Tutorial: Quantum Spin Liquids (Part I)

Three questions:

1. What is a spin liquid?
Why are they interesting?

- 1) Quantum Spin Ice
- 2) Kitaev's Spin Liquid

2. How to stabilize a spin liquid?

can go wrongs

3. How to detect a spin liquid?

What is a spin liquid?

• *Broad* sense:

¹Doesn't spontaneously break any symmetries

Magnet that doesn't order¹ down to zero temperature **and** is distinct² from a trivial paramagnet³

³Has some kind of "topological order"

- Typically *highly frustrated*
- Broad *cooperative paramagnet* regime, *well below* characteristic scale

²Not "smoothly connected"

Valence bond solid? *No*Frozen product state due to disorder? *No*

One dimension? *Complicated*

What do we mean by magnet?

• General (pseudo-) spin-1/2 model can take the form

Heisenberg – Align In weak SOC limit or Anti-align
$$J >> D >> \Gamma$$
 Is a symmetric $3x3$ matrix
$$\sum_{ij} \left[J_{ij} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + \mathbf{D}_{ij} \cdot \left(\mathbf{S}_{i} \times \mathbf{S}_{j} \right) + \mathbf{S}_{i} \cdot \left(\mathbf{\Gamma}_{ij} \cdot \mathbf{S}_{j} \right) \right]$$
Dzyaloshinskii-Moriya (DM) interaction Symmetric anisotropy (pseudo-dipolar, Ising, etc)

If **strong** SOC, *no prescribed form* – only constrained by discrete lattice symmetries

Should we expect some simple, robust limits? ... or we should get **everything**? Depends on strength of SOC

Common limits:

Heisenberg
$$J \sum_{\langle ij \rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$$

$$XY \qquad J \sum_{\langle ij \rangle} \left(S_{i}^{\mathsf{x}} S_{j}^{\mathsf{x}} + S_{i}^{\mathsf{y}} S_{j}^{\mathsf{y}} \right)$$
Ising $J \sum_{\langle ij \rangle} S_{i}^{\mathsf{z}} S_{i}^{\mathsf{z}}$

Spin-orbit coupling

Increases with Z (does **not** scale as Z^4 ; screening)

What do we mean by spin?

With strong spin-orbit spin & orbital no longer distinct

"Spin-down"

"Spin-up"

Protected by Kramers' theorem or spatial symmetries

Where to find spin liquids?

(Or: How to get interesting collective behaviour?)

Competition between many states → **Complex behaviour**

Frustration: Inability to satisfy all interactions simultaneously

Generically leads to *many* competing states

"All happy families are alike; each unhappy family is unhappy in its own way" – L. Tolstoy

Example of an *unfrustrated anti-*ferromagnet:

(Essentially) unique satisfied state

This is *geometric* frustration

Many, many states – what are their properties?

Disordered, like paramagnet

... but still *correlated*

Example of a cooperative paramagnet or "(Classical) Spin liquid"

More broadly this goes like:

Start here: Frustrated magnet

Highly degenerate set of states

Unconventional

Ordered States

- · "Order-by-disorder"
- Incommensurate order
- · Skyrmion lattices

•

Detail dependent

Third law

Disordered States

- Valence bond crystals
- . Spin Glasses
- ...
- . Spin liquids

"Exotic" phases of matter

Unfrustrated

Frustrated

Highly Frustrated?

Why are spin liquids interesting?

Fractionalized excitations

Excitations *split* into new independent parts

Emergent gauge theories

Realizations of electromagnetism, complete with *new* photon

Topological order

Long-range quantum entangled ground states

Spinons in a spin chain

Prediction for emergent photon in quantum spin ice

spin ice

What kind of models are *known* to have spin liquid ground states?

Classical models

Triangular Ising AFM

• Pyrochlore Heisenberg AFM

• Spin ice, ...

Extensive ground state manifolds

Exactly solvable models

- Toric code,
- · Kitaev's honeycomb model
- String-net models, ...

Hand-crafted interactions

Non-solvable models

- Kagome anti-ferromagnet
- Quantum spin ice
- J_1 - J_2 models, ...

Numerical (mostly)

Quantum Spin Ice

- i. Classical Spin Ice
- ii. Magnetic Monopoles
- iii. Effective Quantum Hamiltonian
- iv. Mapping to QED

Classical Spin Ice

- Simplest realization: *Ising model on pyrochlore lattice*
- Lattice of corner-sharing tetrahedra
- Four spins, want to anti-align with all others

No one way to do it!

Anti-ferromagnetic exchange

$$E = J \sum_{\langle ij \rangle} \sigma_i \sigma_j$$

... highly frustrated model

Six **equally bad** ways to arrange

- We'll draw our pictures in two-dimensions
- Ising model on checker-board lattice
- "Square Ice"

... small change in perspective

Closer to how the magnetic dipoles are really aligned in materials

When in doubt follow red vs.

1.1...

... does moving to full lattice change this? No

"Checkerboard" lattice

Many, many ways to arrange these

 Number of minimal energy states is exponential in number of spins:

$$\Omega = \left(\frac{4}{3}\right)^{3N/4}$$

 Leads to non-zero, residual entropy at T=0

$$S = k_B \log \Omega \approx 0.2157 k_B N$$

"Square ice" or "Six-vertex model"

Loop structure of ice states

Chain of magnetic dipoles

Chain of current loops

Solenoid!

Loop formation is emergent version of $\nabla \cdot \mathbf{B} = 0$

... these loops are everywhere

... and not uniquely tied together

Further, they can be re-arranged at no cost

Flip small loop

Still minimal energy

Cut a loop, get a pair of magnetic monopoles

No longer minimal energy: **Excitation** of system

...

Free to move

No additional energy cost

Always in **pairs**

Can move arbitrarily far apart

Compare this to usual **Dirac string**

Example of fractionalization

Lowest energy excitations are effectively magnetic monopoles

Experimental Realizations

Chemical formula: $R_2M_2O_7$

- Growing family of materials
- Mostly three-dimensional pyrochlore lattice
 - Network of corner-sharing tetrahedra
- Magnetic ion is a trivalent rareearth
 - Best examples are Dy₂Ti₂O₇ and Ho₂Ti₂O₇

Atomic physics

Giant dipole moment

$$\mu \approx 10 \mu_B$$

10x that of single

• Rare-earth ion has *huge* amount of angular momentum:

$$J = 15/2, L = 5, S = 5/2$$
From Hund's Rules

- Both spin and orbital contributions
- Surrounding (charged) ions prefer moment *in* or *out* of the tetrahedron

$$|J_z = \pm 15/2\rangle$$

Effect of "crystalline electric field"

... how do they interact? Mostly dipole-dipole

Charges repel: **Disfavoured**

 Just like our "toy" model from earlier – wants two-in/two-out on each tetrahedron

Charges *attract*: **Favoured**

- Full picture *significantly* more complicated
 - Super-exchange between the 4f electrons is **large**
 - Multipole interactions must be considered
- Final result unaffected

Visualize using "physical" dipoles

... can draw precisely same picture as before

Many, many minimal energy configurations

Magnetic dipoles form *loops*

Excitations break them:

Magnetic monopoles

Some history: Proton Disorder in Water Ice

Hexagonal (I_h) Water Ice

Many, many ways to orient the water molecules

Nearly the same physics!

R. Fowler

L. Pauling

Key signatures

Many, many ground states
 Finite, residual entropy at T=0

 Closed loops of magnetic dipoles
 "Pinch-points" in spin-spin correlations **Question:**

Are these seen in materials?

Together these tell would tell us the *excitations* are *magnetic monopoles*

Signature #1: Residual Entropy

Access via heat capacity:

Experimentally measurable

$$S(T) - S(0) = \int_0^T dT' \frac{C(T')}{T'}$$

Should be Rlog(2) at high temperature

• Get "missing" amount at high temperature

$$S(0) \approx \frac{R}{2} \log \left(\frac{3}{2}\right) \approx 0.202R$$
"Pauling" Entropy

Entropy of $Dy_2Ti_2O_7$ at low temperature

Signature #2: "Loops"

Diffuse neutron scattering on

$$S(\mathbf{k}) = \frac{1}{N} \sum_{ij} \langle \sigma_i \sigma_j \rangle e^{i\mathbf{k} \cdot (\mathbf{r}_i - \mathbf{r}_j)}$$

 Since spins form loops, the spins on the same loop are highly correlated

[100]

... measures something like the static structure factor

Result from simplest version of

Stability?

Classical spin liquids are unstable to small perturbations, always "fine-tuned"

- "Third-law": Can't have finite entropy density *generically*
- Perturbations that lift degeneracy set ordering scale

Instability can be toward quantum spin liquid

Quantum Fluctuations

• Perturbations to Ising model: Anisotropic exchange

$$H = J_{zz} \sum_{\langle ij \rangle} S_{i}^{z} S_{j}^{z} - J_{\pm} \sum_{\langle ij \rangle} \left(S_{i}^{+} S_{j}^{-} + \text{h.c.} \right) \frac{\textit{Transverse}}{\textit{Exchange}}$$

$$= \sum_{\substack{\text{Need } J_{z\pm} \text{ to be } << \text{ than other } \\ \textit{transverse exchanges}}}$$

$$+ J_{\pm\pm} \sum_{\langle ij \rangle} \left(\gamma_{ij} S_{i}^{+} S_{j}^{+} + \text{h.c.} \right) + J_{z\pm} \sum_{\langle ij \rangle} \left(\zeta_{ij} \left[S_{i}^{z} S_{j}^{+} + S_{i}^{+} S_{j}^{z} \right] + \text{h.c.} \right)$$

Depending on nature of atomic states: may have $J_{z\pm}=0$ and/or trivial phases $\zeta=\gamma=1$

- Focus on the J_{\pm} part; the other terms have same *qualitative* physics
- Degenerate perturbation theory within the manifold of ice states

Degenerate Perturbation Theory

• First non-trivial contribution at **third order** in perturbation theory

Effective Model

• Six-spin "loop flip" term in effective Hamiltonian

$$H_{
m eff} = -rac{2J_{\pm}^2}{J_{zz}}N - rac{12J_{\pm}^3}{J_{zz}^2}\sum_{
m hexagons} P_{
m ice} \left(S_1^+ S_2^- S_3^+ S_4^- S_5^+ S_6^- + {
m h.c.}
ight) P_{
m ice}$$

• Energy scale of dynamics in ice

$$g \equiv \frac{12J_{\pm}^3}{J_{zz}^2} \ll J_{\pm} \ll J_{zz}$$

Effective Model (cont.)

Tunnelling term from 3rd order process

$$-g\sum_{\text{hexagons}} (|\circlearrowleft\rangle\langle\circlearrowright|+|\circlearrowright\rangle\langle\circlearrowleft|)$$

$$+\mu \sum_{\text{hexagons}} (|\circlearrowleft\rangle\langle\circlearrowleft|+|\circlearrowright\rangle\langle\circlearrowright|)$$

Added **by hand**; original model has $\mu = 0$

- Augment loop "flip" with loop "potential"
- Rohksar-Kivelson model
- Exactly solvable point when two terms are equal
- Ground state? *Equal superposition of ice states:*

$$|RK\rangle \sim \frac{1}{\sqrt{N_{\text{ice}}}} \sum_{\sigma \in \text{ice}} |\sigma_1 \cdots \sigma_N\rangle$$

Topological Sectors?

- If it traverse the periodic boundaries any loop can be deformed into any other by "flips"
- Loops that wind through the periodic direction cannot
- # of winding loops defines topological sector

in/out ice state dipoles $O(L^2)$ total Non-Winding Winding Loops

Loops are

Loops

Topological Sectors (cont.)

- Can only remove by *creating* monopole pair and annihilating across boundary
- Tunnelling is exponentially suppressed $\sim O(e^{-L})$
- **Think:** *trapping magnetic flux* in the periodic "holes" of the lattice

Mapping to Lattice Gauge Theory

- Make connection to electromagnetism explicit:
- Map spins to O(2) "rotors"
- Constraint: $n_i = 0$ or 1

Rotor
Representation
$$S_i^z = \left(n_i - \frac{1}{2}\right),$$

$$S_i^+ = \sqrt{n_i} \exp\left[i\theta_i\right] \sqrt{1 - n_i},$$

$$S_i^- = \sqrt{1 - n_i} \exp\left[-i\theta_i\right] \sqrt{n_i}$$

$$[\theta_i, n_j] = i\delta_{ij}.$$

$$\frac{U}{2}\sum_{i}(n_{i}-1/2)^{2}-2g\sum_{\bigcirc}\cos(\theta_{1}-\theta_{2}+\theta_{3}-\theta_{4}+\theta_{5}-\theta_{6}).$$

"Softened" constraint; fixes n=0,1 for large values of U

Factors of n drop when acting on **flippable** hexagons (only non-zero there)

• Use these to define **electric** and **magnetic fields** on the diamond (dual-diamond) lattice

$$\mathcal{B}_{\mathbf{rr'}} = \pm \left(\hat{n}_i - \frac{1}{2}\right),$$
 Geometrically complicated, but one-to-one mapping to rotors $\mathcal{E}_{\mathbf{ss'}} = (\nabla_{\bigcirc} \times \mathcal{G})_{\mathbf{ss'}} = \sum_{\circlearrowleft} \mathcal{G}_{\mathbf{rr'}},$

• These give the representation:
$$\frac{U}{2} \sum_{\langle \mathbf{rr'} \rangle} \mathcal{B}_{\mathbf{rr'}}^2 - 2g \sum_{\langle \mathbf{ss'} \rangle} \cos{(\mathcal{E}_{\mathbf{ss'}})}, \quad \begin{array}{c} \textit{Lattice} \\ \textit{Gauge} \\ \textit{Theory} \end{array}$$

 Coarse-grain to remove strict large U limit; assume *E*-field small; Taylor expand

Hermele et al, Phys. Rev. B 69, 064404 (2004); Benton et al, Phys. Rev. B 86, 075154

Photon and Emergent Electrodynamics

Gauge theory can be solved:

$$\sum_{\mathbf{k}} \sum_{\lambda=1}^{2} \omega(\mathbf{k}) \left[a_{\lambda}^{\dagger}(\mathbf{k}) a_{\lambda}(\mathbf{k}) + \frac{1}{2} \right],$$
Gauge
boson

• Linearly dispersing **photon** mode near $k \sim 0$

• Do we **trust** this mapping? *Lots of hand-waving/coarse-graining*

Photon and Emergent Electrodynamics (cont.)

- Compare to quantum Monte carlo simulation! (sign-free)
- Static structure factor agrees almost quantitatively

On 3rd order effective model

Benton et al, Phys. Rev. B 86, 075154 (2012)

Photon and Emergent Electrodynamics (cont.)

- Can compare dynamics too! *QMC on XXZ model*
- Some ambiguity going from imaginary to real time
- Qualitative agreement
- Limited due to finite temperature $T \sim g$

 $J_{\pm}/J_{zz} \sim 0.046$

Monopole Dynamics?

- What about the magnetic monopoles?
- Transverse exchange **hops** monopoles *at first order in the* counling

$$g \equiv rac{12J_{\pm}^3}{J_{zz}^2} \ll J_{\pm} \ll J_{zz}$$

Photon
energy scale

Monopole
hopping
cost

• Monopoles are **fast** relative to the photons

Monopole Dynamics (cont.)

- **Simplest picture:** Monopoles are *free particles* hopping on diamond lattice
- "Fractionalized" continuum
- Dynamical structure factor probes two-monopole continuum
- Agrees well with QMC

Fine Structure Constant

- What about *coupling* between monopoles and photon?
- Fine-structure constant
- Can relate spacing of flux sectors to photon-matter coupling

• Eq
$$\frac{1}{8\pi} \int d^3r \left(|\boldsymbol{E}|^2 + c^2 |\boldsymbol{B}|^2 \right)$$

 To "Coulomb" cost of dragging those charges Visual moving between sectors via B-field lines

Leaves behind uniform field

those chargesHermele et al, Phys. Rev. B **69**, 064404 (2004); Pace et al, Phys. Rev. Lett. **127**, 117205 (2021)

Fine Structure Constant (cont.)

 Relate energy density of flux sectors to flux

Energy density of sector
$$u=e_{\mathrm{QSI}}^2\frac{2\pi|Q\phi|^2}{a^4}$$
 Photon-Matter coupling

 Extract flux sector spectrum from simulation, extract lightmatter coupling

$$e \approx 0.2\sqrt{ag}$$
 $c \approx 0.5ag$

Summary

Quantum Spin Liquids

- Magnet that doesn't order down to zero temperature and is distinct from a trivial paramagnet
- Can exhibit: Fractionalized excitations, emergent gauge theories, topological order

Quantum Spin Ice:

- Classical spin ice + quantum fluctuations gives a quantum spin liquid state
- Emergent realization of QED, complete with gapless photon and fractionalized (magnetic) charges
- Explores regime not accessible in usual QED

Thank you for your attention

Next time:

Kitaev's honeycomb model

- i. Definition & Solution
- ii. Properties of the Kitaev Spin Liquid
- iii. Effect of a Magnetic Field
- iv. Generalizations (3D, disorder, ...)

Tutorial: Quantum Spin Liquids (Part II)

Reminder:

• Six-spin "loop flip" term in effective Hamiltonian

$$H_{
m eff} = -rac{2J_{\pm}^2}{J_{zz}}N - rac{12J_{\pm}^3}{J_{zz}^2}\sum_{
m hexagons} P_{
m ice} \left(S_1^+ S_2^- S_3^+ S_4^- S_5^+ S_6^- + {
m h.c.}
ight) P_{
m ice}$$

• Energy scale of dynamics in ice

$$g \equiv \frac{12J_{\pm}^3}{J_{zz}^2} \ll J_{\pm} \ll J_{zz}$$

Mapping to Lattice Gauge Theory

- Make connection to electromagnetism explicit:
- Map spins to O(2) "rotors"
- Constraint: $n_i = 0$ or 1

Rotor
$$\mathsf{Representation}$$

$$\mathsf{S}_{i}^{z} = \left(n_{i} - \frac{1}{2}\right),$$

$$\mathsf{S}_{i}^{aising\ operator}$$

$$\mathsf{S}_{i}^{+} = \sqrt{n_{i}} \exp\left[i\theta_{i}\right] \sqrt{1 - n_{i}},$$

$$\mathsf{S}_{i}^{-} = \sqrt{1 - n_{i}} \exp\left[-i\theta_{i}\right] \sqrt{n_{i}}$$

$$[\theta_i, n_j] = i\delta_{ij}.$$

$$\frac{U}{2} \sum_{i} (n_i - 1/2)^2 - 2g \sum_{i} \cos(\theta_1 - \theta_2 + \theta_3 - \theta_4 + \theta_5 - \theta_6).$$

"Soft" constraint; fixes n=0,1 for large values of U

Factors of n drop when acting on **flippable** hexagons (only non-zero there)

• Use these to define **electric** and **magnetic** fields on the diamond (dual-diamond)

lattice

Defined on **links** of diamond lattice

$$\mathcal{B}_{\mathbf{r}\mathbf{r}'} = \pm \left(\hat{n}_i - \frac{1}{2}\right),$$
 $\mathcal{G}_{\mathbf{r}\mathbf{r}'} = \pm \theta_i,$

$$\mathcal{G}_{\mathbf{r}\mathbf{r}'} = \pm \theta_i$$

Geometrically complicated, but oneto-one mapping to rotors

$$\mathcal{E}_{\mathbf{ss'}} = (\nabla_{\bigcirc} \times \mathcal{G})_{\mathbf{ss'}} = \sum_{\bigcirc} \mathcal{G}_{\mathbf{rr'}},$$

Links of **dual** diamond lattice

Coarse-grain to
$$\frac{U}{2}$$
 remove strict large $\frac{U}{2}$

Representation as lattice and theory coarse-grain to
$$\frac{U}{2}\sum_{\langle \mathbf{rr'}\rangle}\mathcal{B}^2_{\mathbf{rr'}}-2g\sum_{\langle \mathbf{ss'}\rangle}\cos{(\mathcal{E}_{\mathbf{ss'}})},$$
 Ice rule constrain

Ice rule
$$\begin{array}{c}
constraint \\
c$$

Assume E-field is small, Taylor expand

$$\frac{\mathcal{U}}{2} \sum_{\langle \boldsymbol{rr'} \rangle} \mathcal{B}_{\boldsymbol{rr'}}^2 + \frac{\mathcal{K}}{2} \sum_{\langle \boldsymbol{ss'} \rangle} \mathcal{E}_{\boldsymbol{ss'}}^2$$

Emergent (Lattice) Quantum Electrodynamics

Photon and Emergent Electrodynamics

• Gauge theory can be solved:

$$\sum_{\mathbf{k}} \sum_{\lambda=1}^{2} \omega(\mathbf{k}) \left[a_{\lambda}^{\dagger}(\mathbf{k}) a_{\lambda}(\mathbf{k}) + \frac{1}{2} \right],$$
Gauge
boson

Linearly dispersing **photon mode** near **k** = 0

Emergent Speed of Light

$$c \approx 0.5ag$$

• Do we **trust** this mapping? *Lots of hand-waving/coarse-graining*

Photon and Emergent Electrodynamics (cont.)

- Compare to quantum Monte carlo simulation! (sign-free)
- Static structure factor agrees almost quantitatively

On 3rd order effective model

Benton et al, Phys. Rev. B 86, 075154 (2012)

Photon and Emergent Electrodynamics (cont.)

- Can compare dynamics too! *QMC on XXZ model*
- Some ambiguity going from imaginary to real time
- Qualitative agreement
- Limited due to finite temperature $T \sim g$

 $J_{\pm}/J_{zz} \sim 0.046$

Monopole Dynamics?

- What about the magnetic monopoles?
- Transverse exchange **hops** monopoles *at first order in the* counling

$$g \equiv \frac{12J_{\pm}^3}{J_{zz}^2} \ll J_{\pm} \ll J_{zz}$$
Photon
energy scale

Monopole
hopping
creation
cost

Monopoles are **fast** relative to the photons

Monopole Dynamics (cont.)

- **Simplest picture:** Monopoles are *free particles* hopping on diamond lattice
- "Fractionalized" continuum
- Dynamical structure factor probes two-monopole continuum
- Agrees well with QMC

Fine Structure Constant

- What about *coupling* between monopoles and photon?
- Fine-structure constant
- Can relate spacing of flux sectors to photon-matter coupling

• Eq
$$\frac{1}{8\pi} \int d^3r \left(|\boldsymbol{E}|^2 + c^2 |\boldsymbol{B}|^2 \right)$$
 from:

 ... to "Coulomb" cost of dragging those charge Visual moving between sectors via B-field lines

Leaves behind uniform field

dragging those charges
Hermele et al, Phys. Rev. B 69, 064404 (2004); Pace et al, Phys. Rev. Lett. 127, 117205 (2021)

Fine Structure Constant (cont.)

 Relate energy density of flux sectors to flux

Energy density of sector
$$u=e_{\mathrm{QSI}}^2\frac{2\pi|Q\phi|^2}{a^4}$$
 Photon-Matter coupling

 Extract flux sector spectrum from simulation, extract lightmatter coupling

$$e \approx 0.2\sqrt{ag}$$
 $c \approx 0.5ag$

Kitaev's honeycomb model

- i. Definition & Solution
- ii. Properties of the Kitaev Spin Liquid
- iii. Generalizations (3D, disorder, ...)

Kitaev's Honeycomb Model

• Frustrated spin-1/2 model on honeycomb lattice

$$-J\sum_{\langle ij \rangle_{\gamma}} \sigma_{i}^{\gamma} \sigma_{j}^{\gamma}$$
 Two-spin interaction s only

• Frustration by *interactions* not geometry

Exactly solvable of a quantum spin liquid with emergent Majorana fermion excitations

Plaquette symmetries

• Infinite number of conserved quantities

$$W_{p} = \sigma_{p_{1}}^{z} \sigma_{p_{2}}^{x} \sigma_{p_{3}}^{y} \sigma_{p_{4}}^{z} \sigma_{p_{5}}^{x} \sigma_{p_{6}}^{y}$$

• Commute with Hamiltonian *and* each other

$$[H, W_p] = 0$$
 $[W_p, W_{p'}] = 0$

- Eigenvalues +1, -1:
 - $2^{N/2}$ sectors each of size $2^{N/2}$

For N sites, there are N/2 plaquettes

Absence of magnetic order

Plaquette symmetries imply no magnetic order

$$\{\sigma_i^\mu, W_p\} = 0$$
 Anti-
 $\{\sigma_i^\mu, W_p\} = 0$ commutation relation

• *Elitzur's theorem:* Can't spontaneously break local symmetries

$$\langle \boldsymbol{\sigma}_i \rangle = 0$$

• Also valid for higher-S Kitaev models

$$\langle \Psi_0 | \sigma_i^{\mu} | \Psi_0 \rangle$$

$$W_p^2 = 1$$

$$\langle \Psi_0 | \sigma_i^{\mu} W_p^2 | \Psi_0 \rangle$$

$$\{ \sigma_i^{\mu}, W_p \} = 0$$

$$-\langle \Psi_0 | W_p \sigma_i^{\mu} W_p | \Psi_0 \rangle$$
Eigenstate of plaquette operators
$$-\langle \Psi_0 | \sigma_i^{\mu} | \Psi_0 \rangle$$

Exact solution: Plan

$$D_{i} \equiv b_{i}^{x}b_{i}^{y}b_{i}^{z}c_{i} = 1$$
 $U_{ij} \equiv ib_{i}^{\gamma}b_{j}^{\gamma}$ $-J\sum_{\langle ij\rangle_{\gamma}}\sigma_{i}^{\gamma}\sigma_{j}^{\gamma}$ $iJ\sum_{\langle ij\rangle_{\gamma}}\left(ib_{i}^{\gamma}b_{j}^{\gamma}\right)c_{i}c_{j}$ $iJ\sum_{\langle ij\rangle_{\gamma}}U_{ij}c_{i}c_{j}$ $\sigma_{i} \equiv im{b}_{i}c_{i}$

Free fermions (solvable)

$$H_0 = J \sum_{\langle ij \rangle_{\gamma}} i c_i c_j$$

$$H_0 = J \sum_{\langle ij \rangle_{\gamma}} i c_i c_j \qquad H[u] \equiv J \sum_{\langle ij \rangle_{\gamma}} i u_{ij} c_i c_j$$

 $w_p = u_{p_1 p_2} u_{p_2 p_3} u_{p_3 p_4} u_{p_4 p_5} u_{p_5 p_6} u_{p_6 p_1}$

 $u_{ij} = +1$

Majorana representation

• Highly suggestive: $2^{N/2}$ states per sector, *Majorana fermions?*

$$\sigma_i \equiv ib_ic_i$$
 $b_i \equiv (b_i^x, b_i^y, b_i^z)$

• Represent spin-1/2 as *four* Majoranas, subject to *constraint*

$$D_i \equiv b_i^x b_i^y b_i^z c_i = 1$$

• Satisfy the anti-commutation relations for for Majorana fermions

$$\{c_i, c_j\} = 2\delta_{ij}$$

$$\{c_i, \boldsymbol{b}_j\} = 0$$

$$\{b_i^{\mu}, b_j^{\nu}\} = 2\delta_{ij}\delta_{\mu\nu}$$

Relation to SU(2) slave fermions?

• How does the relate to the "usual" representation:

$$\sigma_i = f_i^\dagger \sigma f_i$$
 Complex fermions

- With constraint: $f_i^{\dagger} f_i = 1$
- **Equivalent**; just a *change of basis*

$$c = \frac{1}{\sqrt{2}} (f_{\uparrow} + f_{\uparrow}^{\dagger})$$

$$b^{x} = \frac{1}{i\sqrt{2}} (f_{\downarrow} - f_{\downarrow}^{\dagger})$$

$$b^{y} = -\frac{1}{\sqrt{2}} (f_{\downarrow} + f_{\downarrow}^{\dagger})$$

$$b^{z} = \frac{1}{i\sqrt{2}} (f_{\uparrow} - f_{\uparrow}^{\dagger})$$

One possible way to express Majoranas in terms of complex fermions

Hamiltonian in terms of Majoranas

• Substitute these in to Kitaev model:

$$ilde{H} = iJ \sum_{\langle ij \rangle_{\gamma}} \left(ib_i^{\gamma} b_j^{\gamma}\right) c_i c_j$$
 Defined in **extended** space, need to impose constraint

• If we can solve *this,* and get ground state $|\tilde{\Psi}_0\rangle$ then just need to *project* into physical subspace Really, any eigenstate

$$|\Psi_0\rangle = P |\tilde{\Psi}_0\rangle$$

Ground state of Kitaev model

Imposes constraint
$$D_i \equiv b_i^x b_i^y b_i^z c_i = 1$$

Link operators and Z_2 gauge structure

To solve this, notice that the operators

$$U_{ij} \equiv ib_i^{\gamma}b_j^{\gamma}$$

• Commute with the Hamiltonian *and* with each other: **definite value in energy eigenstate**

$$[H, U_{ij}] = 0$$
$$[U_{ij}, U_{lk}] = 0$$

 $U_{ii}^2 = 1$

Really, any eigenstate
$$U_{ij}\ket{\tilde{\Psi}_0}=u_{ij}\ket{\tilde{\Psi}_0}$$

• Two possible values: $u_{ij} = \pm 1$

Defines a \mathbb{Z}_2 gauge field for the c Majorana fermions

Z₂ Flux Operators

Under gauge transformation:

$$c_i \rightarrow z_i c_i$$
 $z_i = \pm 1$
 u_i

Preserves spinoperætøbsici

 $u_{ij} \rightarrow z_i z_j u_{ij}$

• What are the associated $\mathbf{Z_2}$ flux operators?

$$w_p = u_{p_1 p_2} u_{p_2 p_3} u_{p_3 p_4} u_{p_4 p_5} u_{p_5 p_6} u_{p_6 p_1}$$

Product of link variables around hexagon

• Gauge invariant quantities

$$W_{p} = \sigma_{p_{1}}^{z} \sigma_{p_{2}}^{x} \sigma_{p_{3}}^{y} \sigma_{p_{4}}^{z} \sigma_{p_{5}}^{x} \sigma_{p_{6}}^{y}$$

$$W_p |\tilde{\Psi}_0\rangle = w_p |\tilde{\Psi}_0\rangle$$

Flux sectors

- Gauge field is **static**: fluxes (and links) have *fixed* values
- Each of the $2^{N/2}$ choices of u_{ij} defines **flux sector**

$$H[u]\equiv J\sum_{\langle ij\rangle_{\gamma}}iu_{ij}c_{i}c_{j}$$
 Independent "block" of Hamiltonian

• Each flux sector is a *free fermion* problem! (efficiently solvable) $_{(N^3)}^{Cost is}$

Ground state? Need to find flux sector with *lowest possible energy*.

Ground state flux sector & Lieb's Theorem

• Could brute force minimize; instead can use **Lieb's theorem**:

Ground sector state is **flux-free**

Depends on lattice structure

$$u_{ij} = +1$$

• Description is *free Majoranas* hopping on honeycomb lattice

$$H_0 = J \sum_{\langle ij \rangle_{\gamma}} i c_i c_j$$

Solution in flux-free sector

$$c_{r,\alpha} = \frac{1}{\sqrt{N}} \sum_{k} e^{ik \cdot r} c_{k,\alpha}$$

• Now problem is simple: Fourier transform, then diagonalize

$$H_0 = J \sum_{\langle ij \rangle_{\gamma}} i c_i c_j = \frac{1}{2} \sum_{k>0} (c_{-k,A} c_{-k,B}) \begin{pmatrix} 0 & f(k) \\ f(k)^* & 0 \end{pmatrix} \begin{pmatrix} c_{k,A} \\ c_{k,B} \end{pmatrix}$$

$$f(\mathbf{k}) \equiv 2iJ\left(1 + e^{-i\mathbf{k}\cdot\mathbf{a}_1} + e^{-i\mathbf{k}\cdot\mathbf{a}_2}\right)$$

Final dispersion has two bands:

$$\epsilon(\mathbf{k}) \equiv \pm |f(\mathbf{k})|$$

• Defines the ground state wave-function

We are done!

Flux-free spectrum

 What does the dispersion look like?

$$\epsilon(\mathbf{k}) \equiv \pm |f(\mathbf{k})|$$
$$f(\mathbf{k}) \equiv 2iJ \left(1 + e^{-i\mathbf{k}\cdot\mathbf{a}_1} + e^{-i\mathbf{k}\cdot\mathbf{a}_2}\right)$$

- **Dirac cones** near the corners the Brillouin zone
- Same spectrum as graphene

Stable to (symmetric) perturbations

$$\epsilon(\boldsymbol{K} + \boldsymbol{q}) \approx \pm v|\boldsymbol{q}|$$

Properties of the Kitaev Spin Liquid

Thermodynamics:

• Structure from exact solution allows for Monte Carlo simulation at *finite temperature*

Roughly: Sample flux sectors, by solving fermionic problem in each sector

 Note: Practically uses Jordan-Wigner form of solution

Excitations

- Two classes of excitations
 - **1. Majorana excitations:**Governed by dispersion in that flux sector
 - **2. Flux Excitations:** *Add* non-zero fluxes to system
- *Intertwined:* Majoranas depends on the flux sector, flux sector energy depends on Majoranas

	Phase	Vortex density	Energy per \bigcirc and per vortex
1		$\frac{1}{1}$	0.067 0.067
2		$\frac{1}{2}$	0.052 0.104
3		$\frac{1}{3}$	0.041 0.124
4		$\frac{2}{3}$	0.054 0.081
5		$\frac{1}{3}$	0.026 0.078
6		$\frac{2}{3}$	0.060 0.090
7		$\frac{1}{4}$	0.034 0.136

	Phase	Vortex density	Energy per \bigcirc and per vortex
8		$\frac{2}{4}$	0.042 0.085
9		$\frac{3}{4}$	0.059 0.078
10		$\frac{1}{4}$	0.042 0.167
11		$\frac{3}{4}$	0.074 0.099
12		$\frac{1}{4}$	0.025 0.101
13		$\frac{2}{4}$	0.046 0.092
14		$\frac{3}{4}$	0.072 0.096

Thermodynamics (cont.):

- Can understand in terms of two energy scales:
 - **1. Fermionic scale:** Spins have fractionalized into Majoranas, fluxes are *disordered* ~ *O(J)*
 - **2. Flux scale:** Flux excitations no longer populated, settle into flux-free sector ~ *O*(*flux gap*)
- At *each* of these, release ~ log(2)/2 entropy per spin

0.1

0.2

Looks like Majoranas in random flux background

Spin correlations:

• *Static* spin-spin correlations are **ultra-short range**

$$\langle \sigma_i^{\gamma} \sigma_j^{\gamma} \rangle = \begin{cases} \neq 0, & \langle ij \rangle \in \gamma \\ = 0, & \langle ij \rangle \notin \gamma \end{cases}$$

- Consequence of *plaquette symmetries*
- At isotropic point? *single correlation function*
- Also holds for dynamical correlator

$$\langle \sigma_i^{\gamma}(t) \sigma_j^{\gamma} \rangle$$

Baskaran et al, Phys. Rev. Lett. 98, 247201

Dynamics?

Can compute from exact solution;
 hard, must deal with two-flux excitations

Remove flux Evolve Add flux pair pair + c-fermion with + c-fermion
$$\langle \sigma_i^{\gamma}(t)\sigma_j^{\gamma}\rangle = e^{iE_0t} \langle \Psi_0 | \sigma_i^{\gamma} e^{-iHt} \sigma_j^{\gamma} | \Psi_0 \rangle$$

$$\sigma_i \equiv ib_i c_i$$

$$= e^{iE_0t} \langle \tilde{\Psi}_0 | c_i e^{-iH[u_{\text{pair}}]t} c_j | \tilde{\Psi}_0 \rangle$$
 Sector with pair of fluxes

• Related to *X-ray edge problem*

$$S(\boldsymbol{q},\omega) \propto \sum_{\gamma} \sum_{ij} \int dt \; e^{i\boldsymbol{q}\cdot(\boldsymbol{r}_i-\boldsymbol{r}_j)-i\omega t} \langle \sigma_i^{\gamma}(t)\sigma_j^{\gamma} \rangle$$

Fourier-transform of spin-spin correlator

Dynamics (cont.):

- Dirac cones *not* directly visible, no flux change
- Clear gap corresponding to energy cost to create pair of flux excitations
- **Continuum** of intensity going out energies of $\sim O(J)$

Energy scale of Majorana dispersion

Signatures of spin liquids

Lack of magnetic order

Is disorder playing a role?

Shows broad excitation spectrum

Fractionalization

• Still *dynamic* at very low temperature

Is temperature/energy low enough?

Conventional route?

Topological response

e.g. Emergent photon, quantized gravitational response,

Stability?

Stability is possible!

- Kitaev? *Time-reversal symmetry*
- Quantum spin ice? *Any perturbation*
- Still need to worry about energy scales

Effective model of QSI

$$-rac{12J_{\pm}^3}{J_{zz}^2}\sum_{ ext{hexagons}}P_{ ext{ice}}ig(S_1^+S_2^-S_3^+S_4^-S_5^+S_6^-+ ext{h.c.}ig)P_{ ext{ice}}$$

Temperature/perturbations must be compared to **this**

Kato & Onoda, Phys. Rev. Lett. **115** 077202 (2015); Motome & Nasu, JPSJ **89** 012002 (2020)

... temperatures *order of* magnitude or two **smaller than**

Example: RuCl₃

Ligand

mediated

- Kitaev spin liquid is *stable*, **but** ...
- ... sub-dominant perturbations large enough to **destroy the spin liquid**

Direct

overlap

Disorder?

 Key signature of spin liquid: fractionalization of excitation spectrum

1.0

 Broad, indistinct excitations instead of sharp quasiparticles

• **Problem:** How to disentangle from effects of structural disorder?

Lake et al, Phys. Rev. Lett. **111** 137205

Broader Questions:

How does disorder affect frustrated magnets?

- Always destructive?
- Disorder induced/stabilized spin liquids?

How to distinguish *trivially* disordered states from spin liquids *with* disorder?

Fractionalization obscured

NaCaNi₂F₇

Plumb et al, Nat. Phys. **15** 54 (2019); Zhang et al, Phys. Rev. Lett. **122** 167203

Fractionalization?

- ... once we've eliminated and/or understood disorder still need understand of continua
 - Some unexpected success of semi-classics
- Source?
 - Genuine spin liquid
 - Quasi-particle decay (general broadening)
 - Phase coexistence or competition

Neutron scattering on MgCr₂O₄

Broader Questions:

How to better understand unconventional excitations in frustrated magnets?

- Imprint of proximate fractionalized phases?
- Distinguish from conventional broadening?
- What role can semi-classical ideas play?

Topological Response?

• Field appears at 3rd order as second-neighbour hopping

 $\epsilon(k)$ Dirac cones are gapped out

- *Identical* in form to Haldane-type model
- Topological bands; chiral Majorana edge modes

Spectrum near cones

$$\varepsilon(\mathbf{q}) \approx \pm \sqrt{3J^2 |\delta \mathbf{q}|^2 + \Delta^2}$$

Majorana "mass"

Broader Questions:

Do we understand thermal transport in frustrated* magnets?

- From spinons, magnons, monopoles, etc?
- At high/intermediate temperatures?
- Interplay with phonon transport?

Not halfquantized?

$$\frac{\kappa_{xy}}{T} = q \frac{\pi}{6} \frac{k_B^2}{\hbar}$$

(Chiral) central charge of edge modes

Three questions "answers"

1. What is a spin liquid?

Magnet that doesn't order down to zero temperature **and** is distinct from a trivial paramagnet

2. How to stabilize a spin liquid?

Look for highly frustrated models (e.g. extensive degeneracy), minimize any perturbations

3. How to detect a spin liquid?

Go to low enough energy, be *mindful* of disorder, look for fractionalized excitations and/or topological responses