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In frustrated magnetic systems with a subextensive number of classical ground states, quantum zero-point
fluctuations can select a unique long-range ordered state, a celebrated phenomenon referred to as order by
quantum disorder (ObQD). For frustrated spin- 1

2 systems, unbiased numerical methods able to expose ObQD
are necessary. We show that ObQD can be identified from exact diagonalization (ED) calculations through an
analysis akin to the Anderson tower of states associated with spontaneous symmetry breaking. By defining an
effective quantum rotor model, we describe the competition between ObQD-induced localization of the rotor
and its tunneling between symmetry-related ground states, identifying the crossover lengthscale from the finite-
size regime where the rotor is delocalized, to the infinite system-size limit where it becomes localized. This
rotor model relates the characteristic splittings in the ED energy spectrum to the ObQD selection energy scale,
providing an estimate that can be compared to spin wave calculations. We demonstrate the general applicability
of this approach in one-, two- and three-dimensional frustrated spin models that exhibit ObQD.

Many theoretical models of highly frustrated spin systems
display an exponentially large manifold of accidentally degen-
erate classical ground states that is not a consequence of any
global symmetry [1–6]. This extensive degeneracy may give
rise to a spin liquid phase in which the spins remain fluctuating
down to zero temperature [1, 4–8]. However, real frustrated
magnetic materials generally possess additional small interac-
tions that can lift such accidental classical ground state degen-
eracy, yielding a long-range ordered state, albeit with residual
quantum fluctuations, and thus forestalling the formation of a
spin liquid state [6, 9, 10].

Interestingly, an intermediate case is possible where, de-
spite perturbing interactions, some degree of frustration per-
sists, with the situation sitting between the two aforemen-
tioned extreme limits: instead of a unique ground state
(up to global symmetries) or an exponentially large number
of ground states, only a subextensive manifold of classical
ground states remains. In such a scenario, quantum fluctu-
ations may, perhaps counterintuitively, stabilize long-range
magnetic order rather than prevent it—a phenomenon known
as “order by quantum disorder” (ObQD) [11]. ObQD has
drawn significant attention over the years, with many spin
models having been found to exhibit this phenomenon [11–
26] and some potential experimental realizations of ObQD in
materials [27–33].

Linear spin wave theory (LSWT) [34, 35] has been the pre-
vailing method for studying ObQD in frustrated spin mod-
els [11–25, 27–33]. This semiclassical formalism treats quan-
tum fluctuations as a perturbation about a classically ordered
state stabilized for large spin length S . The leading quantum
correction to the energy is the zero-point energy (ZPE) of each
classically degenerate ground state and the state with small-
est ZPE is selected—order by quantum fluctuations (i.e. dis-
order). It remains an open question to what extent this ap-
proach can be applied to systems with smaller, more realistic
values of S . A quantitative understanding of ObQD in spin-

FIG. 1. Illustration of order by quantum disorder (ObQD) selection,
with selection energy scale g, showing the evolution from the finite-
size limit gN ≪ J, to the thermodynamic limit gN ≫ J (where N
is the number of spins). For small systems, tunneling delocalizes the
order parameter across classical ground states, with ObQD acting as
a small perturbation. (Inset) The scale of this perturbation can be read
off the splittings of the excited states in the (approximate) Anderson
tower of states. The order parameter localizes at the ObQD-selected
state as N → ∞.

1
2 systems, of foremost interest to experimentalists and theo-
rists alike, requires a fully quantum approach, not rooted in
the semiclassical limit. Since exact analytical treatments are
scarce for frustrated S = 1

2 systems, numerical techniques are
essential. While there exist many such methods, exact diag-
onalization (ED) is often the tool of choice [36, 37] as it is
applicable to general spin models, provides access to the full
spectrum, and can yield useful results in one, two, and even
three dimensions. Other numerical approaches [36, 38–46]
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fall short on one or more of these points, limiting their appli-
cability in characterizing ObQD.

Unfortunately, being constrained to small system sizes, ED
suffers from strong finite-size effects [36, 37]. Notwithstand-
ing, this limitation can reveal valuable insights since the finite-
size low-energy spectrum contains structure that reflects the
underlying ordering mechanism. This is exemplified by the
“Anderson tower of states”, a hallmark of spontaneous sym-
metry breaking (SSB) in finite size systems [47–51]. The en-
ergy of the states in this tower scales inversely with system
size (i.e., as 1/N), collapsing into a degenerate set of states
as N → ∞, with the states that spontaneously break sym-
metry emerging as a superposition within this degenerate set.
Despite its success in describing how SSB appears in finite-
size spin- 1

2 systems [50–57], there is no similar understand-
ing for ObQD [22, 50, 58, 59]. This raises the fundamental
and, to the best of our knowledge, unaddressed question—
how does ObQD manifest in finite-size spin- 1

2 systems and
how is ObQD selection in the thermodynamic limit foreshad-
owed?

In this Letter, we identify signatures of ObQD in the low-
energy spectrum of finite-size spin- 1

2 systems and propose
a prescriptive methodology for diagnosing ObQD in ED re-
sults. These signatures are encoded in a finite-size descrip-
tion of the order parameter dynamics based on an effective
quantum rotor model extending the conventional Anderson
tower of states framework. This rotor model reproduces the
spectroscopic signatures observed in ED data and captures
the interplay between ObQD-induced localization of the ro-
tor and quantum tunneling among symmetry-related ground
states (see Fig. 1). In particular, this framework exposes the
crossover from the finite-size regime, where the rotor is de-
localized over the quasi-degenerate manifold, to the thermo-
dynamic limit, where it localizes and long-range order oc-
curs. By exploiting the characteristic splittings identified in
the ED spectrum, we extract the ObQD energy scale and ar-
gue that these splittings constitute the finite-size manifestation
of the energy gap of the ObQD-induced pseudo-Goldstone
(PG) mode [20]. We compare estimates of the ObQD en-
ergy scale from these S = 1

2 calculations with semiclassical
results for several paradigmatic ObQD models and find rea-
sonable agreement. Finally, we discuss implications for the
pyrochlore magnet Er2Ti2O7, a leading candidate material for
ObQD [30, 31].

Ferromagnetic Heisenberg-compass model.— We first con-
sider the ferromagnetic Heisenberg-compass model on the
square lattice [24, 60], relevant to spin-orbit Mott insula-
tors [61]

H =
∑

r

[
J
∑

δ=x,y

Sr · Sr+δ + K
(
S x

r S x
r+x + S y

r S y
r+y

)]
, (1)

where Sr ≡
(
S x

r , S
y
r , S z

r

)
is a spin- 1

2 operator at lattice site
r, and δ = x, y are the nearest-neighbor bonds. The first and
second terms in Eq. (1) are the nearest-neighbor Heisenberg
and bond-dependent compass exchanges, respectively. We
parametrize J ≡ cos ξ and K ≡ sin ξ with π < ξ < 3π/2 where
both couplings are ferromagnetic (i.e., negative). The com-
pass term breaks the SU(2) spin-rotation symmetry of the
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FIG. 2. Ferromagnetic Heisenberg-compass model on the square lat-
tice of N = 16 sites with periodic boundary conditions. (a) Low-
energy ED spectrum. The m labels correspond to the unsplit rotor
energy levels, with the splitting of the m = ±2 and m = ±4 levels
emphasized by light blue shaded wedges. The lines are guides to the
eye. (b) Spectrum of the LM and BLM models, where the g value for
the BLM description is extracted from the splitting in the ED spec-
trum. (c) Comparison of the ObQD energy scale, g, obtained from
finite-size LSWT for N = 16 and ED data. Grey areas in all pan-
els mark deviations from the BLM picture due to a new phase near
ξ = 3π/2 [24].

Heisenberg term, reducing the symmetry to discrete C4z and
C2x, C2y operations.

ObQD in this model has been previously studied using
LSWT [20, 24, 60]. In the classical limit (S → ∞), the ground
states are ferromagnetic configurations aligned along any di-
rection in the x̂ − ŷ plane, forming an accidentally degener-
ate continuous O(2) manifold. Spin-wave zero-point fluctu-
ations lift this degeneracy, yielding ObQD for states aligned
along ±x̂,±ŷ directions [20, 24]. To assess the extent to which
the semiclassical understanding of ObQD carries over to the
S = 1

2 limit, we perform ED, exploiting the discrete transla-
tional symmetry of the model to obtain the low-energy spec-
trum shown in Fig. 2(a). Since for small system sizes, the ED
ground state shows only a very weak preference for ObQD-
selected orderings [24], we look beyond the ground state to
the excited states.

Do the excited states reveal signatures of ObQD? Specifi-
cally, is there any underlying structure in the spectrum con-
nected to the ObQD observed in the thermodynamic limit?
This question is reminiscent of the related challenge in identi-
fying SSB in finite-size systems [47, 50, 51]. To proceed, we
formulate an effective description of ObQD based on the Lieb-
Mattis (LM) framework [62], previously used to understand
finite-size signatures of SSB—namely, the Anderson tower of
states [47–51]. The LM Hamiltonian can be derived by pro-
jecting the full Hamiltonian [Eq. (1)] into its lowest-energy
subspace [59, 63]: the ferromagnetic sector with total spin
S tot =

N
2 , where N is the total number of spins. This yields an

effective Hamiltonian in terms of a single large spin of length
S tot: HLM = −K(S z

tot)
2/(N−1) [64] where S z

tot has eigenvalues
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FIG. 3. Finite size scaling of the BLM spectrum of the Heisenberg-
compass model with ξ = 5π/4. The g value for the BLM model
is determined from LSWT on an N-site lattice. Lines are guides to
the eye, tracking the scaling of the energy eigenvalues. Shaded areas
show ObQD-induced splitting. Black star marker is the system size
extrapolated value of the gap ∆ from the ground state to the first
excited state reproducing the pseudo-Goldstone gap [20].

m = 0,±1, · · · ,±S tot [65]. This is a planar quantum rotor with
moment of inertia I = (N − 1)/(2|K|) that increases with sys-
tem size. Since K < 0, the ground state has m = 0, while the
excited states are each doubly degenerate with |m| = 1, 2, . . . ,
S tot [see Fig. 2(b)].

Comparing this with the ED spectrum in Fig. 2(a), we find
a good qualitative agreement, except for splittings visible in
several excited doublets as ξ (i.e., |K|) increases. While the
LM rotor predicts doublets for the m = ±2 and m = ±4 en-
ergy levels, the ED data in Fig. 2(a) shows this degeneracy is
lifted. This discrepancy arises becauseHLM possesses a U(1)
symmetry about the ẑ axis while the microscopic spin Hamil-
tonian [Eq. (1)] does not. This symmetry of HLM reflects the
accidental degeneracy of the classical ground states and, de-
spite forming the foundation of the effective theory of SSB,
HLM is unable to capture ObQD.

Beyond the Lieb-Mattis model.— To account for ObQD, it
is thus necessary to go beyond the LM projection by breaking
the emergent U(1) symmetry and restoring the discrete sym-
metries of the full Hamiltonian [59]. Such corrections can
in principle be derived via second-order perturbation theory
starting from the isotropic LM limit [59], however such cal-
culations are challenging for Hamiltonians without continu-
ous spin-rotation symmetry [66].

We therefore take a simpler alternative route: we introduce
the U(1) breaking term phenomenologically, inspired by spin-
wave theory. In LSWT, the term that restores the discrete sym-
metries is the spin-wave ZPE, of the form −g cos(4ϕ) [24],
where ϕ is the moment orientation of the ferromagnetic
ground states relative to x̂ and the parameter g is the ObQD
energy scale. We thus promote this ZPE to an operator [65]

Hpert = −g
2

[(
S +tot

)4
+

(
S −tot

)4
]

[N/2(N/2 + 1)]2 , (2)

where S ±tot are the raising and lowering operators in the
S tot =

N
2 space and the denominator accounts for the length

of Stot, i.e.,
√

N/2(N/2 + 1) [67]. This minimal term embeds
ObQD in the effective description, with g a phenomenological
parameter setting the energy scale of the ground state selec-
tion [68].

The resulting “beyond Lieb-Mattis” (BLM) Hamiltonian,
HBLM ≡ HLM +Hpert, describes the motion of the rotor in an
ObQD-induced “potential”, Hpert, with minima along ±x̂,±ŷ
directions. The effect of this potential on the spectrum of
HBLM can be understood by treating Hpert as a perturbation
toHLM, since g is an extensive quantity (i.e., ∝ N) and there-
fore weaker for small system sizes. Due to the quartic depen-
dence ofHpert on S ±tot, degenerate states with ∆m = ±4 split at
first order in g, while those with ∆m = ±8 split at second or-
der. The m = ±1,±3, . . . states thus remain degenerate, while
the m = ±2 and m = ±4 states exhibit splittings of O(g) and
O(g2), respectively—the latter being much smaller.

These splittings relate the BLM and ED spectra. Focusing
on the m = ±2 states, the BLM splitting, ∆, is given perturba-
tively by ∆ = (N/2−1)(N/2+2)

N/2(N/2+1) g [65]. We can then use the same
splitting from the ED spectrum, ∆ED, and equate ∆ = ∆ED
to produce an estimate for the value of g from the micro-
scopic model. A comparison of the ED spectrum [Fig. 2(a)]
and BLM spectrum using the extracted values of g [Fig. 2(b)]
reveals compelling qualitative agreement [69]. This BLM de-
scription exposes that the pattern of splittings observed in the
excited energy levels in the ED spectrum originates from the
physics of ObQD, further providing an estimate of the ObQD
energy scale—this is the key result of this paper.

As the energy scale g was motivated by the form of the
ObQD potential that appears in LSWT, it can be directly com-
pared to the semiclassical value computed as half of the ZPE
difference between the ϕ = π

4 and ϕ = 0 states. As shown
in Fig. 2(c), there is qualitative agreement—about a factor of
two—between the value of g extracted from ED, gED, and the
value of g directly computed from LSWT, gLSWT.

The BLM Hamiltonian has two important limits: for
smaller systems, the kinetic rotor term (HLM) dominates over
the ObQD-induced potential as its moment of inertia scales
as ∝ (N − 1); the rotor remains delocalized in the x̂ − ŷ
plane, hybridizing among the accidentally degenerate ground
states. In the opposite limit of larger systems, the potential
dominates, localizing the rotor near the potential minima and
suppressing the tunneling through the potential barriers (see
Fig. 1). The crossover between these two limits can be seen
in the finite-size scaling of the BLM spectrum at a fixed ξ,
as shown in Fig. 3 for a BLM model where here we have set
g = gLSWT. Groups of four states converge as N increases, be-
coming quasi-degenerate for sufficiently large systems, con-
sistent with the semiclassical picture of ObQD selecting four
states in the thermodynamic limit. The near-degeneracy of
the lowest four states at N∗ ≈ 64 marks the crossover from
rotor-dominated to ObQD-dominated physics [see Fig. 1]. In
the large-N limit, the energy gap ∆ to the first excited state
shown in Fig. 3 approaches the ObQD-induced PG gap de-
termined from LSWT [20]. The precise agreement of the PG
gap from the two approaches in the large-N limit is by con-
struction, due to g being fixed using LSWT. Thus, the BLM
description offers a clear picture of the mechanism by which
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FIG. 4. Antiferromagnetic Heisenberg-Kitaev model on the honey-
comb lattice of N = 24 sites with periodic boundary conditions. a)
Low-energy ED spectrum. (b) Spectra of the LM and BLM models,
where the g value for the BLM description is extracted from the split-
ting in ED spectrum. (c) g obtained from LSWT and the ED spec-
trum. Grey areas in all panels mark the regime where the low-energy
physics begins to deviate from the BLM description as it approaches
the Kitaev quantum spin liquid phase near ξ = π/2 [70].

ObQD operates in spin- 1
2 systems, from finite-size clusters to

the thermodynamic limit.
Interestingly, this Heisenberg-compass model also exhibits

ObQD in the antiferromagnetic regime (i.e., J > 0, K > 0),
but now into Néel order along the ±x̂,±ŷ directions [24]. A
direct application of the BLM framework yields a similar ef-
fective rotor physics in the finite-size spin- 1

2 limit (see Sup-
plemental Material (SM) [65]).

Antiferromagnetic Heisenberg-Kitaev model.— To
demonstrate the broad applicability of this framework,
we consider another model, the Heisenberg-Kitaev
model on the honeycomb lattice [70–72] relevant to
candidate Kitaev materials [10, 70, 71], that yields qual-
itatively different rotor physics. The Hamiltonian is
H = ∑

⟨rr′⟩∈γ
[
JSr · Sr′ + KS γ

r S γ
r′
]
, where J,K are the

Heisenberg and Kitaev couplings, respectively, and γ = x, y, z
labels the three types of nearest-neighbor bonds. The
bond-dependent Kitaev interaction breaks SU(2) spin-
rotation symmetry of the Heisenberg term down to discrete
symmetries [65].

For J > 0 and K > 0, classical ground states are acci-
dentally degenerate Néel states with arbitrary orientation, and
ObQD selects those along ±x̂, ±ŷ, ± ẑ directions [20, 70, 71].
The low-energy S = 1

2 ED spectrum is shown in Fig. 4(a) with
J ≡ cos ξ and K ≡ sin ξ for 0 < ξ < π/2. To identify signa-
tures of ObQD in this spectrum, we follow the same procedure
as laid out above for the ferromagnetic Heisenberg-compass
model.

Unlike an effective spin of length N/2 describing the fer-
romagnetic subspace, the relevant low-energy subspace now
consists of two large spins of length N/4, corresponding to
the two sublattices A and B of the Néel ordering, each con-
taining N/2 spins. The resulting LM Hamiltonian is HLM =

3J+K
N

(
S2

tot − S2
A − S2

B
)

[65], where Stot = SA + SB. Since
HLM has SU(2) symmetry, S tot and S z

tot are conserved. The
ground state has S tot = 0, while excited states are labeled
by S tot = 1, 2, . . . , each with degeneracy (2S tot + 1) [see
Fig. 4(b)]. This qualitatively agrees with the ED spectrum
[Fig. 4(a)], except for the splitting of the S tot = 2 level and
above observed in the ED spectrum.

To resolve this discrepancy, we consider the BLM descrip-
tion, adding the operator equivalent of the spin-wave ZPE,
as done previously. Here, the ZPE manifests as a cubic
anisotropy, with minima along the ±x̂, ±ŷ, ± ẑ directions. The
corresponding operator is [65]

Hpert = −g
(S x

A − S x
B)4 + (S y

A − S y
B)4 + (S z

A − S z
B)4

[N/4(N/4 + 1)]2 , (3)

where the denominator arises from the length of each effec-
tive large spin. The perturbative action of Hpert on HLM mir-
rors the problem of a magnetic ion placed in a cubic crystal
field environment [73]. It does not lift the degeneracy of the
S tot = 1 level but splits the S tot = 2 level into the analogue
of the eg doublet and t2g triplet [73], as clearly observed in
both the ED [Fig. 4(a)] and BLM spectra [Fig. 4(b)]. More-
over, g from LSWT agrees well with that extracted from the
S tot = 2 splitting in the ED spectrum [Fig. 4(c)]. The dis-
agreement between the BLM and ED spectra near ξ = π/2
arises due to the presence of the Kitaev spin liquid phase in
this region [70]. The ferromagnetic counterpart of this model
(i.e., J < 0, K < 0) also exhibits ObQD [70, 71], with the
BLM framework again yielding an analogous rotor descrip-
tion in the finite-size spin- 1

2 limit (details in SM [65]). A one-
dimensional version of the ferromagnetic Heisenberg-Kitaev
model also exhibits ObQD [74], and its effective rotor physics
can be obtained by a straightforward application of the BLM
framework, as discussed in SM [65].

Conclusion.— To date, an understanding of the mechanism
for order by quantum disorder (ObQD) has been lacking in
finite-size S = 1

2 systems. We have considered two textbook
models harboring ObQD and presented an effective beyond
Lieb-Mattis (BLM) description of how ObQD operates in the
spin- 1

2 limit, from finite-size systems to the thermodynamic
limit. We identified a pattern of splittings in the excited states
in the low-energy exact diagonalization (ED) spectrum, serv-
ing as a precursor to ObQD in the thermodynamic limit. Just
as the Anderson tower of states serves as a diagnostic of spon-
taneous symmetry breaking in finite-size spin- 1

2 systems, our
analysis plays a similar role for ObQD.

The effective BLM description captures the crossover from
a delocalized rotor in small systems to ObQD-dominated lo-
calized rotor in larger systems. This crossover can occur at
system sizes significantly larger than those typically accessi-
ble to most unbiased numerical techniques. For example, in
the ferromagnetic Heisenberg-compass model on the square
lattice, it appears around N∗ ≈ 64. The value of N∗ depends
on the model and may be much larger in systems with weaker
ObQD-selection effects. Only if ED calculations were fea-
sible for such sizes would one observe a clear signature of
ObQD-induced ordering in the ground state.



5

Our effective framework is general, applicable to any model
exhibiting ObQD in one, two, or three dimensions, with no re-
strictions on symmetry or lattice type. We have demonstrated
this generality via canonical two-dimensional examples, as
well as a one-dimensional example [65]. We have also ap-
plied our framework to a three-dimensional case, Er2Ti2O7, a
preeminent candidate material for ObQD (see End Matter A).
This pyrochlore magnet of effective spins (S = 1

2 ) orders
into a non-collinear “ψ2” state [30, 31]. We find signatures
of ObQD in its ED spectrum, with qualitative agreement be-
tween the ObQD energy scale g extracted from the splittings
and LSWT.

The finite-size spectroscopic analysis of ObQD presented
in this work reveals not only the selected ordering, but also
the strength of the selection, which is roughly within a factor
of two of its value in the thermodynamic limit for all the mod-
els we examined. Similar finite-size spectroscopic approaches
have also proven successful in exposing the physics arising
in the thermodynamic limit in other contexts including quan-
tum criticality [75–79] and quantum spin liquids [75, 76, 79].
We believe our work significantly deepens the understanding

of order by disorder in the finite-size and extreme S = 1
2

quantum limit. We hope it encourages further exploration of
finite-size quantum spectra as a diagnostic tool for uncover-
ing emergent order, and inspires new directions in the study
of fluctuation-driven phenomena in frustrated quantum mag-
nets.
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FIG. E1. Spectrum of a single cubic unit cell (N = 16) of the best
fit model Eq. (E1) of Er2Ti2O7 tuning away from the XY limit. Low-
lying states form an approximate tower corresponding to a U(1) rotor
with (E − E0)/J± = m2B where m = 0,±1,±2, . . . and B ≈ 0.4248.
(Inset) Splitting of the m = ±3 levels into even and odd combinations
(|+3⟩ ± |−3⟩)/√2 is a direct indicator of the ObQD strength.

Appendix A: Application to Er2Ti2O7

As another non-trivial application of the above framework,
we consider one of the best material examples of ObQD,
Er2Ti2O7 [30, 86]. The magnetic physics of this compound
is described by an effective spin- 1

2 model for the lowest-lying
crystal field doublet of the Er3+ ion [87]. At nearest neigh-
bor level symmetry constrains this to four independent ex-
changes [87]

H ≡
∑

⟨i j⟩

[
JzzS z

i S
z
j − J±

(
S +i S −j + S −i S +j

)
+

J±±
(
γi jS +i S +j + h.c.

)
+ Jz±

(
ζi j

[
S z

i S
+
j + S +i S z

j

]
+ h.c.

)]
.

(E1)

Fitting to inelastic neutron scattering experiments yields the
parameters [30]

Jzz = −0.025 meV, J± = +0.065 meV,
J±± = +0.042 meV, Jz± = −0.0088 meV.

Classically, a ferromagnetic XY phase is stabilized, Si ≡
S (x̂ cos ϕ + ŷ sin ϕ), with an accidental U(1) degeneracy in
the angle ϕ. Quantum fluctuations lift this degeneracy and se-
lect the ψ2 state, corresponding in this language to ϕ = 2πn/6
with n = 0, 1, . . . , 5 [30, 86]. The ObQD potential can be
modeled as V(ϕ) = −g cos (6ϕ) due to the three-fold symme-
try of the lattice [30].

To simplify our analysis we will consider a minimal ver-
sion of this model with Jzz = Jz± = 0 and vary the ratio
J±±/J± [86]. We have performed full ED on single cubic unit

cell of the pyrochlore lattice of N = 16 spins, exploiting trans-
lation invariance to reduce the block size. The spectrum as a
function of J±±/J± is shown in Fig. E1. The low lying states
form an Anderson tower corresponding to a U(1) quantum ro-
tor, with energy levels approximately given by m2BJ± where
m is an integer and B ≈ 0.4248.

We can see that there is a very weak splitting in the third
excited doublet, corresponding to mixing of the m = ±3 states.
Explicitly, we extend this as in the main text and construct a
BLM model of the form

Heff = B(S z
tot)

2 − g
2

{
(S +tot)

6 + (S −tot)
6

[N/2(N/2 + 1)]3

}
,

where S z =
∑

i S z
i and N = 16. Following the same line of

argument as the main text, we can extract the coefficient g
directly from the splitting, with the splitting given as

∆BLM = g
{

(N/2 + 3)(N/2 + 2)(N/2 − 1)(N/2 − 2)
[N/2(N/2 + 1)]2

}
.

For a sixteen site cluster this implies that g ≈ 1.122∆BLM. The
value of g obtained using the splitting from ED spectrum as
a function of J±±/J± is shown in Fig. E2, alongside the value
for g inferred from LSWT by comparison of the ZPEs of the
ψ2 and ψ3 states [30].

Qualitative agreement is seen even for this small size, with
the ED results larger than the LSWT by a factor of ≈ 2.
Neglecting Jzz and Jz± the best fit exchanges for Er2Ti2O7
would fall at J±±/J± ≈ 0.646 with gED ≈ 0.0875 µeV and
gLSWT ≈ 0.0436 µeV. These are comparable to the values
extracted for the full set of exchanges, including Jzz and Jz±,
which yields gED ≈ 0.0797 µeV and gLSWT ≈ 0.0423 µeV.

We note that calculations based on a real-space perturbation
theory (RSPT) approach [88] yields g = S J3

±±/(192J2
±) from

the bare result and g ≈ 3J3
±±/(2000J2

±±) from a resummation
specifically at S = 1/2. These yield estimates gRSPT,bare ≈
0.046 µeV and gRSPT,resum ≈ 0.026 µeV. That these estimates
are comparable to ours may provide some insight into why
we can obtain estimates for g from such small clusters, given
the real space perturbation theory is inherently local and only
involves a few neighboring sites.

0.0 0.2 0.4 0.6 0.8 1.0

J±±/J±

0.000

0.001

0.002

0.003

0.004

g/
(J
±

N
)

ED, N = 16
LSWT

FIG. E2. Splitting of the m = ±3 level in ED (see Fig. E1) yields the
coefficient, g, in the ObQD selection energy −g cos(6ϕ); correspond-
ing semiclassical estimate from LSWT is shown.
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I. EFFECTIVE LIEB-MATTIS MODEL

To understand the mechanism of order by quantum dis-
order (ObQD) in a quantum spin-1/2 system, we develop
an effective theory based on the Lieb-Mattis (LM) descrip-
tion which has previously been employed to investigate the
finite-size signatures of spontaneous symmetry breaking [1–
3]. The LM Hamiltonian can be obtained by projecting the
full spin Hamiltonian onto its low-energy subspace [4, 5],
PHP ≡ HLM, where P is the projector onto the subspace.
This subspace can be determined by identifying the classical
ordering pattern of the system’s ground state or alternatively
through the spin-spin correlation functions of the quantum
ground state obtained via exact diagonalization (ED). For ex-
ample, if the classical ground state ordering is ferromagnetic,
the relevant subspace is the ‘ferromagnetic’ Hilbert space of
total spin S tot = N/2 where N is the total number of S = 1/2
spins. Here, the projected Hamiltonian would involve a single
“large” spin S tot of length N/2, which can be solved exactly.
For more complex orders involving multiple sublattices Ns,
the projection needs to be onto the subspace of Ns large spins,
each of length Ñ/2, where Ñ = N/Ns is the number of spins
in each sublattice. Ref. [4] outlines a straightforward way to
perform these projections, making use of the fact that the pro-
jected Hamiltonian must be symmetric under any permutation
of spins within a sublattice. To illustrate this procedure, con-
sider a Hamiltonian term of the form, S µ

r S ν
r′ where r, r′ are

lattice sites and µ, ν = x, y, z denote components. The projec-
tion of this term can be achieved as follows –
Different sublattices.— If r and r′ belong to two different sub-
lattices, say, A and B respectively,

PS µ

r S ν
r′P =

S µ
AS ν

B

Ñ2
, (S1)

where S µ
A and S ν

B are each of spin-length Ñ
2 .

Same sublattice.— To obtain the projection when r and r′ be-
long to the same sublattice, e.g., A, we start from the relation

S µ
A,totS

ν
A,tot =

∑

r∈A
S µ

r S ν
r +

∑

r,r′∈A
S µ

r S ν
r′

=
Ñδµν

4
I +

iϵµνσ
2

S σ
A,tot +

∑

r,r′∈A
S µ

r S ν
r′ , (S2)

where SA,tot =
∑

r∈A Sr. In the last step in Eq. (S2), we have
made use of the algebra of Pauli matrices and I is an iden-
tity matrix. From Eq. (S2), using spin permutation symmetry

within this sublattice, we obtain

PS µ

r S ν
r′P =

1
Ñ(Ñ − 1)

(
S µ

AS ν
A −

Ñδµν
4

I − iϵµνσ
2

S σ
A

)
, (S3)

where again S µ
A is an emergent spin of length Ñ

2 . The de-
nominator Ñ(Ñ − 1) arises from projecting the last term in
Eq. (S2) which sums over all spin-spin interaction pairs within
sublattice-A considering double counting, with (Ñ − 1) pairs
for each spin.

Eqs. (S1) and (S3) provide the necessary projections to de-
rive the LM Hamiltonian, corresponding to the full micro-
scopic Hamiltonian. A similar description may also be ob-
tained using a semiclassical approach based on the spin path
integral formalism [6–9].

II. HEISENBERG-COMPASS MODEL ON THE SQUARE
LATTICE

A. Ferromagnetic regime

Derivation of the Lieb-Mattis Hamiltonian.— Here, we
elaborate on the formalism for constructing the LM Hamilto-
nian of the Heisenberg compass model on the square-lattice.
Although the Hamiltonian has already been introduced in the
main text, we provide it again here for the convenience of dis-
cussion. The Hamiltonian is given by

H =
∑

r

[
J
∑

δ=x,y

Sr · Sr+δ + K
(
S x

r S x
r+x + S y

r S y
r+y

)]
, (S4)

where Sr represents a spin-1/2 operator at site r on the square
lattice and δ = x, y refers to the nearest-neighbor bonds. We
parametrize J ≡ cos ξ and K ≡ sin ξ with π < ξ < 3π/2,
such that both couplings are ferromagnetic (i.e., negative). As
discussed in the main text, the classical ground states are uni-
form fully polarized ferromagnetic configurations along arbi-
trary directions in the x̂ − ŷ plane, given by

Sr = S (cos ϕ x̂ + sin ϕ ŷ) , (S5)

where ϕ ∈ [0, 2π) characterizes the orientation of the magne-
tization relative to the x̂ axis. Since the classical ground states
are ferromagnetic, i.e., has one magnetic sublattice, as dis-
cussed in Sec. I, the relevant low-energy subspace is the space
of S tot = N/2. Thus, to construct the LM Hamiltonian of this
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2

model, we project the Hamiltonian in Eq. (S4) onto the sector
S tot = N/2. Using Eq. (S3), we have

PS µ
r S µ

r′P =
(S µ

tot)
2 − N

4 I
N(N − 1)

, (S6)

and finally the LM Hamiltonian of Eq. (S4) is:

HLM =
2J[S2

tot − 3N
4 I] + K

(
(S x

tot)
2 + (S y

tot)
2 − N

2 I
)

N − 1

=
2J[S2

tot − 3N
4 I] + K

(
(S2

tot − (S z
tot)

2 − N
2 I

)

N − 1
. (S7)

In the sector S tot = N/2, S2
tot is proportional to the identity op-

erator. Ignoring all terms that are proportional to the identity
operator, we have

HLM = − K
(N − 1)

(S z
tot)

2. (S8)

This describes a planar rotor. Its spectrum is discussed in the
main text and begins to capture some qualitative features of
the ED data [see the main text for more details]. We reiter-
ate here that this Hamiltonian has a U(1) symmetry, a con-
sequence of the classical accidental degeneracy of the par-
ent Hamiltonian [Eq. (S4)], and thus, does not exhibit ObQD.
We must go beyond the LM description to be able to capture
ObQD.

Derivation of the Beyond Lieb-Mattis Hamiltonian.— As
discussed in the main text, to investigate the effects of ObQD,
we add an additional term to the LM Hamiltonian [Eq. (S8)]
corresponding to the spin-wave zero-point energy (ZPE). The
ZPE in this model is of the form −g cos(4ϕ) [10] where, g
denotes the ObQD energy scale. We will now rewrite this
term in such a way that can be easily promoted to the operator
form in the S tot = N/2 subspace. The components of the
total spin in the classical ground states are S x

tot =
N
2 cos ϕ and

S y
tot =

N
2 sin ϕ, giving S +tot ≡

(
S x

tot + i S y
tot

)
= N

2 exp(i ϕ) and

S −tot ≡
(
S x

tot − i S y
tot

)
= N

2 exp(−i ϕ). Thus, in terms of the total
classical spin, the ZPE may be written as

−g cos(4ϕ) = −g
2

(
S +tot

)4
+

(
S −tot

)4

(N/2)4 . (S9)

Therefore, the minimal term that needs to be added to Eq. (S8)
to take into account ObQD is the operator equivalent of
Eq. (S9), which is

−g
2

(
S +tot

)4
+

(
S −tot

)4

[N/2 (N/2 + 1)]2 , (S10)

where S +tot refers to the raising operator in the S tot = N/2
subspace and we have modified (N/2)2 → N/2(N/2 + 1) to
account for the classical to quantum spin-length conversion.
Note that this replacement is a phenomenological or ad hoc
normalization. The precise N-dependence could in principle
be derived from higher-order many-body perturbation theory.
However, this is computationally challenging for anisotropic

Hamiltonians [11]. Nevertheless, the qualitative physics re-
mains unaffected by the exact normalization. In our phe-
nomenological effective description, we adopt N/2(N/2 + 1)
to reflect naturally the quantum analog of spin-length of the
effective large spin. With this, the beyond Lieb-Mattis (BLM)
model of the ferromagnetic Heisenberg-compass model on the
square lattice is given by

HBLM = HLM − g
2

(
S +tot

)4
+

(
S −tot

)4

[
N/2(N/2 + 1)

]2 . (S11)

Note that ZPE is an extensive quantity (i.e., ∝ N), thus g ∝ N.
Thus, for a 4 × 4 square lattice, g is quite small and there-
fore, the additional term in Eq. (S11) behaves as a perturbation
to the bare LM Hamiltonian, modifying the bare spectrum of
Eq. (S8) slightly. Identifying

Hpert ≡ −g
2

(
S +tot

)4
+

(
S −tot

)4

[
N/2(N/2 + 1)

]2 , (S12)

this perturbation will split the degenerate m = ±2 states of the
bare LM Hamiltonian at the first order. To see this explicitly,
we construct the perturbation matrix on the m = ±2 space

W ≡
[ ⟨−2|Hpert| − 2⟩ ⟨−2|Hpert| + 2⟩
⟨+2|Hpert| − 2⟩ ⟨+2|Hpert| + 2⟩

]
, (S13)

where the diagonal terms are zero as can be seen from the
form of the perturbation. The off-diagonal term is given by

⟨−2|Hpert| + 2⟩ = −g⟨−2|[(S +tot
)4
+

(
S −tot

)4]| + 2⟩
2 [N/2(N/2 + 1)]2

= − g⟨−2|(S −tot
)4| + 2⟩

2[N/2(N/2 + 1)]2

= −g(N/2 − 1)(N/2 + 2)
N(N/2 + 1)

, (S14)

and ⟨+2|Hpert| − 2⟩ = ⟨−2|Hpert| + 2⟩ = − g(N/2−1)(N/2+2)
N(N/2+1) .

The eigenvalues of W are ± g(N/2−1)(N/2+2)
N(N/2+1) and thus, the split-

ting of the m = ±2 states under the perturbation Hpert is
∆ =

2g(N/2−1)(N/2+2)
N(N/2+1) . We equate this ∆ with the splitting ob-

served in ED to get an estimate of the ObQD energy scale g
from ED. That is, we take

g =
N/2(N/2 + 1)

(N/2 − 1)(N/2 + 2)
∆ED, (S15)

where ∆ED is the splitting obtained from ED. A comparison of
g obtained from ED to that obtained from LSWT on the N-site
square-lattice is provided in the main text.

B. Antiferromagnetic regime

We extend our study of the Heisenberg-compass model on
the square lattice to the antiferromagnetic regime (0 < ξ <
π/2) where J > 0,K > 0. The classical ground states in this
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FIG. S1. Antiferromagnetic Heisenberg-compass model on the
square lattice of N = 16 sites with periodic boundary conditions.
(a) Low-energy ED spectrum. (b) Spectrum of the corresponding
LM and BLM models. The value of g in the BLM model is extracted
from the splitting in the ED spectrum. (c) Comparison of g obtained
from LSWT and ED spectrum. Grey areas in all panels mark the
regime where the low-energy physics deviates from the BLM pic-
ture because of a new state appearing in the microscopic model at
ξ = π/2 [10].

regime are accidentally degenerate Néel states with arbitrary
Néel-vector orientation in the x̂ − ŷ plane [10], described by

Sr = (−1)rS (cos ϕ x̂ + sin ϕ ŷ) , (S16)

where ϕ ∈ [0, 2π) characterizes the orientation of the stag-
gered magnetization relative to the x̂ axis. Similar to the fer-
romagnetic regime, the accidentally degenerate ground states
form an O(2) manifold. The occurrence of ObQD in this
regime has been demonstrated in Ref. [10] using spin-wave
theory, which selects the Néel states along ±x̂,±ŷ directions.

To probe the signatures of ObQD in this antiferromagnetic
regime in the spin-1/2 limit, we perform ED exploiting the
same symmetry (i.e., discrete translation symmetry of the
model) as done in the ferromagnetic regime. The resulting ED
spectrum is shown in Fig. S1(a). To identify which features in
this spectrum arise from ObQD, we follow the same effec-
tive BLM model construction as introduced for the ferromag-
netic regime. To this end, we first derive the corresponding
LM Hamiltonian. Unlike the ferromagnetic ground states in
the ferromagnetic regime, here we have Néel states—two sub-
lattices (A and B) in the unit cell. Thus, as explained in Sec. I,
the LM model comes from projecting the full Hamiltonian
onto the subspace formed by two large spins S A = Ñ/2 = N/4
and S B = N/4. Using Eq. (S1) on Eq. (S4), we have

HLM =
8JSA · SB + 4K

(
S x

AS x
B + S y

AS y
B

)

N

=
4J + 2K

N
(S2

tot − S2
A − S2

B) − 4K
N

S z
AS z

B, (S17)

where Stot ≡ SA + SB (sum of two N/4-length spins). For
this HLM, while S tot is not a good quantum number, S z

tot

is. Fig. S1(b) shows the LM spectrum with m denoting the
eigenvalues of S z

tot. At ξ = 0, the model reduces to the
isotropic Heisenberg antiferromagnet (HAF) on the square lat-
tice which enjoys a true SU(2) symmetry, and thus S tot is con-
served too, labeled in Fig. S1(b). As ξ is varied from zero
to introduce finite compass interactions, the m = 0 state [adi-
abatically connected to S tot = 1] and m = ±2 states [con-
nected to S tot = 2] cross at ξ ∼ 0.16π without mixing due to
their distinct m values. The LM spectrum shows good quali-
tative agreement with the low-energy ED spectrum of the full
Hamiltonian, as displayed in Fig. S1(a). However, the split-
ting of m = ±2 states observed in the ED spectrum is absent
in the LM spectrum. This has to do with the U(1) symme-
try ofHLM, reflecting the accidental degeneracy in the ground
states—thus failing to capture ObQD.

As in the case of the ferromagnetic regime [Sec. II A],
HLM must be augmented by the operator corresponding to
the spin-wave ZPE to obtain the BLM Hamiltonian. The
ZPE takes the form −g cos(4ϕ) with four minima [ϕ =
0, π/2, π, 3π/2] corresponding to the four Néel configura-
tions along the ±x̂,±ŷ directions [10]. The components
of the staggered magnetization in the ground states, nx

tot =

S x
A − S x

B =
N
2 cos ϕ and nytot = S y

A − S y
B =

N
2 sin ϕ, giving

n+tot ≡
(
nx

tot + inytot

)
= N

2 exp (iϕ) and n−tot ≡
(
nx

tot − inytot

)
=

N
2 exp (−iϕ). Thus, in terms of the staggered magnetization,
the ZPE is −(g/2)

[
(n+tot)

4 + (n−tot)
4
]
/(N/2)4. Therefore, the

minimal term that needs to be added to Eq. (S17) to take into
account ObQD is

−g
2

[
(n+tot)

4 + (n−tot)
4
]

24
[

N
4 ( N

4 + 1)
]2 , (S18)

where we have shifted (N/4)2 → (N/4)(N/4 + 1) to account
for the conversion of classical to quantum spin-length corre-
sponding to each sublattice A and B. Thus, the BLM model
for the antiferromagnetic Heisenberg-compass model on the
square lattice is given by

HBLM ≡ HLM − g
2

(
S +A − S +B

)4
+

(
S −A − S −B

)4

[N/2(N/2 + 2)]2 , (S19)

This added term behaves as a perturbation on HLM since g is
weaker for smaller systems. First-order in this perturbation
changes S z

A and S z
B in such a way that the states satisfying

∆m = ±4 split, thus we expect splitting of the m = ±2 level.
To extract the g value from the splitting of the m = ±2 in the
ED spectrum, we compute the first-order perturbation split-
ting within the BLM description numerically with g as an un-
determined multiplicative parameter, and then equate it to the
splitting in ED. We find an overall good agreement between
the BLM and ED spectra using this extracted value, as shown
in Fig. S1(b). Fig. S1(c) shows a comparison of the g obtained
from LSWT and from the splitting of m = ±2 states in the ED
spectrum, differing only roughly by a factor of two.
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III. HEISENBERG-KITAEV MODEL ON THE
HONEYCOMB LATTICE

A. Antiferromagnetic regime

Heisenberg-Kitaev model on the honeycomb lattice in the
antiferromagnetic regime has been discussed in the main text.
Here, we provide the details of the derivations of the corre-
sponding LM and BLM Hamiltonians. The model is described
by the Hamiltonian

H =
∑

⟨rr′⟩γ

[
JSr · Sr′ + KS γ

r S γ
r′
]
, (S20)

where J,K are the Heisenberg and Kitaev couplings, respec-
tively, and γ = x, y, z refer to both spin components and
the three distinct nearest-neighbor bonds. This model pos-
sesses discrete rotation symmetries like C3 about the axis per-
pendicular to the lattice plane, C2 about the bond directions,
and spin-only C2 rotations about x̂, ŷ, ẑ directions. We take
J ≡ cos ξ and K ≡ sin ξ with 0 < ξ < π/2, such that both
couplings are antiferromagnetic. As discussed in the main
text, the classical ground states are accidentally degenerate
Néel states with Néel vector oriented along any arbitrary di-
rection and ObQD selects only those along the cubic axes (i.e.,
±x̂, ±ŷ, ± ẑ) [12–14]. Since the classical ground state is a
Néel order, the LM Hamiltonian can be obtained by project-
ing Eq. (S20) onto the subspace spanned by two spins S A and
S B of length N/4, exactly as done for the antiferromagnetic
Heisenberg-compass model in Sec. II B. Using the projection
in Eq. (S1) on the full Hamiltonian [Eq. (S20)], we obtain

HLM =
3J + K

N
(S2

tot − S2
A − S2

B). (S21)

In this case, the LM Hamiltonian exhibits an augmented
SU(2) symmetry, thus resulting in both S tot and S z

tot as good
quantum numbers. The spectrum of Eq. (S21) is discussed in
the main text.

To include ObQD in the effective description, the LM
Hamiltonian needs to be augmented by the operator equiva-
lent of the spin-wave ZPE. The ZPE minimizes for the Néel
states with Néel-vector along the cubic axes [12–14], taking
the form of the cubic anisotropy on the ground state manifold.
This can be written as an operator in the two-spin subspace as

−g
[
(S x

A − S x
B)4 + (S y

A − S y
B)4 + (S z

A − S z
B)4]

[N/4(N/4 + 1)]2 . (S22)

This cubic anisotropy term breaks the SU(2) symmetry of
HLM, which was accidental for the full model [Eq. (S20)],
and restores all the discrete symmetries as mentioned above.
For smaller systems, this term acts as a perturbation on HLM,
analogous to the cubic crystal electric field effect on a SU(2)
symmetric magnetic single ion. This splits the S tot = 2 and
higher energy levels of HLM. The level S tot = 2 splits into
the spin-analog of an orbital eg doublet and t2g triplet [15].
This splitting is also observed in the ED spectrum. To de-
termine g from this splitting in ED, we numerically find the

first-order perturbation spitting of S tot = 2 states within BLM
picture due to the perturbation in Eq. (S22) with g as an unde-
termined multiplicative factor and equate this splitting to that
from ED. The comparison of g obtained from the splitting in
ED spectrum and LSWT has been presented in the main text.

In principle, one can further understand the splitting of the
S tot = 3 level within this description. However, these states
are difficult to identify in ED spectrum due to level cross-
ings with high energy non-rotor states which intrude above
the S tot = 2 level.

B. Ferromagnetic regime

We move on now to consider the ferromagnetic regime with
π < ξ < 3π/2 such that J < 0,K < 0. In contrast to the antifer-
romagnetic regime, the classical ground states in this regime
are fully polarized ferromagnetic states pointing along any
arbitrary direction, with ObQD selecting only those aligned
along the cubic axes (i.e., ±x̂,±ŷ,± ẑ), as shown using spin-
wave theory [12–14]. We next perform ED, and the resulting
spectrum is shown in Fig. S2(a). To identify the characteristic
splittings induced by ObQD in the ED spectrum, we construct
the corresponding BLM Hamiltonian, following the same ap-
proach as in the previous examples. Since the classical ground
state manifold is ferromagnetic, the projection involved in the
effective description needs to be done on the space of single
spin of length S tot = N/2, as done previously for the fer-
romagnetic Heisenberg-compass model on the square lattice.
Making use of the projections derived for the ferromagnetic
Heisenberg-compass model [Eq. (S6)] and omitting additive
constants, we obtain

HLM =
3J + K

2(N − 1)
S2

tot. (S23)

As in the antiferromagnetic regime, the LM Hamiltonian ex-
hibits an enhanced SU(2) symmetry, meaning both S tot and
S z

tot are good quantum numbers. All the different S z
tot states

within the S tot = N/2 subspace are degenerate. Consequently,
the LM model energy eigenvalues, when shifted by the ground
state energy E0, are all zero, i.e., E − E0 = 0 for each ξ. For
this reason, we do not show the LM spectrum in Fig. S2.

To break the SU(2) symmetry of the LM Hamiltonian down
to the discrete symmetries of the full model, we next consider
the spin-wave ZPE. This ZPE acts as a cubic anisotropy on
the classical ground state manifold [12–14], yielding the fol-
lowing operator in the S tot = N/2 space

−g
(S x

tot)
4 + (S y

tot)
4 + (S z

tot)
4

(N/2(N/2 + 1))2 . (S24)

This poses a cubic crystal field problem on the S tot = N/2
manifold rather than on the S tot = 2 manifold in the antiferro-
magnetic regime. To estimate g from ED, we use the splitting
marked in light blue in the ED spectrum in Fig. S2(a). We
numerically find the first-order perturbation (corresponding)
splitting within the BLM model with g as an undetermined
multiplicative parameter and equate it to the splitting in the
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FIG. S2. Ferromagnetic Heisenberg-Kitaev model on the honeycomb
lattice of N = 24 sites with periodic boundary conditions. (a) Low-
energy ED spectrum. (b) BLM model spectrum. The g value in BLM
description is determined from the splitting in the ED spectrum. (c)
g obtained from LSWT and ED spectrum. Grey areas in all pan-
els mark the regime where the low-energy physics deviates from the
BLM description.

ED spectrum, yielding an estimate for g from ED. Upon nu-
merically diagonalizing the BLM Hamiltonian with these val-
ues of g, we observe that the cubic anisotropy term lifts the
degeneracy of the S tot = N/2 multiplet, as seen in the BLM
spectrum in Fig. S2(b), following the same degeneracy pat-
tern of the split states in the ED spectrum [Fig. S2(a)]. We
note good agreement between g obtained from ED and that
obtained from LSWT, depicted in Fig. S2(c). However, this
agreement breaks down in the range 1.38π ≲ ξ ≲ 1.5π (grey
shaded region in Fig. S2), possibly due to the onset of Kitaev
spin liquid physics around ξ ∼ 3π/2, where the BLM descrip-
tion is no longer valid.

IV. HEISENBERG-KITAEV MODEL ON THE CHAIN

To round out our discussion of two- and three-dimensional
systems explored in the main text, we present here re-
sults for a one-dimensional version of the ferromagnetic
Heisenberg-Kitaev model, namely, the Heisenberg-Kitaev
spin chain, known for its potential in providing insights into
two-dimensional Kitaev physics [16–19]. It is governed by
the Hamiltonian

H = J
N∑

i=1

Si · Si+1 + K
N/2∑

i

(
S x

2i−1S x
2i + S y

2iS
y
2i+1

)
, (S25)

where i refers to the sites on the chain, and J ≡ cos ξ,
K ≡ sin ξ with π < ξ < 3π/2. The second term in Eq. (S25)
corresponds to alternating x − x and y − y Kitaev couplings.
The Kitaev term breaks continuous spin-rotation symmetry,
leaving only discrete symmetries, such as a π/2 spin rotation
about ẑ axis combined with unit lattice translation. Classi-
cal ground states are accidentally degenerate ferromagnetic
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FIG. S3. Ferromagnetic Heisenberg-Kitaev spin chain of N = 20
sites with periodic boundary conditions. (a) Low-energy ED spec-
trum. (b) The LM and BLM model spectra. The g value for the BLM
model is determined from the splitting in the ED spectrum. (c) Com-
parison of g obtained from LSWT and splitting in the ED spectrum.
Grey-shaded regions in all panels indicate the regime where the low-
energy physics deviates from the BLM description as it approaches
a different phase in 1.44π ≲ ξ ≲ 1.5π [16].

configurations pointing along any arbitrary direction in the
x̂ − ŷ plane, with ObQD selecting only those aligned along
±x̂,±ŷ directions. This is confirmed by analyzing the proper-
ties of the ground state using density matrix renormalization
group (DMRG) method, although in π < ξ ≲ 1.44π [16]. For
1.44π ≲ ξ ≲ 1.5π, a different phase emerges.

The ED spectrum, obtained using the combined lattice
translational and spin-rotational symmetry mentioned above,
is presented in Fig. S3(a). To identify the splittings due to
ObQD, we next construct the effective description. Using
the same projections as those employed for the ferromagnetic
Heisenberg-compass model on the square lattice [Sec. II A],
and omitting the constant terms, we obtain

HLM = − K
2(N − 1)

(S z
tot)

2. (S26)

This Hamiltonian is the same as that for the ferromagnetic
Heisenberg-compass model on the square lattice, except the
prefactor. Therefore, their spectra are similar, as can be seen
in Fig. S3(b). Since the spin-wave ZPE is minimized by fer-
romagnetic ground states aligned along ±x̂ and ±ŷ, it takes
the same form, −g cos 4ϕ, as in the ferromagnetic Heisenberg-
compass model. Therefore, following the same reasoning, we
obtain the ObQD-induced perturbation term

Hpert = −g
2

(
S +tot

)4
+

(
S −tot

)4

[
N/2(N/2 + 1)

]2 . (S27)

This perturbation splits the m = ±2 states at first order in per-
turbation theory, and comparing this with the corresponding
splitting from the ED spectrum, we can get an estimate of g
from ED following the steps in Sec. II A as

g =
N/2(N/2 + 1)

(N/2 − 1)(N/2 + 2)
∆ED. (S28)
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The g value obtained from the ED data agrees quite well with
the value derived from LSWT, as shown in Fig. S3(c). Com-
paring the BLM spectrum with the values of g found from
ED [Fig. S3(b)] with the low-energy ED spectrum shown in
Fig. S3(a) yields good qualitative agreement. Significant dis-
agreement near ξ ∼ 3π/2 arises due to the existence of a dif-
ferent phase in 1.44π ≲ ξ ≲ 1.5π [16], making the effective

description inapplicable. While the agreement between ED
and the effective model spectra is qualitatively good in this
one-dimensional example, it is not as good as in the two- and
three-dimensional cases. This is likely due to the enhanced
quantum fluctuations that are intrinsic to one-dimensional sys-
tems, in contrast to their higher-dimensional counterparts.
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