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Three questions:

1. What is a spin liquid?
2. How to stabilize a spin liquid?

3. How to detect a spin liquid?



What is a spin liquid?

* Broad sense:

Magnet that doesn’t order’ down to

zero temperature and is distinct? Valence bond solid? No
from a trivial pardmagnef3 Frozen product state due to disorder?
No

One dimension? Complicated

 Typically highly frustrated

* Broad cooperative paramagnet
regime, well below characteristic f

?

\

scale



What do we mean by magnet?

* General (pseudo-) spin-1/2 model can take the form

Heisenberg - Align In weak SOC limit I' is a symmetric
or Anti-align J>>D>>T 3x3 matrix
> [iSi- S+ Dy (Si x ) +5i- (T )]
1] Symmetric anisotropy

Dzyaloshinskii-Moriya (DM) interacti
zyaloshinskii-Moriya (DM) interaction (pseudo-dipolar, Ising, etc)

If strong SOC, no prescribed form - only
constrained by discrete lattice symmetries

Should we expect some simple, robust limits? ... or we should
get everything? Depends on strength of SOC

Common limits:

Heisenberg J Z Si - Sj
(i)

XYoo Uy (S S
()

Ising J Z 5,?51-2
(i)
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What do we mean by spin?

With strong spin-orbit spin & orbital no longer distinct

~ “Pseudo-spin-1/2
Spin-down i ?5191"'“1?
So instead of atomic
states like this:
do-snin-1/2 stat s Strongly mix spin
.. pseudo-spin-1/2 states . and orbital states

can look like this:

“Spin-down” “Spin-up”



Where to find spin liquids?

(Or: How to get interesting collective behaviour?)

Competition between many states - Complex behaviour

Frustration: Inability to
satisfy all interactions
simultaneously

NG

Generically leads to many 1

competing states l “All happy families are alike;
each unhappy family is

unhappy in its own way”
- L. Tolstoy



Example of an unfrustrated anti-ferromagnet:

Addpy

Spins tend to
anti-align with
neighbours

/

Two intial choices

r L
/[ LA

/
/A
/

One way to satisfy all pairs

(Essentially) unique satisfied state

Addoyup

77
Y 4
aaraavd



Several choices
at each step

This is geometric frustration

Six equally
unhappy
arrangements
on the triangle

How does this go for a
frustrated magnet?

Exponentially many on lattice

bt
i
bt
e TR
it

states ~
1.39N

Wannier, Phys. Rev. (1950)



Many, many states — what are their properties?
LW, LW
S N - [ !
L L L
[ L S L
v [

Disordered, like paramagnet ... but still correlated

Example of a cooperative paramagnet or

“(Classical) Spin liquid”

10



More broadly this goes like:

sarchere: Frustrated magnet

Highly degenerate set of states

Third law
Ordered States Disordered States
. “Order-by-disorder” . Valence bond
. Incommensurate crystals
order . Spin Glasses

. Skyrmion lattices

. Spin liquids



Order

Curie-Weiss
behaviour

Paramagne

U

T.~O(J)

Unfrustrated

> T

A “Correlated” PM

Cooperative
Paramagne
t

~
S Paramagne

R

[

T. << O(J)

Frustrated

> T

A

Cooperative
Paramagne
t

Paramagne
¢ 3
Spin liquid

>T

Highly Frustrated?



Why are spin liquids interesting?

Fractionalized excitations

Excitations split into new
independent parts

Emergent gauge theories

Realizations of electromagnetism,
complete with new photon

Topological order

/NG N N
NVaNAv» Y YA YaVYA Y
AVAVAYL aVAVAY AV

A YavaV).vaY N VAV
AVAY N % YAVAN v,
Y Y [N VavgY

Q. =3

Long-range quantum
entangled ground states




Quantum

What kind of models are known to have spin

liquid ground states?

e Classical models

* Triangular Ising AFM
* Pyrochlore Heisenberg AFM

* Spinice, ...

* Exactly solvable models

* Toric code,
» Kitaev’'s honeycomb model
 String-net models, ...

* Non-solvable models
« Kagome anti-ferromagnet
* Quantum spinice
* J;-J, models, ...




Quantum Spin lce



Classical Spin lce

* Simplest realization: Ising model
on pyrochlore lattice

* Lattice of corner-sharing
tetrahedra

* Four spins, want to anti-align
with all others

?

- :

IS No one

\B)

E way to do
= ? it!

Anti-ferromagnetic

exchange
E=] E 0i0;
Cij»
P. Anderson, Phys. Rev. 102, 1008



... highly frustrated model

e We’'ll draw our

a%ivbvllg ! ‘ ‘ pictures in two-
down” h h dimensions
* [sing model on
checker-board

lattice
E ‘ E * “Square Ice”

Six equally bad ways to
arrange



... small change in perspective

/7
/7
/7

“Two in /
Two out”

“Two up /
two down”

Closer to how the magnetic dipoles are really
aligned in materials When in doubt

follow red vs.

) D



... does moving to full lattice change this¢ No

“Checkerboard” lattice

=
S

Many, many ways to arrange these

* Number of minimal energy states
is exponential in number of
spins:

4 3N/4
0- (2
3

* Leads to non-zero, residual
entropy at 7=0

S = kglog Q ~ 0.2157kzN

“Square ice” or “Six-vertex model”
E. Lieb, Phys. Rev. 162, 162 (1967)



Loop structure of ice states

Magnetic fields of Chain of
loops? magnetic
R A %L W//};. dipoles

/ “Fringing” fields at the ﬁ

’\ atomic scale Chain Of

Zl\ , current
Nt e« loops
Mostly cancel Solenoid!

Loop formation is emergent version of V-B =0

“Field lines form



... these loops are everywhere

[ /
N N N N
N
\
4 v
, \ , ,
. 7/ /
’ // e /
N
\\ N
N

... and not uniquely tied together



Further, they can be re-arranged at no cost

RHE, A
D\} N D\/ .
ROOR KX

A

Flip small loop Still minimal energy




Cut a loop, get a pair of magnetic
monopoles

E.g. thermal fluctuations, No Ionger minimal
probes like light, neutrons, enerqy: Excitation Of
system



Free to

No additional
energy cost

Always in
pairs

moyve

Can move
arbitrarily
far apart

R

2




Compare this to usual
Dirac string 57

/

Lowest energy excitations are
effectively magnetic monopoles

P Dirac



Experimental Realizations

* Growing family of materials

* Mostly three-dimensional
pyrochlore lattice

* Network of corner-sharing
tetrahedra

R3 * Magnetic ion is a trivalent rare-
earth

* Best examples are Dy,Ti,0, and
Ho,Ti,0,

Chemical formula: R,M,0.,

For a review, see: Rev. Mod. Phys. 82, 53 (2010)



Atomic physics

J, = —15/2
J, = +15/2
Oxygen ions
Giant dipole ~
momene B 10pdpoxtaos

single

olor+rnn

* Rare-earth ion has huge
amount of angular momentum:

J=15/2, L=5, S=5/2
From Hund’s Rules

* Both spin and orbital
contributions

* Surrounding (charged) ions
prefer moment in or out of the
tetrahedron

], = £15/2)
Effect of “crystalline electric
field”



... how do they interact? Mostly dipole-dipole

+
* Just like our “toy” model from
earlier - wants two-in/two-out

Charges repel: on each tetrahedron
Disfavoured

* Full picture significantly more
complicated

* Super-exchange between the 4f
electrons is large

Charges attract: * Multipole interactions must be
Favoured considered

e Final result unaffected

Visualize using
"physical” dipoles JGR and M. Gingras, Phys. Rev. B 92, 144417

ffffff



... can draw precisely same picture as before

Many, many minimal
energy configurations

D

Magnetic dipoles form

loops

@O
@

o ® °
O

O

Excitations break
them:
Magnetic monopoles



Some history: Proton Disorder in Water Ice

Hexagonal (1,) Water Ice

’ , , Two close, . B
two far Ice Rules f Map to
spins
P
\ “o » Yy

H,0 Molecule

Nearly the same physics!

Many, many ways to orient the
water molecules

L. Pauling

J. Bernal
R. Fowler




Key signatures

* Many, many ground states
Finite, residual entropy at T=0

* Closed loops of magnetic Question:
dipoles Are these seen in
“Pinch-points” in spin-spin materials?e
correlations

Together these tell would tell us the excitations are magnetic
monopoles



Signature #1: Residual Entropy

Entropy of Dy,Ti,0, at low temperature
* Access via heat capacity: — T

................................................................

D
-
R
Z
2.
Q
o
S
ﬁ
S
S
=
S
S
(o ol
S
~
o
—

Experimentally measurable

S(T) - S(0) = /O a7’ &)

T’
Should be Rlog(2) at high
temperature

S (J mol'K™)

* Get “missing” amount at high
temperature

R 3
S(0) = -, log (5) ~ 0.202R
“Pauling” Entropy

Ramirez et al, Nature 399, 333-335
(1990Q)



Sig natu re #2: “LOOPS" Resultfrom simplest version of

Diffuse neutron scattering on

* Since spins form

Y
3 3 loops, the spinson
21 ] the same loop are *
-] E highly correlated
s | = \,\/
-2 | / O k’ Loop
..3 !
\ \
2 4 0 1 2 '\ \
o A Sy
ik-(ri—1;
S(k) = ﬁ Z <O-io.j> e’ ri=ry) \r\ Arbitrarily large! } Can't be f
’ Sk G

... measures something like the static structure factor
Fennell et al., Science 326, 415-417



Siq bi I iiY? Typical scenario

: Cooperative
' P
Classical spin liquids are unstable to | T
small perturbations, always “fine- |
tuned” |
|
|
e “Third-law”: Can’t have finite entropy <
density generically ! Paramagne
: : t >T
* Perturbations that lift degeneracy set T. ~ O(perturbation)

ordering scale

Instability can be toward
quantum spin liquid



Quantum Fluctuations

* Perturbations to Ising model: Anisotropic exchange

- 7 AZ + - Transverse
H = JZZ Z S,’ S] [ Ji Z (S, Sj + hC) Exchange Need ],, to be << than other

g;zgange (if) Cif) transverse exchanges
+diee ) (viSTST +he)+ dzw D (¢5]S7ST + S|+ he)
{ify iy

Depending on nature of atomic states: may have J,, = 0 and/or trivial phases { =y =1

* Focus on the J, part; the other terms have same qualitative physics

* Degenerate perturbation theory within the manifold of ice

states
For a review: Ann. Rev. Cond. Mat. Phys. 10, 357-386 (2019)



Degenerate Perturbation Theory

* First non-trivial contribution at third order in perturbation
theory

Create pair of
monopoles _
Swap pair of ! 2 Q Swap pair of Q
anti-aligned . . d anti-aligned .
spins e , ® o e @ @ o e ° @pms o e & Q o
ol / ° o e o e 0o v
/ \\
s Jo
@ Q Q Q Q a Q ®
O ) o Ji o O . O o
o O L ] O @ N O @ o O O @ ® O O
) & ® . .
AE = > AE = Jzz
[ [ ] O
_ Return to
qup pair of Hop monopoles new ice state
anti-aligned around hexagon
spins

Hermele et al, Phys. Rev. B 69, 064404 (2004)



Effective Model

* Six-spin “loop flip” term in effective Hamiltonian

2J2  12J°

Hott = =5 =N - —2= > Peo(S; 8585 S; S S5 +hc.) Pie
<z ZZ  hexagons
* Energy scale of i i
dynamics in ice s A N o « & N o

AnifAalAd .
i 1273 * | 4 *

R N
<3 ’ ¢

Swap pair of

anti-aligned

Hermele et al, Phys. Rev. B 69, 064404 (2004) spins

O O



Effective Model (cont.)

RK point
squiggle quantum isolated
order U(1) Liquid states

-0 059 g

=WV

Tunnelling term from 3" order process

—g (OO +0)Q))

hexagons

DI (S XC ERISSI])

hexagons

Added by hand; original model has u = 0

* Augment loop “flip” with loop
“potential”

e Rohksar-Kivelson model

* Exactly solvable point when two
terms are equal

* Ground state? Equal superposition of
ice states:

1
V Nice aezice

Shannon et al, Phys. Rev. Lett 108, 067204 (2012)

IRK) ~ o1 - ON)



Topological Sectors?

e If it traverse the periodic
boundaries any loop can be
deformed into any other by
“flips”

* Loops that wind through the
periodic direction cannot

* # of winding loops defines
topological sector

Loops are
in/out ice
state dipoles O(L?) total

D>

LN

{
N
\
"o

.

Non-Winding
Loops

Winding Loops

Hermele et al, Phys. Rev. B 69, 064404 (2004)



Topological Sectors (cont.)

* Can only remove by creating Make pair Q e j)
monopole pair and - —
annihilating across boundary <

Pull apart ) ALY * ,")

w*

* Tunnelling is exponentially
suppressed ~ O(e™)

] _ . Pull through ) '.’%
* ThinKk: trapping magnetic boundary
flux in the periodic “holes” of i
Annihilate (M

the lattice

Hermele et al, Phys. Rev. B 69, 064404 (2004)



Mapping to Lattice Gauge Theory

Rotor
_ Representation
* Make connection to St = (n; — 1),
GIECtl‘OmagHEtlsm eXp11C1t: Raising operator

F_ exo i8] — .

 Map spins to 0(2) 5y = DRyl — 5,
“« ”» Lowering operator
rotors S = /1 —n;exp[—ib;]1/n;

* Constraint: n,=0 or 1

U
Ez:(nl- — 1/2)2—2chos(91 — 60, + 63 — 04 4+ 05 — 6p).
i O

Factors of n drop when acting on flippable

“Softened” constraint; fixes n=0,1
hexagons (only non-zero there)

for large values of U

Hermele et al, Phys. Rev. B 69, 064404 (2004); Benton et al, Phys. Rev. B 86, 075154

Vel o N al B Y



* Use these to define electric and magnetic
fields on the diamond (dual-diamond)
lattice

Geometrically

B =+ (ﬁi — %) ] complicated, but one- ;)lai??ond
to-one mapping to attice
G = 0, rotors
Ess¢ = (Vo X G)sg = Z Grr' s .
O —
® These gnro thao raonracantatinn: .
Lattice .
2 Z Brr’ — 28 Z cos (Ess'),  Gauge Dual
{rr’) (ss') Theory ;)lamond
attice

‘ Emergent Quantum
* Coarse-grain to remove strict large U limit; Electrodynamics

assume E-field small; Taylor expand
Hermele et al, Phys. Rev. B 69, 064404 (2004); Benton et al, Phys. Rev. B 86, 075154

Vel o N al B Y



Photon and Emergent Electrodynamics

* Gauge theory can be solved:

’ 1
Y wk) [a;[(k)ak(k) + z] ,

k A=l

Gauge
boson

* Linearly dispersing photon
mode near k~ 0

(kvag, kyag, 0) 2n

Emergent
Speed of C ~ 05ag
Light
* Do we trust this mapping? Lots of hand-waving/coarse-graining ....
Benton et al, Phys. Rev. B 86, 075154 (2012)



Photon and Emergent Elecirodynamics (cont.)

* Compare to quantum Monte carlo simulation! (sign-free) o, 3 order

effective model

e Static structure factor agrees almost quantitatively

QMC (Finite Size) Gauge Theory (Finite Size) Gauge Theory (Infinite

Benton et al, Phys. Rev. B 86, 075154 (2012)



Photon and Emergent Elecirodynamics (cont.)

Dynamical Structure Factor

0.015
* Can compare dynamics

too!  oMcCon XXZ model 0.010
 Some ambiguity going 3
from imaginary to real w00
time
0.000
* Qualitative agreement
* Limited due to finite L
temperature T ~ g D
I./],, ~ 0.046
0.000 &=

0 2 1 6 8 0 2 1 6 8

27(0, 2k, 0)/8 o (k, k, k) /8
Huang, Deng, Wan, Meng, Phys. Rev. Lett. 120, 167202 (2018)



Monopole Dynamics?

 What about the magnetic
monopoles?

* Transverse exchange hops

monopoles at first order in the
cot'nlinn

12J3
gEJ—2_<<Ji <<JZZ
Photon <L Monopole  Monopole
enerqy scale hopping cost

* Monopoles are fast relative to the
photons

Apply
transverse o
exchange @.
O ® °® °
4 O
o ° oy
O Q
e ©®
Swapping
pair hops
monopole

Wan et al, Phys. Rev. Lett. 116 167202 (2016)



Monopole Dynamics (cont.)

Dynamical Structure Factor

2.0 1.0

* Simplest picture: Monopoles

are free particles hopping on L5
diamond lattice = 10 "
3
e “Fractionalized” continuum 0.5 } 0.6
* Dynamical structure factor 0.0
probes two-monopole - 1 0.4
continuum |
~
 Agreesciwell with QMC 5

27(0, 2k, 0)/8 o (k, k, k)/8
Huang, Deng, Wan, Meng, Phys. Rev. Lett. 120, 167202 (2018)



Fine Structure Constant el movng beteer

* What about coupling between “;6 A
monopoles and photon? N 1
* Fine-structure constant — _f_
 Can relate spacing of flux h A\ //
sectors to photon-matter ._\_;/—————1 —
coupling \(\;
° Eq -7 ’ _
1 3 2 . 22 R ’
— [ & (IBP +cBP) T —’
/ >—

* To “Coulomb” cost of dragging

those Char es Leaves behind uniform field
Hermele et al, Phys. Rev. B 69,064404 (2004); Pace et al, Phys. Rev. Lett. 127, 117205 (2021)



Fine Structure Constant (cont.)

* Relate energy density of flux

sectors to flux
Flux through “holes”

2| Qb
4

a

Energy density of
sector 9

U = eQSI
Photon-Matter coupling

 Extract flux sector spectrum
from simulation, extract light-
matter coupling

e ~ 0.24/ag

Pace et al, Phys. Rev. Lett. 127, 117205 (2021)

c =~ 0.bag

2
Fine Structure Const. a =€ /(hC)

C
% 0.95 ! RK Potential (u) 3NN Potential (¢)
)
~ Qe
45 020 ---------------------------------------------------
a9}
"
g 0.15
S 0.
o
£ 0.10 }___ E
= ——
iz . gl - -
m Sy
2 0.05 ®-__
= .-.\
= QQED \.

0.00 *" I |

—-0.4 —-0.2 0.0 0.2 0.4 0.6 0.8 1.0
Tuning Parameter (u, ()



Summary

Quantum Spin Liquids

* Magnet that doesn’t order down to zero temperature and
is distinct from a trivial paramagnet

* Can exhibit: Fractionalized excitations, emergent gauge
theories, topological order

Quantum Spin Ice:
* Classical spin ice + quantum fluctuations gives a quantum
spin liquid state
* Emergent realization of QED, complete with gapless
photon and fractionalized (magnetic) charges

Thank you

for your
attention

* Explores regime not accessible in usual QED




Next time:

Kitaev’s honeycomb model
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Reminder:

* Six-spin “loop flip” term in effective Hamiltonian

2J2  12J°

Hott = =5 =N - —2= > Peo(S; 8585 S; S S5 +hc.) Pie
<z ZZ  hexagons
* Energy scale of i i
dynamics in ice s A N o « & N o

AnifAalAd .
i 1273 * b 4 *

R N
<3 ’ ¢

Swap pair of

anti-aligned

Hermele et al, Phys. Rev. B 69, 064404 (2004) spins

O O



Mapping to Lattice Gauge Theory

Rotor
_ Representation
* Make connection to St = (n; — 1),
GIECtl‘OmagHEtlsm eXp11C1t: Raising operator

§ g : AR —am
 Map spins to 0(2) S B B =,
Lowering operator

rotors S; =v1—n;exp[—i6]y/m

* Constraint: n,=0 or 1

U
Ez:(nl- — 1/2)2—2chos(91 — 60, + 63 — 04 4+ 05 — 6p).
i O

“Soft” constraint; fixes n=0,1 Factors of n drop when acting on flippable

for large values of U hexagons (only non-zero there)

Hermele et al, Phys. Rev. B 69, 064404 (2004); Benton et al, Phys. Rev. B 86, 075154

Vel o N al B Y



 Use these to define electric and magnetic ﬁ_

fields on the diamond (dual-diamond)

lattice -
: Geometrically
A 1
D_efmed on By = £ (”i — 5) ; complicated, but one-
links of to-one mapoi Diamond
. pping to
diamond O = £6;, rotors lattice
lattice .
gss’ — (VD X g)ss" — E grr’a .
Links of dual diamond lattice O ,

* Re resn“*“* ~w ~o lndbicn ~~-~a theory

Coarse-grain-to .

remove strict large » Z Brr’ —2g Z cos (Esy ), Ice rule Dual

U limit (rr’) (ss’) COT@{? =0, & Diamond
(r') lattice

Assume E-field is U B2 4 KN g2 Emergent (Lattice)

small, Taylor 9 rr’ ss’ .

expand (rr’) (ss’) Quantum Electrodynamics

Vel o N al B Y



Photon and Emergent Electrodynamics

Photon
* Gauge theory can be solved: ©0.0.kao) Mode

’ 1
Y wk) [a;[(k)ak(k) + z] ,

k A=l

Gauge
boson

* Linearly dispersing photon
mode near k=0

(kvag, kyag, 0) 2n

Emergent
Speed of C ~ O5ag
Light
* Do we trust this mapping? Lots of hand-waving/coarse-graining ....
Benton et al, Phys. Rev. B 86, 075154 (2012)



Photon and Emergent Elecirodynamics (cont.)

* Compare to quantum Monte carlo simulation! (sign-free) o, 3 order

effective model

e Static structure factor agrees almost quantitatively

QMC (Finite Size) Gauge Theory (Finite Size) Gauge Theory (Infinite

Benton et al, Phys. Rev. B 86, 075154 (2012)



Photon and Emergent Elecirodynamics (cont.)

Dynamical Structure Factor

0.015
* Can compare dynamics

too!  oMcCon XXZ model 0.010
 Some ambiguity going 3
from imaginary to real w00
time
0.000
* Qualitative agreement
* Limited due to finite L
temperature T ~ g D
I./],, ~ 0.046
0.000 &=

0 2 1 6 8 0 2 1 6 8

27(0, 2k, 0)/8 o (k, k, k) /8
Huang, Deng, Wan, Meng, Phys. Rev. Lett. 120, 167202 (2018)



Monopole Dynamics?

 What about the magnetic
monopoles?

* Transverse exchange hops

monopoles at first order in the
cot'nlinn

12J3
gEJ—2_<<Ji <<JZZ
Photon <L Monopole  Monopole
enerqy scale hopping creation

cost

* Monopoles are fast relative to the
photons

Apply
transverse O
exchange @.

O ® °®

O Q
e ©®
Swapping
pair hops
monopole

Wan et al, Phys. Rev. Lett. 116 167202 (2016)



Monopole Dynamics (cont.)

Dynamical Structure Factor

2.0 1.0

* Simplest picture: Monopoles

are free particles hopping on L5
diamond lattice = 10 "
3
e “Fractionalized” continuum 0.5 } 0.6
* Dynamical structure factor 0.0
probes two-monopole - 1 0.4
continuum |
~
 Agreesciwell with QMC 5

27(0, 2k, 0)/8 o (k, k, k)/8
Huang, Deng, Wan, Meng, Phys. Rev. Lett. 120, 167202 (2018)



Fine Structure Constant Visual moving between

sectors via B-field lines

* What about coupling between “;6 A
monopoles and photon? N \
* Fine-structure constant — _f_
 Can relate spacing of flux h A\ //
sectors to photon-matter .L;/fo —
coupling \(\;
« Eq 1 - - T-om: —
= d3r(|E|2+c2|B|2) R : —
. \
(o )) = \——__-—-:—-
* ...to “Coulomb” cost of Leaves behind uniform field

drag%ing those charges
Hermele et al, Phys. Rev. B 69, 064404 (2004); Pace et al, Phys. Rev. Lett. 127, 117205 (2021)



Fine Structure Constant (cont.)

* Relate energy density of flux

sectors to flux
Flux through “holes”

2| Qb
4

a

Energy density of
sector 9

U = eQSI
Photon-Matter coupling

 Extract flux sector spectrum
from simulation, extract light-
matter coupling

e ~ 0.24/ag

Pace et al, Phys. Rev. Lett. 127, 117205 (2021)

c =~ 0.bag

2
Fine Structure Const. a =€ /(hC)

C
% 0.95 ! RK Potential (u) 3NN Potential (¢)
)
~ Qe
45 020 ---------------------------------------------------
a9}
"
g 0.15
S 0.
o
£ 0.10 }___ E
= ——
iz . gl - -
m Sy
2 0.05 ®-__
= .-.\
= QQED \.

0.00 *" I |

—-0.4 —-0.2 0.0 0.2 0.4 0.6 0.8 1.0
Tuning Parameter (u, ()



Kitaev’s honeycomb model



Kitaev’s Honeycomb Model

* Frustrated spin-1/2 model on
honeycomb lattice

N
Two-spin é
—J Z 0'3/0'}/ interaction x(y)z
(ij)y s only
* Frustration by interactions not
geometry ¢

Exactly solvable of a quantum
spin liquid with emergent
Majorana fermion excitations

Kitaev, Ann. Phys. 321, 2

nnnnnn



Plaguette symmetries

* Infinite number of conserved quantities

_ <2 X Y Z X Y
WP _ O-pl O-pz O-P3 O-p4 O-ps O-P6

e Commute with Hamiltonian and each

other
|[H,W,] =0 IW,, W, | = 0

* Eigenvalues +1, -1:
« 2N/2 sectors each of size 2V/?

P2
Y
P1 P
X
Pé6
Agy <

For N sites, there are N/2
plaquettes

Kitaev, Ann. Phys. 321, 2

£ YN N 7~ D)



Absence of magnetic order

* Plaquette symmetries imply no magnetic

order
Anti-

{O-él, Wp} — O commutation

_ relation
there exists

* Elitzur’s theorem: Can't spontaneously
break local symmetries

<0-z'> =0

* Also valid for higher-S Kitaev models

(Polo; o)

W;Zl

(ol W2 %)

(¥, W,} =0

_ <\PO|WpO_?Wp|\PO>

Eigenstate of
plaquette
operators

— (Wolo™ |¥o)



Exact solution: Plan

— JZ 0'3/0";/ IJZ (lb?bz/) Cicj IJZ Uijcicj

i)y . LIy Wy
g; = lbiCi
Fr(?e Hy = JZ ICiC; Hlu| = JZ LU jCiC
fermions (i) (L))
(solvable) ' y

Kitaev, Ann. Phys. 321, 2



Majorana representation

 Highly suggestive: 2V/? states per sector, Majorana
fermions?

g, = ibiCi

* Represent spin-1/2 as four Majoranas, subject to
constraint

D; = b'bbic; = 1 \Ci» Cj} = 203

* Satisfy the anti-commutation relations for for ici,bjt =0
Maj fermi )
ajorana rermions { b?, b]-} _ 2(5ij6m,



Relation to SU(2) slave fermions?

o )) 1
How does t}_le relate to the “usual c=—(f; + fTT)
representation: )
_ £ 1
ag; =7T.07]. Complex . T
l fl fl fermions bx . 5 (fl o fl )
l
. . i
 With constraint: f. f, =1 1 :
- b’ = ——(fL + )
V2o
« Equivalent; just a change of basis . 1 ;
b= —(f; — )
1 V2
Burnell & Nayak, Phys. Rev. B 84, 125125 One possible way to express Majoranas

(2011); You et al, Phys. Rev. B 86, 085145 in terms of complex fermions

9NN1 )



Hamiltonian in terms of Majoranas

e Substitute these in to Kitaev model:

H = 1] E (lb;ybj) Cicj Defined in extended space, need

to impose constraint

(i ))y
* [f we can solve this, and get ground state ¥o) then just need to
project into physical subspace Really, any eigenstate
o) = P[Yo)

Ii’f‘)“”d Stiltel of Imposes constraint
itaev mode X
D; = bib’b:c;, = 1



Link operators and Z, gauge structure

* To solve this, notice that the operators

[H9 Ul]] =0
U.. =ib'b’
W Lo [Uij, U]l =0
 Commute with the Hamiltonian and with ,
each other: definite value in energy Ui =1
eigenstate
Really, any Ui [Wo) = u;; [Po)

eigenstate

Defines a Z, gauge field for

- Two possible values: u;; = =1 the ¢ Majorana fermions



Z, Flux Operators

Under gauge transformation: Preserves
spin-
Ts = ZHCx aperetebc;

Ujj — Zi<jlUij
b; — z;b,

* What are the associated Z, flux operators?

Wp = UpipyUpy p3Ups pysUpyps Ups ps Upe p
Product of link variables around hexagon

* Gauge invariant quantities

P2
y
P1 P
X
Pe6
Agy <

Wp |\P0> = Wp |‘:PO>

+1



Flux sectors

* Gauge field is static: fluxes (and links) have fixed values
e Each of the 2V/2 choices of Uj; defines flux sector

Independent

H[u] =J E iuijcicj “block” of

— Hamiltonian
Size of block = (U)y
ZN/Z .
ost is

* Each flux sector is a free fermion problem! (efficiently solvable):

Ground state? Need to find flux sector with lowest possible energy.



Ground state flux sector & Lieb’s Theorem

. . . . Anisotro
e Could brute force minimize: instead can use w

) is gone! +1
Lieb’s theorem:

. Depend
Ground sector state is flux-free 7"

on lattice +1
structure
Simplest .. =
gauge ul] o +1
choice +1
* Description is free Majoranas hopping on Hy=1J

iCiCj
honeycomb lattice -
L7)y

Lieb, Phys. Rev. Lett. 73, 2158
1004)



Solution In flux-free sector

* Now problem is simple: Fourier transform, then diagonalize

Ho= 0 ice; = 5 3 ernea| iy 7o )4

(if)y =

* Final dispersion has two bands:

e(k) = |f (k)|

» Defines the ground state wave-function We are done!



Flux-free spectrum

€+ (k)

 What does the dispersion look
like?

G(k)“

e(k) = |f (k) P

 Dirac cones near the corners
the Brillouin zone

e_(k)

« Same spectrum as graphene  _,

Stable to (symmetric) perturbations

Kitaev, Ann. Phys. 321, 2
(7006)




Properties of the Kitaev
Spin Liquid



(a) 000 -
° 2-0.190r TL |
Thermodynamics:
> _0.10 5_0_194— /
. ~0.15} _0196}, ;
* Structure from exact solution o ooy
allows for Monte Carlo simulation (b) 030
at finite temperature 025 £ o 1-12 |
0.20r ¢ L=20
G 0.15
0.10¢ T
Roughly: Sample flux sectors, by ol
solving fermionic problem in each o0
() -
sector
0.8
o 0.67
 Note: Practically uses Jordan- ™
. . 0.2t
Wigner form of solution |
0.0 10'—5 16—1 | 160

Nasu et al, Phys. Rev. 92 115122 (2015); Motome & Nasu, JPS] 89 012002 (2020)

TrJ




Excitations

 Two classes of excitations

1. Majorana excitations:
Governed by dispersion in
that flux sector

2. Flux Excitations: Add non-
zero fluxes to system

* Intertwined: Majoranas depends
on the flux sector, flux sector
energy depends on Majoranas

Kitaev, Ann. Phys. 321, 2
(7006)

Fuoriey ~ 0.1536, AE (@) ~—004, AE (;%n) ~ —0.07.

Vortex Encr??y Vortex Enm:gy
Phase .. | per U and Phase . .. | per O and
density density
per vortex per vortex

. 1 0.067 g 2 0.042
1 0.067 4 0.085
9 1 0.052 9 3 0.059
2 0.104 ' 4 0.078
1 0.041 1 0.042

3 — 10 -~
3 0.124 4 0.167
2 0.054 3 0.074

4 - ? 11 =
3 0.081 4 0.099
1 0.026 1 0.025

5 - e
7 % 0.078 12 % 1 0.101
5 g 0.060 13 2 0.046
3 0.090 4 0.092
- 1 0.034 4 3 0.072
4 0.136 4 0.096




Flux Scale Fermionic Scale
(b) 030 .
T h d I o 0.2} g%iﬁg' Fluxes at 1
ermodynamics (cont.): . ey
0.20r % N L=20 |
_ 0.10} 1 & B athigh-T |
* Can understand in terms of two energy oos| {
Scales: © 0.00 ﬁj; |
1. Fermionic scale: Spins have T P
fractionalized into Majoranas, fluxes gos =
are disordered o4 [y
2. Flux scale: Flux excitations no 1.4 _
. 0.0 - : —
longer populated, settle into flux- 10 ot
free sector P |
-
* At each of these, release ~ log(2)/2 S st
entropy per spin Looks like Majoranas in ; 0-2;’; T —
random flux background " ;
Nasu et al, Phys. Rev. 92 115122 (2015); Motome & Nasu, JPS] 89 012002 (2020) poooee e ee o8

1.0



Spin correlations:

e Static spin-spin correlations are ultra-
short range

(i 0, j)evy
= 0, )¢y

(ojo) =1

* Consequence of plaquette symmetries

* At isotropic point? single correlation
function

* Also holds for dynamical correlator

(o] ()

o W) :

i | ﬁ

Act on zero flux

state, with W=+1 ,
Create pair of

flux excitations

o Only one
way back
to flux-
free

o sector

i (e

Baskaran et al, Phys. Rev. Lett. 98, 247201



1cc?

Dynamics? ———
6 ’
* Can compute from exact solution; 5} ]
hard, must deal with two-flux 4| .

excitations 3 ;
Remove flux Evolve Add flux pair 71 .

pair + c-fermion  with + c-fermion

. Xes b -
o = o il ——

o; = ib;c;
= e (Polese e 1)
Sector with .. S(q.w)oc ) Z f dt 1 (o (1))
pair of fluxes ) Y i)
* Related to X-ray edge problem

Knolle et al, Phys. Rev. Lett 112 207203 (2014)

Fourier-transform of spin-spin
correlator



Dynamics (cont.): g

No response

40 ! | ! | ! | ! | ! | ' |
. . - . I ﬂ — exact
* Dirac cones not directly visible, 2ok — - adiabatic
no flux change ) B T
_ =) £ o.6f
* Clear gap corresponding to 120 Z.
energy cost to create pair of §; : g Ny §
flux excitations o [\ s i
] _ . _ _ YT 2 3 4 5 6
* Continuum of intensity going e
. " " I ! t —
out energies of ~0(]) | 3 4 5 6
(D/JZ
Energy scale of
Majorana Continuum of
dispersion Gap to creating Majorana

flux pairs excitations

Knolle et al, Phys. Rev. Lett 112 207203 (2014)



How to find a quantum
spin liquid?



Signatures of spin liquids

* Lack of magnetic order Is disorder playing a
role?

* Shows broad excitation spectrum

Is temperature/energy
* Still dynamic at very low temperature low enough?

- ; 7
R Topologlcal response Conventional route:



Stability?

Stability is possible!
 Kitaev? Time-reversal symmetry
* Quantum spin ice? Any perturbation

e Still need to worry about energy
scales

Effective model of QSI

1243 otooto

ZZ  hexagons

Temperature/perturbations must be compared to
this

Kato & Onoda, Phys. Rev. Lett. 115 077202 (2015);

Motome & Nasu, JPS] 89 012002 (2020)

Phase diagram of QSI

Fermionic Scale

Fluxes

at L=20 |
. high-T N

107! 10°

XY-FM

‘ Banerjee eral. * ]

OC/‘Q/.//a "
M L M L M i 1 .QS! M " 1 E

-0.2

O g

... temperatures order of
magnitude or two smaller than

[P0 A2D3DY] Jo Sorwbulpouliay |



Example: RuCl,

* Kitaev spin liquid is stable, but ...

* ... sub-dominant perturbations large
enough to destroy the spin liquid

r/IK|
> S-S+ KS)S) +T(SS] + 5757
<ij>€a6(7) T G 7 | —-03-02-0.1 0.0 0.1 02 0.3
eneric symmetry
Jackeli/Khaliullin ‘ allowed model J/IK]

From direct d-d Cross-term
overlap

Ligand Direct ++
mediated overlap ., Katakuri et al, New. J. Phys. 16, 013056 (2014)
C—p Rau, Lee & Kee, Phys. Rev. Lett. 112, 077204 (2014)

\ ’
\ /
\ /
hY b4

TN




s 3o-— Mg*/Ga™
B = ammlel bt

° MY E YbMgGaO
Disorder? e

* Key signature of spin

A
liquid: fractionalization I’ o &9 x ... this disorder can explain some
. iese & O o & ° of the broadness of spectrum

of excitation spectrum -

o ®q oW

* Broad, indistinct Mg/Ga o
eXCltatIOHS lnStead Of ]ayerg are % ,j;,é,FTGa%
sharp quasiparticles disordered 4"y

(b)  4,=0.98K; J,=0.90K; Y, =0.155K

Ga?*
=
i

* Problem: How to

L] : ; Yb3
disentangle from effects f . T
of structural disorder? Charge } +M 29, = 120~ 015 meV
disorder, + 7 T Qe 0
2+VS.3+ o 'L‘ @b



Broader Questions:

How does disorder affect frustrated
magnets?

* Always destructive?

* Disorder induced /stabilized spin liquids?

How to distinguish trivially disordered L T R
states from spin liquids with disorder?

* Fractionalization obscured




Fractionalization?

e ...once we've eliminated
and/or understood disorder
still need understand of
continua

* Some unexpected success of
semi-classics

* Source?
* Genuine spin liquid
* Quasi-particle decay (general
broadening)

* Phase coexistence or
competition

Data

FN Model

0

h in (h,0,0) (r.lL.u.)

(4,0,1) (2,0,1) (0,0,1) (2,2,0) (2,0,1) (2,2,0)
E =2 meV 4 meV

6 meV

8 meV 10 meV

h in (h,0,0) (r.lu.)

12 meV

ol
- R
{8
" A *
; ey ]
e L
] -

G L FI0 120 L HA0 1L 2A01 24018 %

9°S(Q, E) (1/meV /st/Cr)

(U.E).z) (2.6.1) (4,0,1)

#*S(Q, E)

I



Broader Questions:

[K,-K,0]
(s31un pazijeunou) AjIsuajul

How to better understand unconventional
excitations in frustrated magnets?

[K,-K,0]

* Imprint of proximate fractionalized phases?

* Distinguish from conventional broadening?

* What role can semi-classical ideas play?

35

30

20

10

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 20 2. 0.5 1.0 1.5 2.0 2.5
Q, momentum transfer (A™")

Energy transfer (meV) 9




Topological Response? A -l

Majoran
agap

* Field appears at 3" order as
second-neighbour hopping

e(k)h

e -
Dirac cones kx )
are gapped
out
. : i 0/
* [dentical in form to Haldane-type - 0 e
model Spectrum near cones
. . ~ 2 2 2
» Topological bands; chiral s(a) = £4/3J2og]* + A
Majorana edge modes Majorana “mass”

Haldane, Phys. Rev. Lett. 61 2015 (1988); Kitaev, Ann. Phys. A3121, 2



Broader Questions:

Do we understand thermal transport in
frustrated®* magnets?

* From spinons, magnons, monopoles, etc?

* At high/intermediate temperatures?

Heat bath

* Interplay with phonon transport? ) y
Heater
HoHy (T)

3.00:2 8.0 9.0 10.0
3/2 = a
L& & 75
_)1 S g 1 - _§§ Kl T _ K’xy T k%

B 5.0 "
mE Eae 5o T =46,
e = F | 2
05 | | | . _; |
4.0 45 5.0 5.5 6.0

H, (T) 0
Mol /'OH“ (T)



Three ‘““‘answers”’

Magnet that doesn’t order down to
zero temperature and is distinct from
a trivial paramagnet

Look for highly frustrated
models (e.g. extensive
degeneracy), minimize any
perturbations

Go to low enough energy, be mindful of disorder,
look for fractionalized excitations and/or
topological responses



