoranas depends on the flux sector, flux sector energy depends on Majoranas



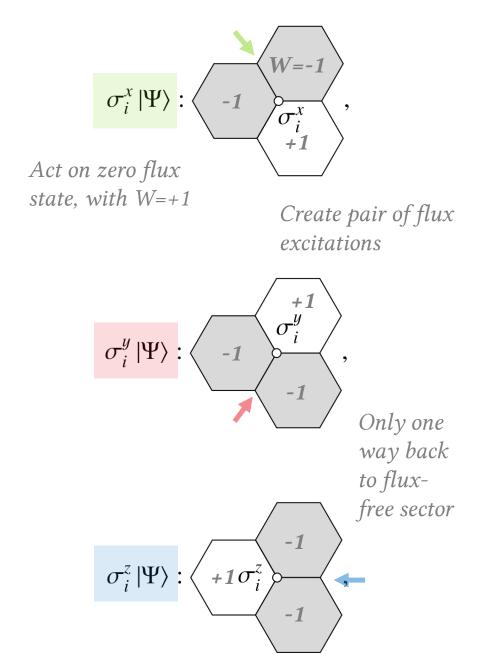
	Phase	Vortex density	Energy per \bigcirc and per vortex
1		$\frac{1}{1}$	0.067 0.067
2		$\frac{1}{2}$	0.052 0.104
3		$\frac{1}{3}$	0.041 0.124
4		$\frac{2}{3}$	0.054 0.081
5		$\frac{1}{3}$	0.026 0.078
6		$\frac{2}{3}$	0.060 0.090
7		$\frac{1}{4}$	0.034 0.136

	Phase	Vortex density	Energy per \bigcirc and per vortex
8		$\frac{2}{4}$	0.042 0.085
9		$\frac{3}{4}$	0.059 0.078
10		$\frac{1}{4}$	0.042 0.167
11		$\frac{3}{4}$	0.074 0.099
12		$\frac{1}{4}$	0.025 0.101
13		$\frac{2}{4}$	0.046 0.092
14		$\frac{3}{4}$	0.072 0.096

Thermodynamics (cont.):

- Can understand in terms of two energy scales:
 - **1. Fermionic scale:** Spins have fractionalized into Majoranas, fluxes are *disordered* ~ $O(\mathfrak{F})$
 - 2. Flux scale: Flux excitations no longer populated, settle into flux-free sector ~ $O(flux\ gap)$
- At *each* of these, release $\sim \log(2)/2$ entropy per spin

Looks like Majoranas in random flux background


Spin correlations:

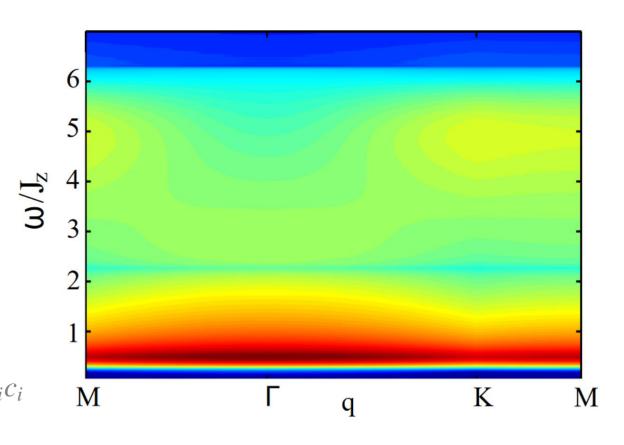
• *Static* spin-spin correlations are **ultra-short range**

$$\langle \sigma_i^{\gamma} \sigma_j^{\gamma} \rangle = \begin{cases} \neq 0, & \langle ij \rangle \in \gamma \\ = 0, & \langle ij \rangle \notin \gamma \end{cases}$$

- Consequence of *plaquette symmetries*
- At isotropic point? single correlation function
- Also holds for dynamical correlator

$$\langle \sigma_i^{\gamma}(t) \sigma_j^{\gamma} \rangle$$

Baskaran et al, Phys. Rev. Lett. 98, 247201 (2007)

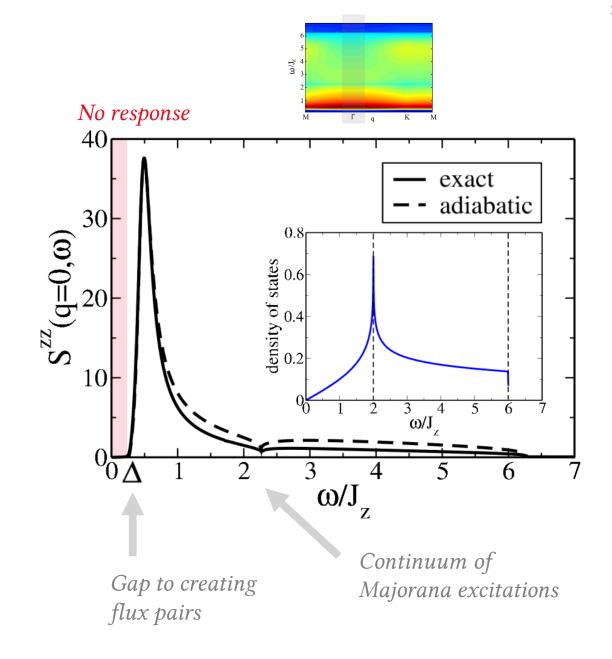

Dynamics?

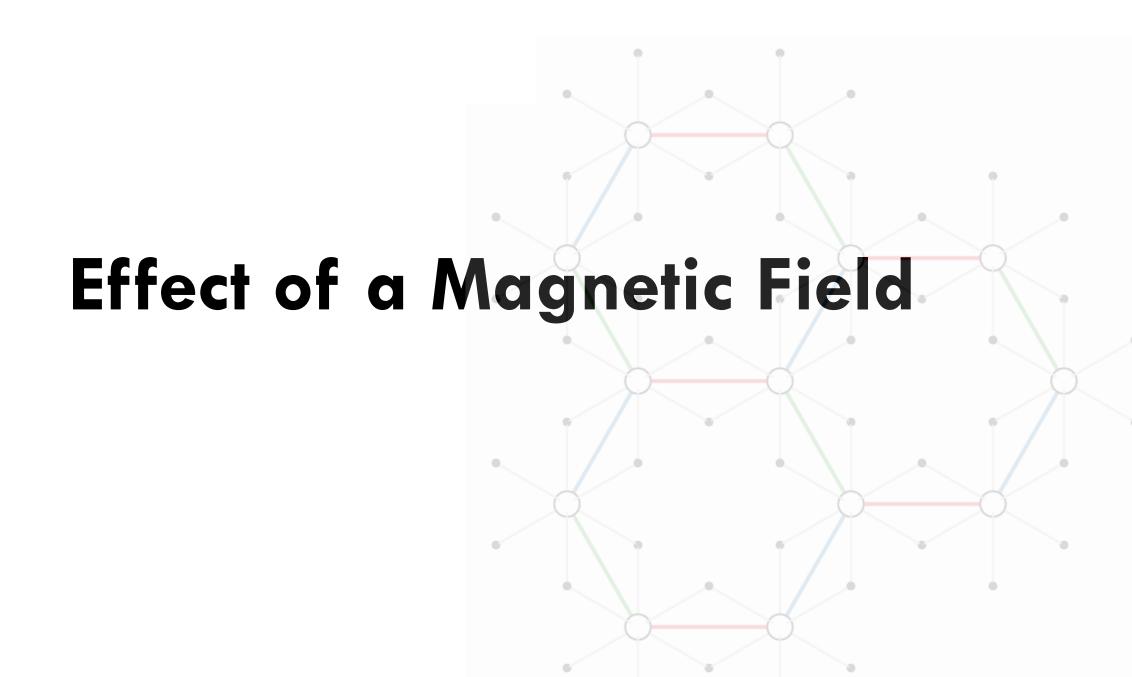
Can compute from exact solution;
 hard, must deal with two-flux excitations

Remove flux pair Evolve Add flux pair
$$+ c$$
-fermion with fluxes $+ c$ -fermion $\langle \sigma_i^{\gamma}(t)\sigma_j^{\gamma} \rangle = e^{iE_0t} \langle \Psi_0 | \sigma_i^{\gamma} e^{-iHt} \sigma_j^{\gamma} | \Psi_0 \rangle$ $\sigma_i \equiv ib_i c_i$ $= e^{iE_0t} \langle \tilde{\Psi}_0 | c_i e^{-iH[u_{\text{pair}}]t} c_j | \tilde{\Psi}_0 \rangle$

Sector with pair of fluxes

• Related to *X-ray edge problem*

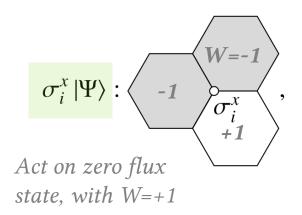

$$S(\boldsymbol{q},\omega) \propto \sum_{\gamma} \sum_{ij} \int dt \; e^{i\boldsymbol{q}\cdot(\boldsymbol{r}_i-\boldsymbol{r}_j)-i\omega t} \langle \sigma_i^{\gamma}(t)\sigma_j^{\gamma} \rangle$$

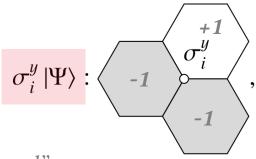

Fourier-transform of spin-spin correlator

Dynamics (cont.):

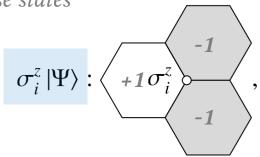
- Dirac cones *not* directly visible, no flux change
- Clear **gap** corresponding to energy cost to create pair of flux excitations
- **Continuum** of intensity going out energies of $\sim O(\mathcal{I})$

Energy scale of Majorana dispersion



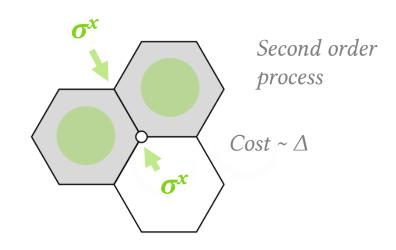

Effect of a magnetic field

• Application of magnetic field gaps out Majorana fermions


$$-J\sum_{\langle ij \rangle_{\gamma}} \sigma_i^{\gamma} \sigma_j^{\gamma} - \sum_i m{h} \cdot m{\sigma}_i$$
 Couples to magnetization operator

- No longer exactly solvable
- Individual spin operators change flux sector
- Can do (quasi-) degenerate perturbation theory within zero flux sector

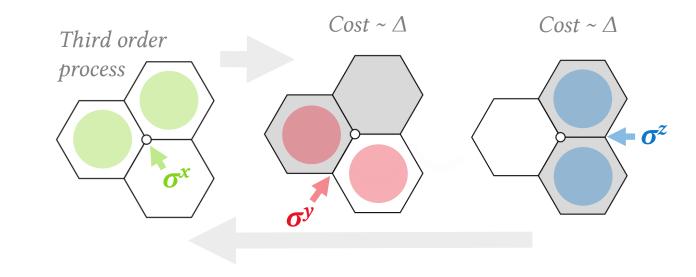
"Virtual" processes involve these states



Second-order corrections

Second order in field, generates renormalization of Majorana hoppings

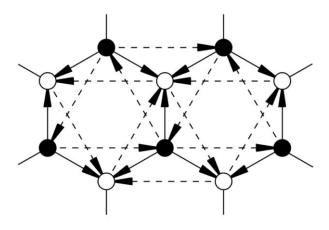
- Does *not* explicitly break timereversal
- Gives *finite* susceptibility at T=0
- Isotropic model preserved for [111] field


 $Energy\ required\ to$ $excite\ flux\ pair$ $H_{\rm eff} = -\sum_{\langle ij\rangle_{\gamma}} \left(J + \frac{2h_{\gamma}^2}{\Delta}\right) P_0 \sigma_i^{\gamma} \sigma_j^{\gamma} P_0 + const.$ $Project\ into$ $zero-flux\ sector$

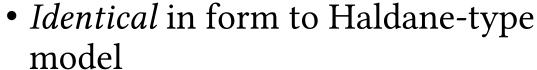
Third-order corrections

- At *next* order?
- Most important piece at third-order: generates a three-spin interaction term
- *Explicitly* breaks time-reversal symmetry

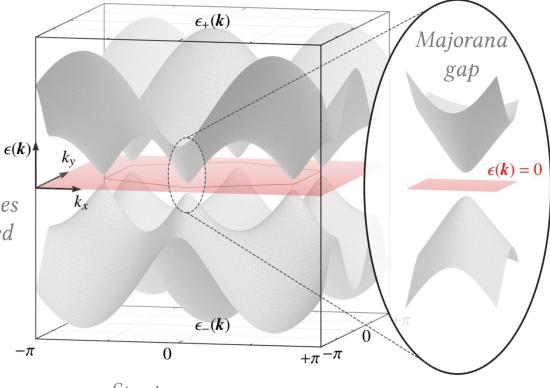
What does this do?


Energy required to excite flux pair

$$H_{\text{eff}} = -\sum_{\langle ij \rangle_{\gamma}} \left(J + \frac{2h_{\gamma}^{2}}{\Delta} \right) P_{0} \sigma_{i}^{\gamma} \sigma_{j}^{\gamma} P_{0}$$
Still
solvable!
$$-\frac{6h_{x}h_{y}h_{z}}{\Delta^{2}} \sum_{i,j,k} \left[P_{0} \sigma_{i}^{x} \sigma_{j}^{y} \sigma_{k}^{z} P_{0} \right]$$

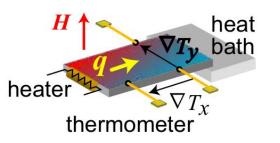

Effect of a magnetic field (cont.)

 $\Delta \sim \frac{h_x h_y h_z}{J^2}$


• Third-order term appears as *second-neighbour hopping*

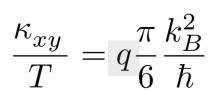
 $\epsilon(k)$ Dirac cones
are gapped
out

 Topological bands; chiral Majorana edge modes



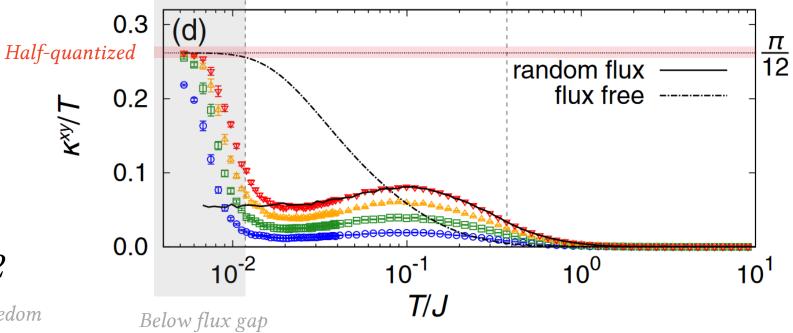
Spectrum near cones

$$\varepsilon(\mathbf{q}) \approx \pm \sqrt{3J^2 |\delta \mathbf{q}|^2 + \Delta^2}$$

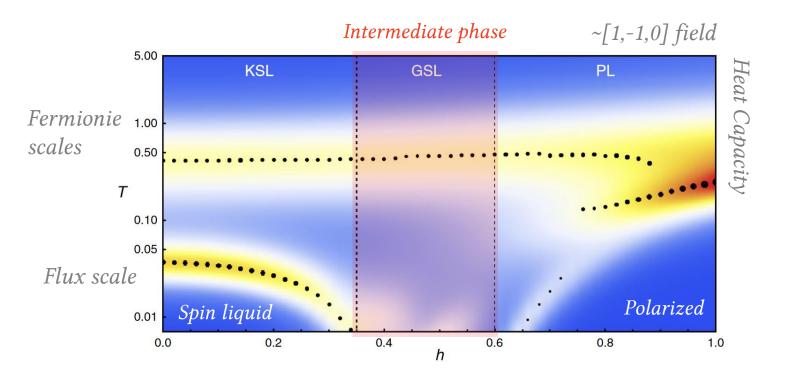

Majorana "mass"

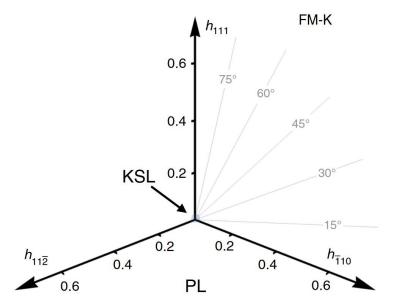
Thermal Hall Effect

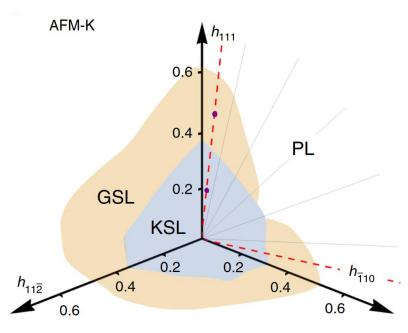
From QMC simulations


• Chiral edge modes give *half*-quantized thermal Hall effect

(Chiral) central charge of edge modes

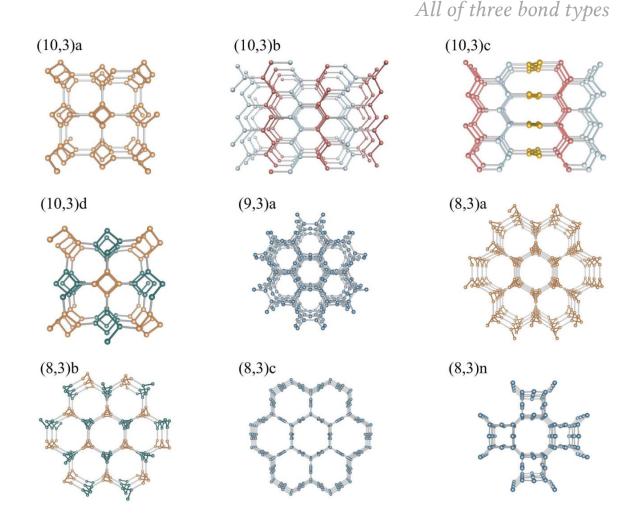

• For Majoranas q=1/2

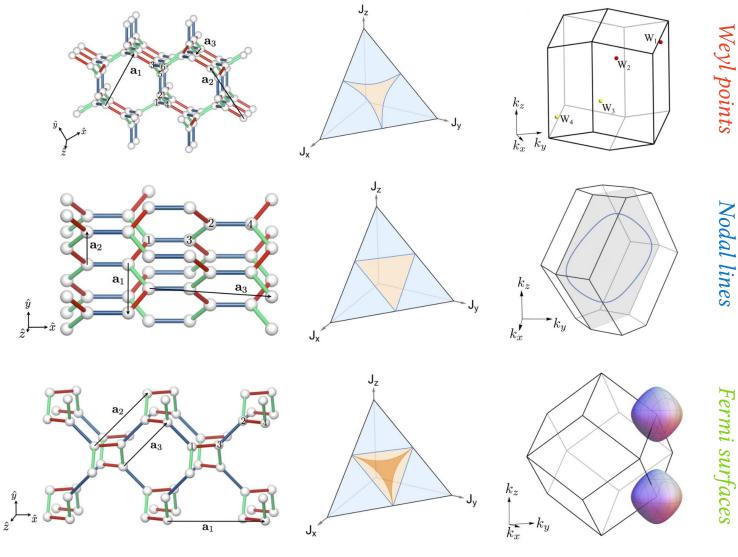

"Half" degree of freedom



Larger fields?

- FM Kitaev? Quickly to polarized phase
- AF Kitaev? Larger region, intermediate phase (?)



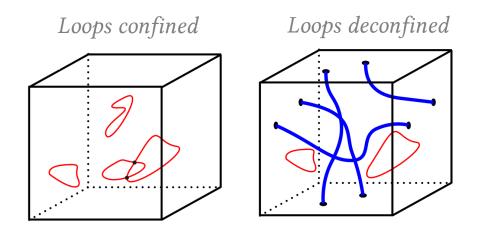

Hickey & Trebst, Nat. Comm. 10, 530 (2019)

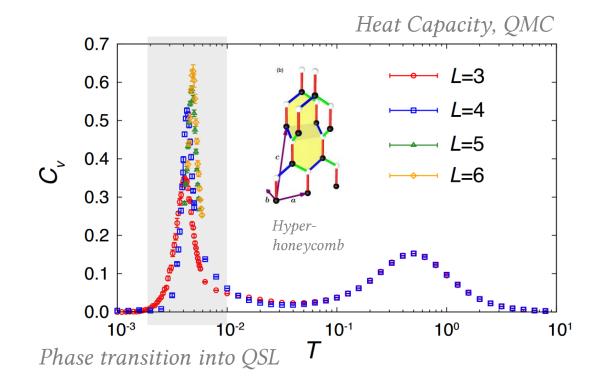
Three-dimensional Kitaev models

- Solvable on many tricoordinated lattices – two *and* three dimensional
 - Star lattice (2D)
 - Hyperhoneycomb
 - Hyperoctagon
 - Stripy-honeycomb ...
- Derivation is *mostly* identical

*Can be unstable to interactions

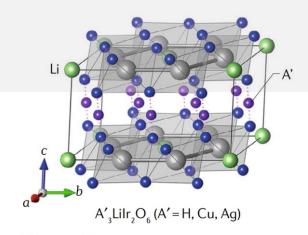
- Variety of ground state flux-sectors (not necessarily flux-free)
- Variety of Majorana spectra
 - 1. Weyl points
 - 2. Nodal Lines
 - 3. Majorana-Fermi surfaces*

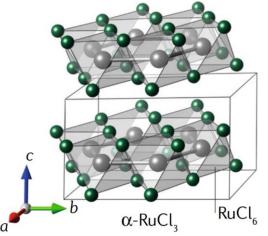

Thermal phase transitions

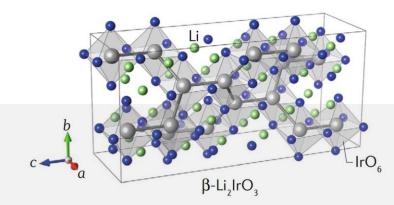

• Additional constraints on plaquette operators

$$\prod_{p \in \text{volume}} W_p = 1$$

- Flux excitations form *loops*
- Confinement-deconfinement transition at finite temperature

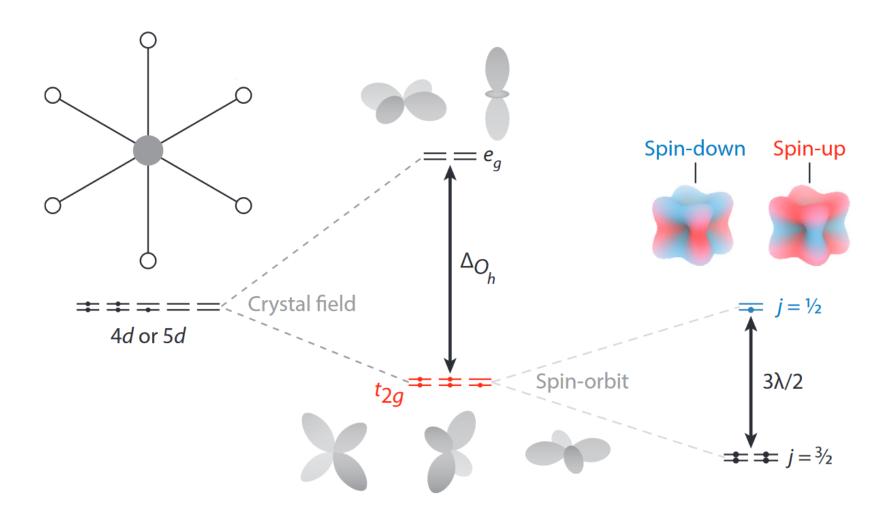





Kitaev Materials

Growing family where Kitaev interaction is believed to be dominant:

- 1. α -RuCl₃
- $2. Na_2 IrO_3$
- 3. α -Li₂lrO₃, β -Li₂lrO₃, γ -Li₂lrO₃
- 4. H₃Lilr₂O₆
- 5. Cu₂IrO₃
- 6. Cu₃Lilr₂O₆, Ag₃Lilr₂O₆, ...



$J_{eff} = \frac{1}{2}$ Magnetism

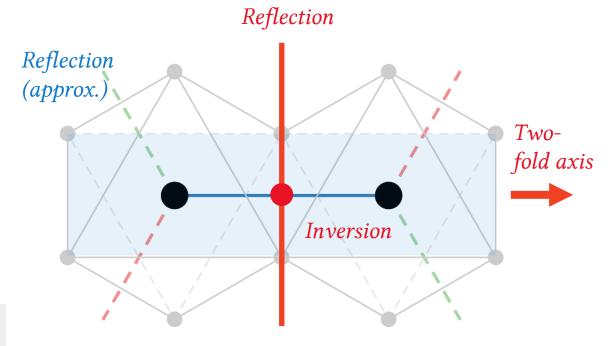
- Partially filled *d*-shell with strong spin-orbit coupling
- Low-lying *half-filled* doublet
- Doublet states strongly mix spin and orbital degrees of freedom

Rau, Lee & Kee, Ann. Rev. Cond. Mat. 7, 195-221 (2016)

Symmetry allowed exchanges

- *Edge*-shared octahedra
- Bond symmetries constrain exchanges:
 Four allowed

Heisenberg

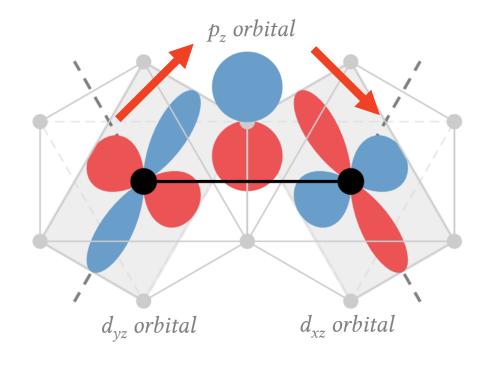

Kitaev

Symmetric Off-diagonal

$$JS_i \cdot S_j + KS_i^z S_j^z + \Gamma(S_i^x S_j^y + S_i^y S_j^x)$$

$$+\Gamma'(S_i^x S_j^z + S_i^z S_j^x + S_i^y S_j^z + S_i^z S_j^y)$$

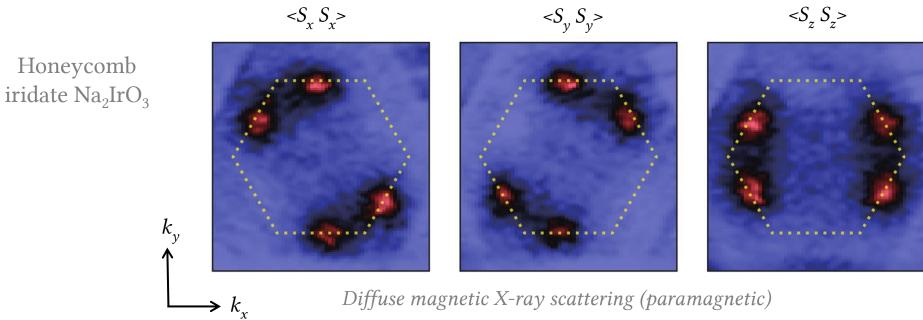
Symmetric Off-diagonal

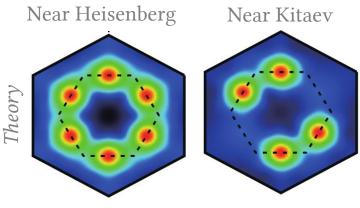

Only if **pair** of **ideal** octahedra

Katakuri et al., New. J. Phys. 16, 013056 (2014) Rau, Lee & Kee, Phys. Rev. Lett. 112, 077204 (2014)

Jackeli-Khaliullin Mechanism

- Exchange known *not* be generic in reasonable limit
- *Ligand* mediated hopping is dominant
- Ferromagnetic Kitaev interaction is leading exchange

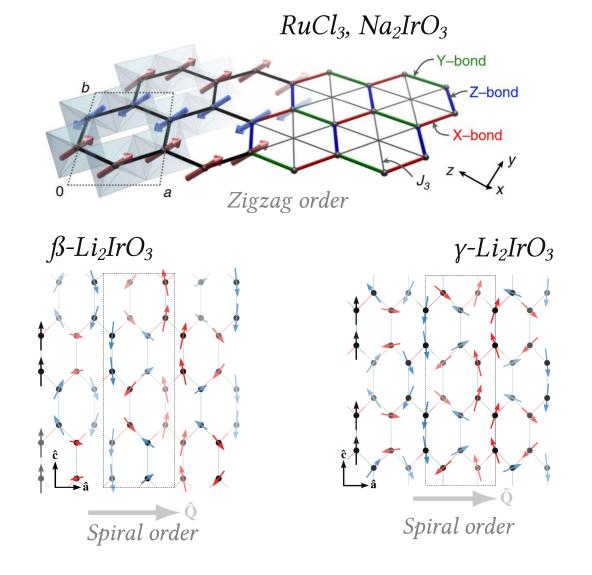

Is this the dominant piece?


Hund's Coupling
$$-\frac{8t^2J_H}{3U}S_i^zS_j^z$$

Ferromagnetic Kitaev

Evidence for Kitaev Exchange

- Implication of strong Kitaev interactions
- **Spin** and **spatial** orientation strongly correlated



S.H. Chun et al, Nature Physics 11, 462 (2015)

... unfortunately, nearly all order

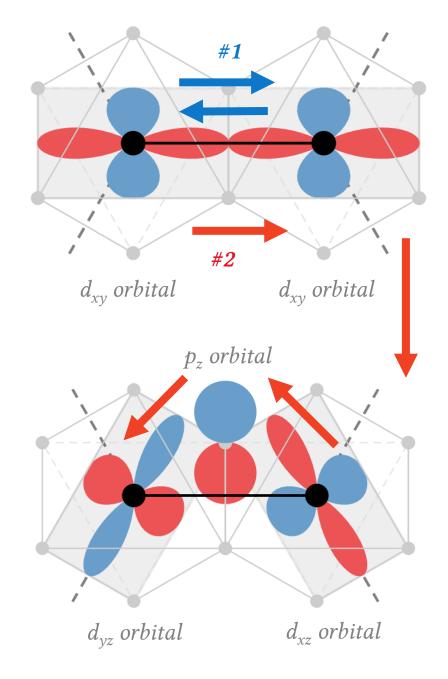
- Most Kitaev materials *do not realize* the Kitaev spin liquid ground state
- Magnetically order at low temperatures
- Either "zigzag" or "incommensurate spiral" orderings have been seen

What is the cause?

• More processes: $Direct \ d_{xy}$ - d_{xy} overlap

Two processes:

- 1. There and back via d_{xy} - d_{xy}
- 2. There via $d_{xy}-d_{xy}$, but *back* via oxygen-mediated route

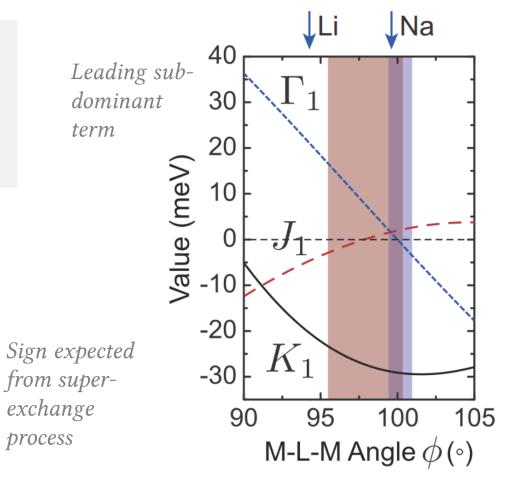

Process #1:

Only Heisenberg exchange

Process #2:

With Heisenberg, ...

Symmetric off-diagonal exchange



Generic model?

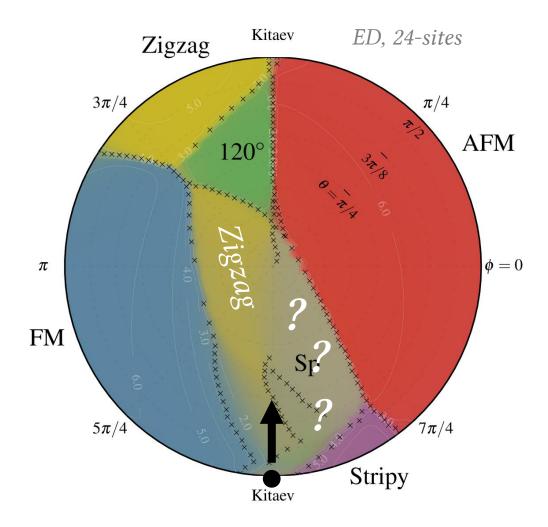
Generically expect Heisenberg and symmetric off-diagonal exchange when beyond the Kitaev limit

• Microscopic calculations suggest that in many Kitaev materials:

 $\Gamma > 0$ and sub-dominant

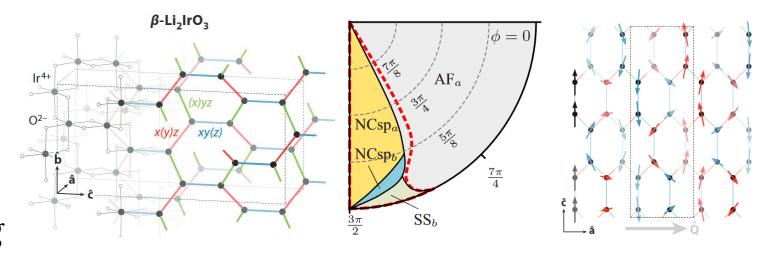
exchange

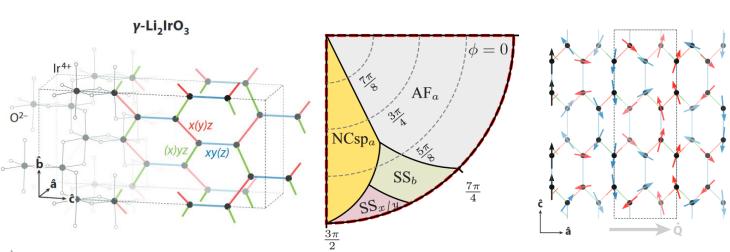
process


Not as large as Kitaev exchange, leading **non-Kitaev** interaction

Effect on Kitaev spin liquid

- Kitaev spin liquid occupies relatively *small* region
- Small positive Γ pushes it into **zigzag** phase *or* into *poorly-characterized region*
 - Spiral? Spin liquid? Nematic?


Contains experimentally observed *ordered* phases:


- 1. Zigzag (RuCl₃, Na₂IrO₃)
- 2. Incommensurate (Li₂IrO₃)

Incommensurate phases in 3D iridates

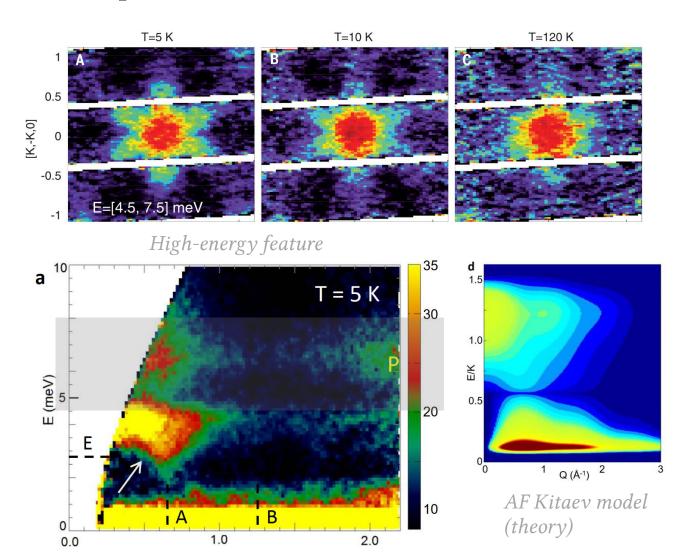
- Mostly successful in explaining ordering pattern in hyper- and harmonic-honeycombs
- Complex counter rotating incommensurate spirals
- Appear near FM Kitaev limit with positive Γ


Importance for RuCl₃?

- Ab-initio find large, positive Γ
- Sometimes even *comparable* to the Kitaev exchange

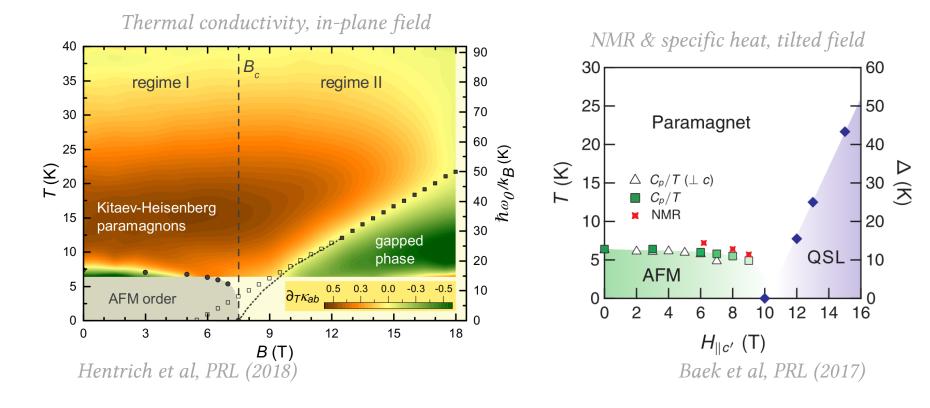
Kitaev

Method	Structure	J_1	K_1	Γ_1	
Exp. An. [166]	_	-4.6	+7.0		
Pert. Theo. [149]	P3 ₁ 12	-3.5	+4.6	+6.4	
QC (2-site) [41]	$P3_{1}12$	-1.2	-0.5	+1.0	
ED (6-site) [45]	$P3_{1}12$	-5.5	+7.6	+8.4	
Pert. Theo. [149]	Relaxed	-2.8/-0.7	-9.1/-3.0	+3.7/+ 7.3	
ED (6-site) [45]	C2/m	$-1.7^{'}$	-6.7	+6.6	
QC (2-site) [41]	C2/m	+0.7	-5.1	+1.2	
DFT [180]	C2/m	-1.8	-10.6	+3.8	
Exp. An. [181]	_	-0.5	-5.0	+2.5	


Symm. Off-Diag.

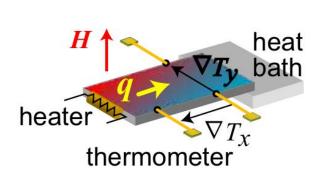
Reference	Method	K	Γ	Γ'	J	J_3	$\Gamma + 2\Gamma'$	$J + 3J_3$	Full model
Banerjee et al. [22]	LSWT, INS fit	+7.0			-4.6			-4.6	more
Kim <i>et al</i> . [29]	DFT+ t/U , $P3$	-6.55	5.25	-0.95	-1.53		3.35	-1.53	
	DFT+SOC+ t/U	-8.21	4.16	-0.93	-0.97		2.3	-0.97	complicate
	Same+fixed lattice	-3.55	7.08	€0.54	-2.76		6.01	-2.76	•
	Same+U + zigzag	+4.6	6.42	-0.04	-3.5		6.34	-3.5	
Winter et al. [30]	DFT+ED, $C2$	-6.67	6.6	-0.87	-1.67	2.8	4.87	6.73	
	Same, <i>P</i> 3	+7.6	8.4	← 0.2	-5.5	2.3	8.8	+1.4	
Yadav <i>et al.</i> [24]	Quantum chemistry	-5.6	-0.87		+1.2		-0.87	+1.2	
Ran et al. [34]	LSWT, INS fit	-6.8	9.5	←			9.5		
	DFT+ t/U , $U = 2.5$ eV	-14.43	6.43		-2.23	2.07	6.43	+3.97	
Hou et al. [31]	Same, $U = 3.0 \text{ eV}$	-12.23	4.83		-1.93	1.6	4.83	+2.87	
	Same, $U = 3.5 \text{ eV}$	-10.67	3.8		-1.73	1.27	3.8	+2.07	
Wang <i>et al.</i> [32]	DFT+ t/U , $P3$	-10.9	6.1		-0.3	0.03	6.1	-0.21	
	Same, <i>C</i> 2	-5.5	7.6	←	+0.1	0.1	7.6	+0.4	
Winter <i>et al.</i> [35]	Ab initio + INS fit	-5.0	2.5		-0.5	0.5	2.5	+1.0	
Suzuki et al. [36]	ED, C_p fit	-24.41	5.25	-0.95	-1.53		3.35	-1.53	
Cookmeyer et al. [37]	Thermal Hall fit	-5.0	2.5		-0.5	0.11	2.5	-0.16	
Wu et al. [38]	LSWT, THz fit	-2.8	2.4		-0.35	0.34	2.4	+0.67	
Ozel et al. [39]	Same, $K > 0$	+1.15	2.92	+1.27	-0.95		5.45	-0.95	
	Same, $K < 0$	-3.5	2.35		+0.46		2.35	+0.46	
Eichstaedt et al. [33]	DFT+Wannier+ t/U	-14.3	9.8	-2.23	-1.4	0.97	5.33	+1.5	Not inct
Sahasrabudhe et al. [42]	ED, Raman fit	-10.0	3.75		-0.75	0.75	3.75	1.5	Not just
Sears <i>et al.</i> [40]	Magnetization fit	-10.0	10.6	€0.9	-2.7		8.8	-2.7	ab-initio
Laurell et al. [41]	ED, C_p fit	-15.1	10.1	-0.12	-1.3	0.9	9.86	+1.4	
This work	"Realistic" range	[-11, -3.8]	[3.9,5.0]	[2.2,3.1]	[-4.1, -2.1]	[2.3,3.1]	[9.0,11.4]	[4.4,5.7]	methods
	Point 1	-4.8	4.08	2.5	-2.56	2.42	9.08	4.7	
	Point 2	-10.8	5.2	2.9	-4.0	3.26	11.0	5.78	• • •
	Point 3	-14.8	6.12	3.28	-4.48	3.66	12.7	6.5	

Remnants of the spin liquid?

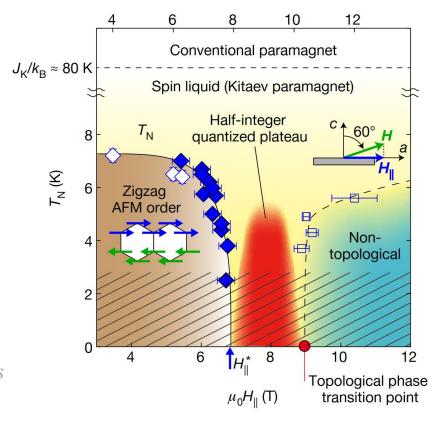

- Some indications of Kitaev-like features in high-energy excitations in RuCl₃
- Indicating some **proximity** to the spin liquid phase?

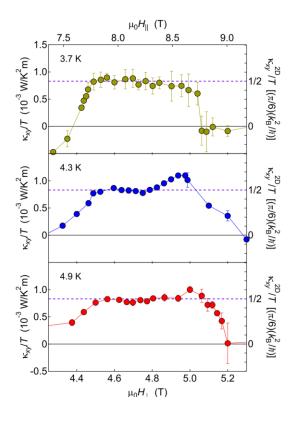
Banerjee et al, Nat. Mat. **15** 733 (2015); Banerjee et al, Science **356** 1055 (2017)

Towards Kitaev by applied field?


• Can suppress ordering quickly with in-plane applied magnetic field

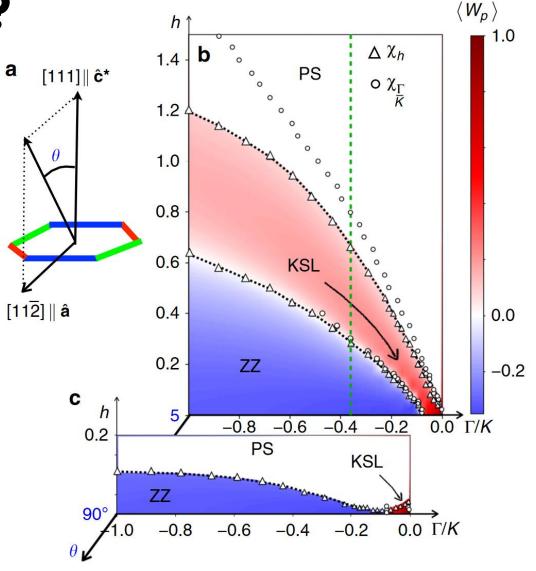
Some evidence for an **intermediate** phase once order dies off ...


Chiral Majorana Edge Modes?


• Thermal Hall is *quantized* at low temperature in intermediate phase

$$\frac{\kappa_{xy}}{T} = q \frac{\pi}{6} \frac{k_B^2}{\hbar}$$

(Chiral) central charge of edge modes


• Quantized half-integral value: one (chiral) Majorana edge mode?

Subdominant exchanges?

- Perturb spin liquid with subdominant exchanges, **add field**
- Spin liquid can *re-emerge* at finite **titled** field

Proof of principle: Kitaev spin liquid can re-emerge in applied field

• *Other* explanations?

Gordon et al, Nat. Comm. 10 2470 (2019)

Summary

Kitaev's honeycomb model (& generalizations):

- Exactly solvable models of \mathbf{Z}_2 quantum spin liquids
- Explicit demonstration of fractionalization of spins into Majorana fermions
- Very rich thermodynamic & dynamical properties and under an applied magnetic field Chiral Majorana edge modes

Kitaev Materials:

- Growing family of materials with **Kitaev as dominant** exchange RuCl₃, Na₂IrO₃, Li₂IrO₃, ...
- Potential to realize Kitaev's spin liquid in solid-state systems Half-quantized thermal Hall effect in RuCl₃?

Thank you for your attention