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Ordering and criticality in an underscreened Kondo chain
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Motivated by the nickel valence controversy in the perovskite nickelate RNiO3, we consider a one-dimensional
underscreened Kondo chain consisting of alternating spin-1 (“nickel”) and electron (“oxygen”) sites, which in
addition to the usual electron hopping and spin-spin interaction between the S = 1 spin and the electron also
contains a spin-mediated electron hopping term. Using the density-matrix renormalization group (DMRG), we
obtained the zero-temperature phase diagram of the model, as well as various correlation functions in each
phase. Importantly, for a certain range of parameters the model exhibits a quasi-long-range spiral (QS) order. To
understand the DMRG results, we construct a mean-field theory based on a Schwinger fermion decomposition
of the S = 1 spins, from which we argue that the QS phase corresponds to a phase in proximity to the spin Bose
metal state proposed by Sheng, Motrunich, and Fisher [Phys. Rev. B 79, 205112 (2009)]. Notably, we find no
evidence for a phase with the symmetry of “nickel”-centered charge order, which has been argued to arise due to
site-selective Kondo screening of half the S = 1 spins, and suggest that order of this type occurs only due to an
additional energy gain from spontaneous lattice distortions, not present in this model.
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I. INTRODUCTION

Mott metal-insulator transitions and their associated spin
and charge ordering appear throughout the physics of transition
metal oxides, and present many puzzles of interpretation and
modeling. Since electrons in the regime of a Mott transition
may possess both localized and itinerant character, ambiguity
may arise as to an appropriate model Hamiltonian: Hubbard,
Heisenberg, or t-J ? Anderson or Kondo model? In multiorbital
systems, the choices are even more numerous. Such a situation
arises in the pseudocubic perovskite nickelates, RNiO3, where
R is a rare-earth ion, which have been studied for many
years for their interesting Mott metal-insulator transitions.1

A T > 0 transition occurs to an insulating state for all
members of the series save the case R=La, which is metallic
at all temperatures, to a low-temperature state with complex
structural symmetry breaking—denoted “charge order” in
the literature—and antiferromagnetism. Nominally, in this
material the nickel valence is 3+, i.e., 3d7, which would
suggest a model with a single electron in the cubic eg doublet,
a twofold orbital degeneracy. However, another interpretation
is that the nickel valence is actually 2+, with an additional
hole per nickel spread out among the oxygen ions,2 analogous
to the Zhang-Rice singlet in cuprates.3 In this “ligand hole”
scenario there is no orbital degeneracy, but rather an S = 1
spin on the nickel site, corresponding to a half-filled eg

doublet. The difference between these two scenarios (which
we termed the “nickel valence controversy”) is well defined
only in the ionic limit where the charge on the nickel site
does not fluctuate significantly, which might be the case in
the ligand-hole picture. A third, compromise view is that the
valence fluctuates significantly due to hybridization, making
the distinction between Ni2+ and Ni3+ moot; in this case
one might build a theory in terms of the low-energy bands
near the Fermi energy. Though such a compromise exists, it
seems to be unpopular, and strong opinions in favor of the
ligand-hole picture are often voiced.4 Going further, Sawatzky
has proposed a picture for the observed “charge” ordering in
terms of local Kondo screening of half the Ni2+ spins.5 A

recent DMFT paper seems to suggest a similar scenario.4 A
physical understanding of how such Kondo screening might
come about, and whether it can account for the observed
charge/spin order, is, however, still lacking.

In this paper, we study a concrete model motivated by
the ligand-hole scenario using the numerically exact density-
matrix renormalization group (DMRG) method.6 We write
down the simplest model incorporating a sharply defined Ni3+
valence, and holes on the oxygen sites. Because each nickel
thereby has an S = 1 spin and is accompanied by only a
single oxygen hole with S = 1/2, this takes the form of an
underscreened Kondo lattice model.7,8 To enable the DMRG
analysis, we take this model to be one dimensional. Though
this is obviously a drastic approximation, our model retains
the underscreened Kondo physics, and has the symmetries
to allow charge ordering of the same type observed in
the nickelate materials. We obtain the numerically exact
full zero-temperature phase diagram for this model, which
contains several magnetic states. However, we do not find the
charge-ordered state seen in the nickelates, which is nickel site
centered, but instead a complementary type of charge ordering
which is bond centered, i.e. ordered on the oxygen sites. We
will discuss the implications of this result for the nickelates in
Sec. VI.

Beyond the context of the nickelates, our model is of
interest on its own as a problem in one-dimensional physics,
and of the underscreened Kondo effect. Recent work has
shown the possibility of gapless one-dimensional “spin liquid”
phases, which are strikingly even more non-quasiparticle in
nature than the usual Luttinger liquid. Such phases have
been found in rather exotic models with very large ring
exchange interactions.9 Remarkably, we find evidence for such
a spin-liquid-like phase in our rather simple and physically
motivated Kondo lattice model (technically, we obtain a phase
which appears to be proximate to the “spin Bose metal” phase
of Ref. 9, rather than this phase itself). This suggests an
intriguing prospect of observing quantum spin liquid states in
two and three dimensional Kondo lattice systems appropriate
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to real materials. Again, this idea has already been suggested
in the literature,10–12 but connections do not seem to have been
made to realistic model Hamiltonians.

The remainder of this paper is organized as follows.
In Sec. II we introduce our model Hamiltonian as well
as a simple semiclassical treatment that would guide our
intuition about the quantum case. In Sec. III we present
our DMRG results, which includes the quantum ground-state
phase diagram and various correlation function in each phase.
In Sec. IV we introduce a mean-field picture, which, together
with degenerate perturbation theory, explains most phases in
the DMRG phase diagram. In Sec. V we focus on the one
phase that cannot be explained in the previous section, which
we argue is a phase in proximity to the spin Bose metal phase
in Ref. 9. Further discussions and conclusions are presented in
Sec. VI.

II. THE t- J- J ′ HAMILTONIAN

Motivated by the nickelate, we consider a one-dimensional
(1d) chain consisting of alternating electron and spin-1 sites,
as illustrated in Fig. 1, in which the electrons are half filled.
We shall continue to refer to the electron sites as the oxygen
sites and the spin-1 sites as the nickel sites, even though our
model is no longer constrained by material details.

The interactions between the electrons and the nickel spins
arise from virtual hoppings. At second order, after hopping to
the nickel site, the electron or hole can either hop back to the
original oxygen site or to the next oxygen site, which gives rise
to two distinct contributions to the Hamiltonian. In addition,
the electron can also hop directly from one oxygen site to
the next without the mediation of the nickel spin in between.
Taken together, this leads to the t-J -J ′ Hamiltonian:

HtJJ ′ = −t
∑

i

c
†
i+1/2,αci−1/2,α + H.c. + J

∑
i

Si ·
(

c
†
i+1/2,α

σ αβ

2
ci+1/2,β + c

†
i−1/2,α

σ αβ

2
ci−1/2,β

)

+ J ′ ∑
i

Si ·
(

c
†
i+1/2,α

σ αβ

2
ci−1/2,β + c

†
i−1/2,α

σ αβ

2
ci+1/2,β

)
= −tHt + JHJ + J ′HJ ′ , (1)

where ci±1/2,α and c
†
i±1/2,α are the electron operators on the

oxygen site at i ± 1
2 with spin index α, Si is the S = 1 spin

operator on the nickel site i, and σ is the vector of the
usual Pauli sigma matrices. Ht , HJ , and HJ ′ are defined in
the obvious way. For convenience, we also define si±1/2 =
c
†
i±1/2,α

σ αβ

2 ci±1/2,β ; i.e., si±1/2 is the electron spin operator on

site i ± 1
2 . Note that here and henceforth the spin indices are

assumed to be appropriately summed.
It is worth noting that the somewhat unfamiliar J ′ term

in HtJJ ′ is analogous to the density-dependent hopping term
that is customarily neglected in the t-J model.13 However,
unlike in the t-J model, for which at low doping this term
can be approximated by a density-independent hopping, in
the present case the spin variable on the nickel site remains
strongly fluctuating even at low energy and thus the J ′ term
cannot be neglected. This will become evident in Sec. III.

It should also be noted that J and J ′ are in general related to
each other through the parameters of the underlying Hubbard-

O OO Ni Ni

i i + 1
2i − 1

2i − 1i − 3
2

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
(1) (2) (2)

(1)

· · ·· · · J ′ J

t

FIG. 1. (Color online) The nickelate chain and the t-J -J ′ Hamil-
tonian (bottom panel), as derived from a Hubbard-typed model (top
panel).

type Hamiltonian (in which charge fluctuation is put back to
the nickel sites). We expect that J and J ′ are of the same
order, but their ratio depends on microscopic details which
are not known. Hence, in this paper we will treat J and J ′ as
individual parameters without worrying about how they may
arise from a Hubbard-type Hamiltonian. We shall, however,
restrict ourselves to the quadrant in which J,J ′ � 0.

To gain some intuitions about the t-J -J ′ model, consider a
semiclassical treatment in which the nickel spins are treated as
classical while the electrons remain quantum mechanical. For
any configuration of nickel spins, HtJJ ′ reduces to a quadratic
Hamiltonian of the electrons at half filling, and the ground-state
configuration of the nickel spins is determined by minimizing
〈HtJJ ′ 〉 with respect to all possible nickel spin configurations.

For simplicity we consider only spiral configurations of the
form Si = S( cos(qxi)x̂ + sin(qxi)ŷ) for the nickel spins. In
such case, the diagonalization of the quadratic Hamiltonian is
facilitated by the transformation ci+1/2,α → e±iqxi/2ci+1/2,α ,
where the + (−) sign holds for α =↑ (↓). Such transformation
removes the position dependence in the coefficients of the
quadratic Hamiltonian obtained from HtJJ ′ , which in turns
can be diagonalized by a simple Fourier transform. Carrying
out the minimization with respect to q, we find the phase
diagram shown in Fig. 2, in which the nickel spins form an
antiferromagnet (AF; q = π ) when J ′ � J , a ferromagnet (F;
q = 0) when J � J ′, and a spiral (S; 0 < q < π ) state when
J ≈ J ′ � t .

However, it is well known that under general circumstances
the continuous symmetries of a 1d quantum system cannot
be spontaneously broken. In particular, in the well-known
antiferromagnetic J1-J2 model, the spiral phase of the classical
model turns into a dimer phase when the classical spins are
replaced by quantum S = 1/2 spins. In the dimer phase, the
spin-spin correlation 〈s−k · sk〉 exhibits no singularities but
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FIG. 2. (Color online) Phase diagram obtained from the semi-
classical computation, where AF stands for a antiferromagnetic state
in which wave vector q = π , F stands for a ferromagnetic phase in
which wave vector q = 0, and S stands for a spiral phase in which
0 < q < π . Note that all three phases meet at the point J = J ′ = t .

only peaks, first at q = π and then at an incommensurate
wave vector as J2 increases.14,15 With this in mind, it is natural
to ponder the fate of the spiral phase in the present model when
the quantum mechanical effects are taken into account.

III. DMRG COMPUTATIONS AND RESULTS

We determine the quantum ground-state phase diagram of
the t-J -J ′ Hamiltonian, Eq. (1), by large-scale density-matrix
renormalization group (DMRG)6 calculations. We consider
systems with up to N = 96 unit cells, each consisting of one
oxygen and one nickel site (see Fig. 3 for illustration). For a
fixed number of states kept, we found that this “superblock”
configuration produces better convergence than the usual
practice of alternating blocks of oxygen and nickel sites. In our
DMRG calculation, we use open boundary conditions (OBCs),
and keep up to m = 4000 states in each DMRG block. This is
found to give excellent convergence in the measurements such
as the ground-state energy and various correlation functions
with a total error of the order of or less than 10−6. The phase
boundaries in the (J/t , J ′/t) parameter space are determined
by extensive scans of the derivatives of the ground-state energy
and by monitoring the correlation functions, as well as the
corresponding order parameters.

To determine the properties of the ground states, we
calculate the nickel spin-spin correlation 〈Sa

k Sa
−k〉, the electron

spin-spin correlation 〈sa
k sa

−k〉, the electron density 〈ni〉, the
electron density-density correlation 〈δnkδn−k〉 (δn is defined
in position space by δni = ni − 1), and the nearest-neighbor
nickel-oxygen spin-spin correlation 〈si±1/2 · Si〉. To determine
whether the phase is conducting, we also calculate the charge
gap � = [E0(N + 2) + E0(N − 2) − 2E0(N )]/2. Finally, we
also obtain the central charge c by calculating the von
Neumann entanglement entropy SA for a partition of the

· · ·· · ·

FIG. 3. (Color online) DMRG block used in the calculations.

FIG. 4. (Color online) Phase diagram from the DMRG calcu-
lation. Here F stands for the ferromagnetic phase, QAF stands for
the quasi-long-range antiferromagnetic phase, CD stands for the
charge-density ordered phase, and QS stands for the quasi-long-range
spiral phase. The dashed line within the CD phase represents the
boundary in which the peak in 〈Sz

kS
z
−k〉 changes from k = π to

k = π ± δ.

system into two halves of length �, L − �, with varying length
� of the subsystem A. A universal logarithmic dependence
of SA on � is expected in the thermodynamic limit with a
prefactor depending on c, and accurate results can usually
be obtained using finite-size scaling formulas derived from
conformal field theory; see Refs. 16 and 17. The calculation
of the von Neumann entropy is computationally expensive
and generally the most difficult of all physical quantities to
converge, especially in highly entangled states. Therefore our
results for c are more limited than for the other quantities
discussed above.

Our main result is the phase diagram presented in Fig. 4,
in which we find four distinct phases as J and J ′ are varied.
In addition, the correlation functions at characteristic points
in parameter space are shown in Figs. 5 and 6. Note that
we have only shown the zz components of the spin-spin
correlation functions. We remark that the phases labeled
as QAF, CD, and QS (detailed below) possess spin SU (2)
invariance, and thus the other components of the spin-spin
correlations are essentially identical to the ones we showed.
For the ferromagnetic (F) phase, the z axis in spin space is
constrained to Mz = 0, and thus the magnetization axis is
perpendicular to the z axis.

For J � J ′ the system exhibits ferromagnetic order with
magnetization M ≈ 0.5μB per unit cell. This is consistent with
previous works in the literature on the alternating spin-1–spin-
1/2 chain,18,19 which can be thought of as the J ′ = 0,J → ∞
limit of the present model. For J and J ′ both small and J ′ � J ,
the system exhibits quasi-long-range antiferromagnetic (QAF)
order characterized by a sharp peak in 〈Sz

kS
z
−k〉 at k = π , while

〈sz
ks

z
−k〉 and 〈δnkδn−k〉 remain largely featureless. As J ′ further

increases such that J ′ � J ≈ t , the system develops a charge-
density (CD) order with period 2 as shown in inset (a) in Fig. 7,
and the sharp singularity in 〈Sz

kS
z
−k〉 in the QAF phase becomes

a broad peak. As J increases within this CD phase, the peak
originally located at k = π splits into two peaks at k = π ± δ,
with δ increasing as J increases.
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FIG. 5. (Color online) (a) Nickel spin-spin correlation 〈Sz
kS

z
−k〉,

(b) electron spin-spin correlation 〈sz
k s

z
−k〉, and (c) electron density-

density correlation 〈δnkδn−k〉 for (orange, filled circular symbols)
J/t = 0.4 and J ′/t = 1.6, (green, empty square symbols) J/t =
0.8 and J ′/t = 4.0, (blue, empty diamond symbols) J/t = 1.6 and
J ′/t = 4.0, and (purple, Greek cross symbols) J/t = 2.4 and J ′/t =
4.0. The insets of panels (a) and (b) show the details of the respective
correlation for J/t = 2.4 and J ′/t = 4.0 in the range 0.5 < k/π <

1.5.

Most interestingly, when J and J ′ are both large and
J ′ � J the system seems to exhibit quasi-long-range spiral
(QS) order characterized by sharp singularities in both the
nickel spin-spin correlation 〈Sz

kS
z
−k〉 and the electron spin-spin

correlations 〈sz
ks

z
−k〉 at incommensurate vectors k = π ± δ,

while the electron density correlation 〈δnkδn−k〉 remains
largely featureless, and no signs of CD order are found.
Moreover, when the correlation functions are examined more
carefully near k = π , a tiny broad peak can be discerned at
wave vector roughly equal to ±δ in 〈Sz

kS
z
−k〉, while no such

features are found in 〈sz
ks

z
−k〉. It should be remarked that the

value of δ evolves continuously as J ′ and J changes and
connects across the phase boundaries into the ferromagnetic
and the CD phases, as shown in Fig. 8.

In addition, from Fig. 6 we see that in the QAF and the QS
phases, the nearest-neighbor spin-spin correlation 〈si±1/2 · Si〉
is essentially uniform in the thermodynamic limit if not already
in finite-size systems, while in the CD phase 〈si±1/2 · Si〉 has
a significant two-unit-cell oscillation centered at the oxygen
site, which is consistent with the symmetry of the CD order.
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FIG. 6. (Color online) The nearest-neighbor nickel-oxygen spin-
spin correlation 〈si±1/2 · Si〉 for the characteristic points in parameter
space used in Table I, with system size N = 48. The two correlations
are combined and the index i now labels the bond center of the
correlation. The positions of the nickel and the oxygen sites are
indicated by the labels above the curves. The inset shows finite-size
scaling of the oscillation amplitude in 〈si±1/2 · Si〉 for J = 0.4 and
J ′ = 1.6 using a second-order polynomial fit.

Note that the oscillations of 〈si±1/2 · Si〉 in the CD phase have
larger amplitudes than the corresponding oscillations in 〈ni〉,
and that in general |〈si±1/2 · Si〉| increases as the parameters
(J/t,J ′/t) increase.

To shed further light into the phases we obtained in
DMRG, we show the charge gap � and central charge c for
characteristic parameter values within each phase in Table I
(computational details are illustrated in Figs. 9 and 10). From
the table it can be seen that all phases have finite charge gaps.
Moreover, the values of the central charges suggest that one
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FIG. 7. (Color online) The development of charge-density wave
order parameter δnCD = 〈nN/2〉 − 〈nN/2+1〉 as J ′/t increases while
J/t = 0.8 is fixed. The inset (a) shows 〈ni〉 as function of unit-
cell index i for (black, filled square symbols) J/t = 0.8 and J ′/t =
2.4 and (blue, filled diamond symbols) J/t = 0.8 and J ′/t = 4.0,
with system size N = 96. The inset (b) shows examples of finite-
size scaling of δnCD at different J ′ using second-order polynomial
functions.
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FIG. 8. (Color online) Locations of the singularity (resp. peak)
in the ferromagnetic and QS phases (resp. CD phase) as function of
J ′/t when J/t = 2.0 is fixed.

bosonic degree of freedom remains gapless in the QAF phase,
while no degree of freedom remains gapless in the CD and
F phase. Unfortunately, owing to the large (twelve) internal
dimension of the unit cell, we cannot accurately determine the
central charge of the QS phase.30

IV. MEAN-FIELD KONDO PICTURE AND EFFECTIVE
SPIN-1/2 MODEL

In this section we introduce a slave-particle representation
of the nickel spin, from which we obtain a quadratic mean-field
theory (Sec. IV A). Assuming the simplest form of mean-field
Ansatz, this leads to a spectrum that contains a flat band exactly
at the Fermi energy. We then show that such a degeneracy can
be lifted using second-order degenerate perturbation theory,
which allows us to map the present problem to an effective
spin-1/2 model (Sec. IV B). We then carry out an explicit
calculation of the parameters in the effective spin-1/2 model,
and compare a quantum mean-field analysis of the phase
diagram of this model with the DMRG results (Sec. IV C).
Our main result in this section is the quantum mean-field phase
diagram of Fig. 16.

A. Slave-particle representation and its mean field

To interpret the DMRG results, it is useful to introduce a
mean-field picture. Specifically, we want mean-field “parent
states” that are translationally and spin SU (2) invariant, under
which the quasi-long-range orders and/or the broken sym-
metries manifest as singularities in the correlation functions
in the resulting low-energy effective theory. To this end, we
consider the following Schwinger fermion representation, in

TABLE I. Charge gap � and central charge c for characteristic
parameter values within each phase of the phase diagram Fig. 4.
For the CD phase, “com.” indicates peak in 〈Sz

kS
z
−k〉 at k = π while

“incom.” indicates peak in 〈Sz
kS

z
−k〉 at incommensurate wave vectors.

J/t 0.4 0.8 1.6 2.4 2.0
J ′/t 1.6 4.0 4.0 4.0 0.4
Phase QAF CD (com.) CD (incom.) QS F
�/t 1.14 0.96 0.68 0.21 1.96
c 0.8 0 0 Unknown 0
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FIG. 9. (Color online) Finite-size scaling of the charge gap for
the characteristic points in parameter space used in Table I.

which the spin-1 operators Si are written in terms of four
species of spinons fiaα , carrying both orbital indices (indicated
by lowercase Latin characters) and spin indices (indicated by
lowercase Greek characters):

Si =
∑
a=1,2

f
†
iaα

σ αβ

2
fiaβ, (2)

in which the spinons are subjected to the constraints∑
a

f
†
iaαfiaα = 2,

∑
a,b

f
†
iaατ abfibα = 0, (3)

(recall that the spin indices are implicitly summed), in which
τ is the vector of the Pauli sigma matrices that act on the
orbital indices.20 For brevity, henceforth we shall assume that
the orbital indices are appropriately summed.

Substituting the Schwinger fermion representation into the
t-J -J ′ Hamiltonian results in four-fermion terms that are
schematically of the form c†f †f c, which can be handled by
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Ln( ')

FIG. 10. (Color online) The lower branch of the von Neumann
entanglement entropies, obtained from the lower envelope of the
full entropy shown in the inset, as a function of the conformally
transformed length (Ref. 17) �′ = (L/π ) sin(π�/L) of the subsystem
A for the characteristic points in parameter space in Table I (L is the
system size). The solid lines are linear fits using SA = c

6 ln �′, which
determines the central charge c.
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a Hartree-Fock-type decomposition. Together, this leads us to
the following mean-field Hamiltonian:

H MF = −μe

∑
i

c
†
i+1/2,αci+1/2,α − t

∑
i

c
†
i+1/2,αci−1/2,α + H.c.

+
∑

i

Qac
†
i+1/2,αfiaα + Q′

ac
†
i−1/2,αfiaα + H.c.

+
∑

i

λf
†
iaαfiaα + N · f

†
iaατ abfibα, (4)

in which the Lagrange multipliers λ and N are introduced to
enforce the constraints Eq. (3) on average, and the orbital-
dependent Kondo hoppings Qa and Q′

a are to be determined
by the minimization of the mean-field energy; i.e., Qa and Q′

a

are to be chosen such that 〈HtJJ ′ 〉MF is minimized (here 〈·〉MF

denotes expectation value with respect to the mean-field state
obtained from H MF).

Notice that λ, N, Qa , and Q′
a carry no site indices since

translation invariance is assumed. Similarly, Qa and Q′
a carry

no spin indices since spin SU (2) invariance is assumed. By the
same token, we also neglect the “magnetic” mean-field terms
(f †

iaασ αβfiaβ ) and (c†i±1/2,ασ αβci∓1/2,β ) in H MF.
It should be remarked that H MF can alternatively be derived

in a Feynman path-integral approach in which fluctuating
λi and Ni are introduced as auxiliary fields to the partition
function, such that the constraints are enforced exactly upon
functional integration. Similarly, in this approach Qia and Q′

ia

are introduced as fluctuating bosonic Hubbard-Stratonovich
fields that upon functional integration reproduce the appropri-
ate four-fermion terms.21–23 In this context, λi and Ni can also
be interpreted as the temporal components of a U (1) and an
SU (2) gauge field, respectively. Together, they corresponds to
the U (2) ∼ U (1) × SU (2) gauge redundancy fiaα → Uab

i fibα

of the spinons. However, at this stage we shall take the simpler
picture and treat the variables λ, N, Qa , and Q′

a as parameters
of H MF.

B. Mean-field Ansätze, flat bands, and degenerate
perturbation theory

While in general Qa and Q′
a are distinct, it is natural to first

consider scenarios in which Qa = Q′
a , where we can make

use of the U (2) gauge redundancy to set Qa = Q′
a = r[1,0]T ,

with r � 0. Then, the constraints Eq. (3) require N ∝ ẑ and
thus the last line of Eq. (4) can be rewritten as

∑
ia λaf

†
iaαfiaα ,

in which λa = λ + (−1)a+1Nz.
From this, it can be seen that for this class of Ansätze, the f2

spinons are completely decoupled from the other fermions in
the system and enter H MF only through a (species-dependent)
chemical potential. Consequently, the f2 spinons form a flat
band in the mean-field spectrum, which has to be half-filled in
order to satisfy the constraints. The two remaining species of
fermions form a Kondo band insulator, in which the band
gap is controlled by the ratio r/t that increases as J,J ′
increases. Moreover, it is easily checked that for this class
of Ansätze 〈HJ 〉 = 〈HJ ′ 〉, and hence the mean-field spectrum
depends only on (J + J ′)/t . Carrying out the minimization
of 〈HtJJ ′ 〉MF with respect to r , we obtain r/t as a function
of (J + J ′)/t as shown in Fig. 11. The mean-field spectra for
Ansätze with different r/t are plotted in Fig. 12. Note that in the

FIG. 11. Dependence of r/t on (J + J ′)/t in the class of mean-
field Ansätze defined by Qa = Q′

a = r[1,0]T .

mean-field picture |〈si±1/2 · Si〉| ∝ ∑
a |〈f †

iaαci±1/2,α〉|2 ∼ r2.
Hence, the trend of increasing r/t as (J + J ′)/t increases is
consistent with the trend in DMRG (cf. Fig. 6).

Physically, the half-filled flat band can be interpreted as
free S = 1/2 spins on the nickel sites that arise from Kondo
underscreening, in which the electrons screen out only half
of the nickel spin on each site (see Fig. 13 for illustration).
This degeneracy among the f2 spinons is expected to be lifted
when effects beyond mean field are considered. To capture
such effects, we perform second-order degenerate perturbation
theory on the mean-field state, in which the perturbation is
provided by the residual interaction Hres = JHJ + J ′HJ ′ −
r
∑

i(c
†
i+1/2,αfi1α + c

†
i−1/2,αfi1α + H.c.). Notice that the con-

straint terms do not enter Hres, since the constraints will still
be satisfied after the degeneracy of the f2 spinons are lifted.

As usual, from second-order degenerate perturbation theory
we obtain an effective Hamiltonian H eff , given by

H eff = PGHresPX

1

E0 − H MF
PXHresPG, (5)

where PG is the projection operator onto the degenerate
ground-state manifold, PX = 1 − PG, and E0 is the unper-
turbed mean-field ground-state energy.

Since the f2 spinons are decoupled from the electrons and
the f1 spinons, the eigenstates |ψ〉 of H MF can be written as
product states of the form |ψ〉cf1 ⊗ |ψ〉f2 , and correspondingly
the Hilbert space decomposes as H = Hcf1 ⊗ Hf2 . In this
language, the ground-state manifold of H MF is {|G〉cf1} ⊗ Hf2 ,

(a) J = J = 4t
3

(b) J = J = 8t
3

(c) J = J = 16t
3

FIG. 12. Typical mean-field spectra obtained from H MF for the
class of mean-field Ansätze defined by Qa = Q′

a = r[1,0]T . Note
that the degenerate flat bands at zero energy are not plotted.
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· · ·· · ·

FIG. 13. (Color online) Schematic of the Kondo underscreening,
in which the electrons screen out only half of the nickel spin on each
nickel site, leaving behind an unscreened spin-1/2.

where |G〉cf1 is a unique non-degenerate state. Moreover, it can
be checked that Hres factors into the following form:

Hres =
( ∑

i

Ti · f
†
i2α

σ αβ

2
f2iβ

)
+ · · · , (6)

where Ti and the “. . .” operates within Hcf1 . Explicitly,

Ti = J

(
c
†
i+1/2,α

σ αβ

2
ci+1/2,β + c

†
i−1/2,α

σ αβ

2
ci−1/2,β

)

+ J ′
(

c
†
i+1/2,α

σ αβ

2
ci−1/2,β + c

†
i−1/2,α

σ αβ

2
ci+1/2,β

)
.

(7)

Using Eq. (6), H eff becomes

H eff =
∑
i<j

Jij

(
f

†
i2α

σ αβ

2
fi2β

)
·
(

f
†
j2α′

σ α′β ′

2
fj2β ′

)
+ const.

=
∑
i<j

Jijsi · sj + const., (8)

where from translation symmetry it follows that Jij de-
pends only on |xi − xj |; i.e., Jij = J|i−j |. Recognizing
f

†
i2α

σ αβ

2 fi2β ≡ si as a spin-1/2, the second-order degenerate
perturbation theory thus maps the t-J -J ′ model to an effective
spin-1/2 model.

Classically, the ground state of the effective spin model
Eq. (8) is a spiral state given by sj = cos(xj θ )n̂1 + sin(xj θ )n̂2,
where n̂1 and n̂2 are two orthogonal unit vectors and θ is chosen
to minimize the classical energy. However, in 1d, this classical
order is expected to be destroyed by quantum fluctuations.

C. Explicit calculation of Ji j and comparison
with DMRG results

Returning to the present case, Jij in Eq. (8) is given
schematically by

Jij =
(∑

X

cf1〈G|T z
i
†|X〉cf1 cf1〈X|T z

j |G〉cf1

E0 − EX

)
+ c.c., (9)

in which |X〉cf1 are particle-hole excitations from |G〉cf1 , with
EX its energy. Note that we have made use of the spin SU (2)
symmetry to evaluate Jij using only the z component of Ti .

To write down Jij more explicitly, we Fourier-transform
and diagonalize the part of H MF that involves only the electron
and the f1 spinon, H MF

cf1
, as follows:

H MF
cf1

=
∑

k

∑
μ=±

εμkγ
†
μkαγμkα, (10)

where by convention ε+,k > ε−,k . We also define the eigen-
vectors u

aμ

k via the following:[
ckα

fkα

]
=

[
uc+

k uc−
k

u
f +
k u

f −
k

][
γ+,k,α

γ−,k,α

]
. (11)

Plugging in, we arrive at

Jij = 1

N2

∑
k,q

cos[(k − q)(xj − xi)]

ε−,k − ε+,q

∣∣uc−
k uc+

q

∗∣∣2

× |J (1 + eiqe−ik) + J ′(eiq + e−ik)|2, (12)

where N is the number of unit cells.
Importantly, the J and J ′ terms in the above equation carry

different Fourier phase factors. Thus, even though the ratio
r/t in the mean-field Ansätze depends only on (J + J ′)/t ,
different effective spin-1/2 models can still be realized for
different J and J ′ having the same sum.

Calculating Jij from Eq. (12) up to the eighth nearest
neighbor, we obtain the classical phase diagrams as shown in
Fig. 14, in which we distinguish between the antiferromagnetic
phase (θ = π ), the ferromagnetic phase (θ = 0), and the spiral
phase (0 < θ < π ). We also plot the classical spiral angle θ

as function of J ′/t along the line cut J ′ = 2J and J ′ = 4J in
Fig. 15.

From these figures it can be seen that even though the
details of the phase boundary and the spiral angles are
modified as further-neighbor interactions are included, the
truncation at J2 still captures the qualitative aspects of the
model reasonably well. Hence, we now focus on the results
obtained within this truncation and map the parameters J1

and J2 we obtained to the known results from the quantum
J1-J2 model, in which the ground state is known to exhibit
QAF order when J1 � |J2| � 0, and undergoes a quantum
phase transition into a dimer state at J2/J1 ≈ 0.241. Moreover,
as J2 further increases beyond J2/J1 = 1/2, the peak in the
spin-spin correlation originally located at k = π also splits into
two incommensurate peaks at k = π ± δ, with δ increasing as
ϑ = tan−1(J2/J1) increases. Eventually, the system becomes
ferromagnetic when ϑ > tan−1(−1/4).14,15,24,25

The results of our mapping from the (J/t,J ′/t) parameter
space to the J1-J2 model are shown in Fig. 16. Note that in the
present case, there are two inequivalent oxygen sites when the
effective spin-1/2 model is in the dimer phase, as illustrated
in Fig. 17. From this, it can be seen that the broken symmetry
in the dimer phase of the effective spin-1/2 model is precisely
the broken symmetry one would expect from the period-2
CD phase of the DMRG phase diagram (Fig. 4). Moreover,
even though there is no charge degree of freedom left in the
effective spin-1/2 model, charge order is likely to occur when
further effects beyond mean field, e.g., the back-reaction of
the dimer order onto the Kondo band insulator formed by the
electron and the f1 spinon, are taken into account. Given that
the charge deviation in the DMRG CD phase is small, this
scenario in which charge order is derived from the ordering
of the spin degree of freedom is consistent with the DMRG
results. Therefore, we identify the dimer phase of the effective
spin-1/2 model with the DMRG CD phase.

Note that in this picture, the charge order in the CD phase
is driven by the spin order. Thus, we expect a larger oscillation
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(a) Truncated at J2

(b) Truncated at J8

FIG. 14. (Color online) Classical phase diagram of the effective
spin-1/2 model Eq. (8) truncated at (a) J2 and (b) J8. Here filled gray
triangular symbols indicate the ferromagnetic phase, filled orange
circular symbols indicate the antiferromagnetic phase, and unfilled
teal square symbols indicate the incommensurate spiral phase. The
lower left corners of the phase diagrams are excluded because the gap
in H MF is too small to accurately calculate Jij .

(a) J = 4J (b) J = 2J

FIG. 15. (Color online) Classical spiral angle θ of the effective
spin-1/2 model Eq. (8) as function of J ′ along the line cut (a) J ′ = 4J

and (b) J ′ = 2J . The red, solid (blue, dashed) curve with filled circle
(cross) symbols corresponds to truncation at J2 (J8).

FIG. 16. (Color online) Quantum phase diagram of the effective
spin-1/2 model Eq. (8), with Jij computed from Eq. (12) and
truncated at J2. Here filled gray triangular symbols indicate the
ferromagnetic phase, filled orange circular symbols indicate the
quasi-long-range antiferromagnetic phase, unfilled green square
symbols indicate the dimer phase with spin-spin correlation peaked at
k = π , and unfilled violet diamond symbols indicate the dimer phase
with spin-spin correlation peaked at an incommensurate wave vector.
The lower left corner of the phase diagram is excluded because the
gap in H MF is too small to accurately calculate Jij .

in spin correlations than in charge density, consistent with the
DMRG results (cf. Figs. 6 and 7). We also remark that the
amplitude oscillation in 〈c†i±1/2f1i〉 ∼ √|〈si±1/2 · Si〉| cannot
be obtained at the mean-field level even if we extend the unit
cell to two nickel and two oxygen per cell and allow r to
vary from bond to bond, as long as the degeneracy of the f2

spinons is left untouched. This highlights the importance of the
dimer formation in the effective spin-1/2 model as the driving
mechanism of the oxygen-centered dimer/CD order.

Combining, we see that Fig. 16 captures the essential
aspects of the DMRG phase diagram well, except for the
QS phase. This is particularly so if one allows for separate
renormalizations of J and J ′ from their bare values, which
one can easily imagine to have occurred when various effects
that we have neglected are taken into account.

V. MEAN-FIELD IDENTIFICATION AND EFFECTIVE
THEORY OF THE QS PHASE

In this section we focus on the QS phase by extending
the class of the mean-field Ansätze considered. Somewhat
surprisingly, the flat bands persist even after the class of
Ansätze under consideration is extended (Sec. V A). To
lift such degeneracies without excessive complications, we
introduce an additional slave-fermion hopping parameter t ′,

· · ·· · ·

O OO

FIG. 17. (Color online) Illustration of the two inequivalent
oxygen sites when the effective spin-1/2 model is in the dimer phase.
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from which we obtain modified mean-field spectra in which
for generic parameters a single band crosses the Fermi energy
at two pairs of Fermi points (Sec. V B). Next we bosonize
the effective theory obtained from the low-energy fermions
(Sec. V C) and search for an appropriate combination of
effective interactions that best reproduces the salient features
of the QS phase (Sec. V D).

Our main result in this section is the identification of the
QS phase with a bosonized theory that has one spin and one
charge (“C1S1”) mode, in which there is a finite charge gap
and the spin field carries an incommensurate wave vector. This
interacting bosonized theory is proximate to the spin Bose
metal state proposed by Sheng, Motrunich, and Fisher.9

A. Extended mean-field Ansätze

Since the class mean-field Ansätze restricted to Qa = Q′
a

fail to describe the QS phase, we now consider general Ansätze
in which Qa and Q′

a may be unequal. As in the preceding
section, the U (2) gauge redundancy fiaα → Uab

i fibα can be
used to reduce the number of parameters needed to specify all
physically distinct Ansätze. To begin with, it is clear that we
can fix Qa = r[1,0]T , with r � 0. However, such choice does
not exhaust the U (2) gauge redundancy as we can still redefine
[fia1,fia2]T → [fia1,e

iχi fia2]T without changing the form of
Qa . This remaining U (1) gauge redundancy allows us to fix
the form of Q′

a to be Q′
a = r ′eiφ[cos θ, sin θ ]T , where r ′ � 0,

φ ∈ [0,2π ) and θ ∈ [0,π ).
In addition, we may further demand the mean-field Hamil-

tonian to be time-reversal invariant, which fixes φ = 0 or π

in the above expression for Q′
a . Absorbing the sign coming

from φ = π into θ , it thus suffices to take Qa = r[1,0]T and
Q′

a = r ′[cos θ, sin θ ]T , with r,r ′ � 0 and θ ∈ [0,2π ).
In Fig. 18 we plot the results obtained from minimizing

〈HtJJ ′ 〉MF with respect to the general Ansätze parametrized
above. From the figure it can be seen that states with Qa �= Q′

a

emerge only for J � 2J ′. Comparing Fig. 18 with Figs. 14
and 16, it can be seen that the region for which Qa �= Q′

a is
deep inside the ferromagnetic phase of the effective spin-1/2
model and does not fit well to the location of the QS phase in
the DMRG phase diagram Fig. 4.

However, it should be noted that the low-energy gauge
structure of an Ansatz with θ �= 0 is markedly different from
that of an Ansatz with θ = 0. Specifically, when θ = 0, the
gauge transformation [fia1,fia2]T → [fia1,e

iχi fia2]T leaves

FIG. 18. (Color online) Results from energy minimization for
the general mean-field Ansätze. Here unfilled blue circle (red cross)
indicates states for which (

∑
a |〈f †

iaαci+1/2,α〉 − 〈f †
iaαci−1/2,α〉|2)1/2 �

(>) 0.05.

the mean-field Ansatz invariant, implying that a U (1) gauge
field remains gapless in the low-energy effective theory. In
contrast, when θ �= 0 there is no continuous transformation
that leaves the Ansatz invariant; hence no gapless gauge field
remains in the low-energy effective theory. Because of this
difference, it is conceivable that the energies of mean-field
Ansätze with θ �= 0 may renormalize differently from those
with θ = 0, thus opening the possibility that Ansätze with
θ �= 0 may become favorable in the region of parameter space
that corresponds to the QS phase. In what follows, we shall
stop worrying about the mean-field energetics and instead
focus on whether the low-energy effective theory obtained
from mean-field Ansätze with θ �= 0 can account for the QS
phase.

In the Schwinger fermion decomposition Eq. (2), 〈Si ·
si±1/2〉 ∝ ∑

a |〈f †
iaαci±1/2,α〉|2. Thus, setting r �= r ′ in the

mean-field Ansatz will result in a mean-field state for which
〈Si · si+1/2〉 �= 〈Si · si−1/2〉. However, from DMRG we know
that within numerical accuracy 〈Si · si+1/2〉 = 〈Si · si−1/2〉 (cf.
Fig. 6). Hence, in the remaining we shall consider only the
case in which r = r ′ but θ �= 0.

For illustration, we pick r/t = 1.812, which when θ =
0 corresponds to, e.g., J = 8/3 and J ′ = 16/3, from our
previous calculation (a region which from Fig. 16 one might
expect to be proximate to the QS phase), and introduce an ad
hoc value of θ = π/8 to the mean-field ansatz. The original
mean-field spectrum with θ = 0 and the modified spectrum
with θ = π/8 are shown in Figs. 19(a) and 19(b), respectively.
Somewhat surprisingly, the mean-field spectrum is largely
unaffected by the change of θ . In particular, the flat band
at Fermi energy continues to appear in the spectrum.31 This
behavior seems to be a generic feature for this class of Ansätze;
i.e., this flat band exists for general values of θ and r/t .
However, importantly, the compositions of the eigenstates in
this flat band are modified, as can be inferred from the coloring
of the band in Fig. 19(b) (color online), which shows that the
states near k = ±π have large wave function overlaps with the
f1 spinons.

B. Lifting the degeneracies in the class of extended
mean-field Ansätze

As before, effects beyond mean field are expected to lift
the degeneracy of the flat band. In principle, one can apply
degenerate perturbation theory as presented in the preceding
section, but with two significant modifications: First, the
zero-energy mean-field single-particle state γi0α on site i now
has to be constructed from Wannier orbitals. Since both species
of spinons have nonzero Kondo hoppings, γi0α is no longer
locally conserved. Consequently, terms of the form γ

†
i0αγj0α

(i �= j ) can appear in the effective Hamiltonian. Second, the
constraints enforcing terms λ and N in H MF now depend
crucially on the precise manner in which the degeneracy is
lifted, and hence cannot be left out in the residual interaction
Hres. On the technical level, it is challenging to perform
the perturbative calculation with the two modifications stated
above.

In addition, on the conceptual level, in the QS state
singularities appear in both the nickel and electron spin-spin
correlations, the latter of which are absent in the other
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(a) t = 0, θ = 0 (b) t = 0, θ = π/8

(c) t = −0.1t, θ = π/8 (d) Color scheme

(e) t = −0.1t, θ = π/8, details of the second band

FIG. 19. (Color online) Band structures obtained from H MF with
the additional f -hopping term t ′, for r/t = r ′/t = 1.812 and various
values of t ′ and θ . The colors encode the eigenvector composition
of the bands, with red ∼ck , green ∼f1k , and blue ∼f2k [the detailed
color scheme is shown in (d)]. Panel (e) also defines the convention
for the bosonization treatment.

phases in the DMRG phase diagram. Such singularities in
the electron spin-spin correlation cannot be easily captured
in the perturbation theory, since the Wannier orbitals γi0α are
predominately spinon in character.

Therefore, here we take an alternative approach in
which an additional ad hoc spinon-spinon hopping term
t ′

∑
i(f

†
i,a,αfi+1,a,α + H.c.) is introduced into the mean-field

Hamiltonian H MF. Such term can be thought of as arising
from the spinon mean-field decomposition of the nearest-
neighbor spin-spin interaction term Jijsi · sj generated by
the degenerate perturbation.

In Figs. 19(c) and 19(e) we plot the resulting mean-field
spectrum for t ′ = −0.1t < 0, with r/t = 1.812 and θ = π/8
as before, from which we see that the resulting spectrum now
has four Fermi crossings at incommensurate wave vectors.
This four-crossing spectrum appears to be a general feature
of the mean-field Ansätze when θ �= 0 and t ′ �= 0; i.e., they
exist as long as θ �= 0 and t ′ is small but nonzero. However,

the Fermi velocities at the four crossing points will be inverted
when t ′ > 0. More importantly, the resulting crossings will
be predominately spinon in character, while for t ′ < 0 the
crossings at k = ±kF2 near ±π will have a nonnegligible
electron weight [for the parameters used in Figs. 19(c)
and 19(e), |〈ckF2α|γkF20α〉| ≈ 0.3]. We shall therefore take
t ′ < 0 and consider the bosonized theory of the archetypal
band structure shown in Fig. 19(e). Apart from the minor
complication arising from the matrix elements resulting from
the compositions of the low-energy fermions in terms of
the original (c,f1,f2) fermions, the bosonized theory of the
four-Fermi-crossings band structure shown in Fig. 19(e) has
been studied extensively by Sheng, Motrunich, and Fisher
in the context of the so-called spin Bose metal (SBM).9 In
their construction, a two-leg triangular strip (zigzag chain)
is considered, in which a four-site ring exchange term K is
added to the J1-J2 Heisenberg model. In that model, the SBM
phase, characterized in part by singularities at incommensurate
wave vectors in various correlation functions, is observed for
a range of J2/J1 when K is sufficiently large (at minimum
K/J1 � 0.2). Here, we shall adopt most of their notations
and keep our account down to the essentials by referring our
readers to Ref. 9 for details.

C. Bosonization of the mean-field theory

As in Ref. 9, we define eight species of low-energy fermions
ψPaα , one for each Fermi point, in which P = R/L ≡ +/−
labels the two propagation directions, α = ↑,↓ labels the two
spins, and a = 1,2 corresponds the two Fermi wave vectors
kFa . The two Fermi wave vectors are chosen such that fermions
at kFa are right moving, and that |kF2| > |kF1| [see Fig. 19(e)
for illustration]. Note that the Fermi wave vectors satisfy the
relation kF1 + kF2 = −π/2.

Next, we bosonize the fermions as follows:

ψPaα ∝ ηaαei(ϕaα+Pθaα ), (13)

in which ϕaα and θaα are bosonic fields that satisfy
[ϕaα(x),ϕbβ (x ′)] = [θaα(x),θbβ (x ′)] = 0 and [ϕaα(x),θbβ (x ′)]=
iπδabδαβ�(x − x ′) [here �(x) is the Heaviside step function
with regularization �(0) = 1/2], while ηaα are the Klein
factors satisfying {ηaα,ηbβ} = 2δabδαβ .

As in Ref. 9, in addition to the above {1 ↑,1 ↓,2 ↑,2 ↓}
basis for the bosonized fields, it is useful to introduce also the
{1ρ,1σ,2ρ,2σ } basis and {ρ +,ρ −,σ +,σ−} basis, defined
by the following canonical transformations of the θ fields and
ϕ fields (the transformations for the ϕ fields are given by
replacing every θ with ϕ in the equations below):

θaρ = θa↑ + θa↓√
2

, θaσ = θa↑ − θa↓√
2

(a = 1,2); (14)

θμ+ = θ1μ + θ2μ√
2

, θμ− = θ1μ − θ2μ√
2

(μ = ρ,σ ). (15)

As customary, we shall refer to fields with index ρ as the
charge fields and fields with index σ as the spin fields.

At the level of fermion bilinears, the wave vectors ±2kFa

(a = 1,2), ±π/2, and ±(kF1 − kF2) are brought out, and the
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corresponding bosonized expressions for the nickel spin Sk

and the electron density δnk are given by

Sx
2kFa

∝ e
√

2iθaρ sin(
√

2ϕaσ ), (16)

S
y

2kFa
∝ e

√
2iθaρ cos(

√
2ϕaσ ), (17)

Sz
2kFa

∝ e
√

2iθaρ sin(
√

2θaσ ), (18)

δn2kFa
∝ e

√
2iθaρ cos(

√
2θaσ ); (19)

Sx
π/2 ∝ (· · ·)e−iθρ+eiθσ− sin(ϕρ− − ϕσ+)

+ (· · ·)e−iθρ+e−iθσ− sin(ϕρ− + ϕσ+), (20)

S
y

π/2 ∝ (· · ·)e−iθρ+eiθσ− cos(ϕρ− − ϕσ+)

+ (· · ·)e−iθρ+e−iθσ− cos(ϕρ− + ϕσ+), (21)

Sz
π/2 ∝ (· · ·)e−iθρ+eiθσ+ sin(ϕρ− − ϕσ−)

+ (· · ·)e−iθρ+e−iθσ+ sin(ϕρ− + ϕσ−), (22)

δnπ/2 ∝ (· · ·)e−iθρ+eiθσ+ sin(ϕρ− − ϕσ−)

+ (· · ·)e−iθρ+e−iθσ+ sin(ϕρ− + ϕσ−); (23)

Sx
kF1−kF2

∝ (· · ·)eiθρ−e−iθσ+ sin(ϕρ− − ϕσ+)

+ (· · ·)eiθρ−eiθσ+ sin(ϕρ− + ϕσ+), (24)

S
y

kF1−kF2
∝ (· · ·)eiθρ−e−iθσ+ cos(ϕρ− − ϕσ+)

+ (· · ·)eiθρ−eiθσ+ cos(ϕρ− + ϕσ+), (25)

Sz
kF1−kF2

∝ (· · ·)eiθρ−e−iθσ− sin(ϕρ− − ϕσ−)

+ (· · ·)eiθρ+eiθσ− sin(ϕρ− + ϕσ−), (26)

δnkF1−kF2 ∝ (· · ·)eiθρ+e−iθσ− sin(ϕρ− − ϕσ−)

+ (· · ·)eiθρ+eiθσ− sin(ϕρ− + ϕσ−), (27)

where (· · ·) represents various numerical and Klein factors,
which are not important for our purposes. Also, the bosonized
expression for electron spin sk is essentially the same as that
of the nickel spin except for changes in the numerical factors
in the (· · ·) due to matrix elements. As usual, O−k = O†

k for
Sk , sk , and δnk .

In the absence of any residual interactions, the Lagrangian
density for the bosonized fields is given by

L0 = 1

2π

∑
aα

(
1

va

(∂τ θaα)2 + va(∂xθaα)2

)
. (28)

It is important to remark that in our case the bosonized fields
are the only low-energy degree of freedom remaining in the
theory. More precisely, recall that λ and N should properly be
thought of as fluctuating fictitious gauge fields, and that Qa and
Q′

a should properly be thought of as fluctuating bosonic fields.
However, for the mean-field Ansätze that we now consider, all
fictitious gauge fields have been gapped through the Anderson-
Higgs mechanism, with various transverse components of Qa

and Q′
a fluctuations serving as the corresponding Goldstone

boson that are “eaten up.” The remaining fluctuations of Qa

and Q′
a are gapped, upon integrating out high-energy degrees

of freedom if not at the bare level. Therefore, contrary to Ref. 9,
there is no a priori reason for θρ+ to be pinned.

D. Interactions in the bosonized theory

In the absence of any pinnings of the bosonic fields, the
low-energy effective theory described by Eq. (28) is a c = 4
Luttinger liquid. However, as the DMRG results show a charge
gap in QS phase, we shall accept as an empirical matter that
θρ+ is pinned, which can happen if the eight-fermion in-
teraction ψ

†
R1↑ψ

†
R1↓ψ

†
R2↑ψ

†
R1↓ψL1↑ψL1↓ψL2↑ψL2↓ + H.c. ∝

cos(4θρ+) is sufficiently strong. Moreover, since there are
two incommensurate Fermi wave vectors kF1 and kF2, the
correlation functions in such theory are expected to exhibit
singularities at multiple incommensurate wave vectors that are
integer combinations of kF1 and kF2, as well as at wave vectors
that are integer multiples of π/2 = −(kF1 − kF2). Since the
correlation functions obtained in DMRG (Fig. 5) show promi-
nent singularities at merely one pair of incommensurate wave
vectors k = π ± δ, the free theory given by Eq. (28) seems
to be inconsistent with DMRG. Such inconsistency could in
principle be accounted for if all the undesired singularities are
suppressed by nonuniversal amplitudes. However, it is more
natural to consider scenarios in which some of the bosonic
fields are pinned by interaction.

As explained in Ref. 9, assuming that chiral interactions
lead only to velocity renormalizations, the four-fermion
interactions schematically consists of three parts, Lint−4 =
W + Vρ + Vσ . In terms of the bosonized fields, these read

W = cos(2ϕρ−)
[
4w

ρ

12(cos(2ϕσ−) − �̂ cos(2θσ−))

−wσ
12(cos(2ϕσ−) + �̂ cos(2θσ−) + 2�̂ cos(2θσ+))

]
,

(29)

Vρ =
∑

a

λ
ρ
aa

2π2
((∂xθaρ)2 − (∂xϕaρ)2)

+ λ
ρ

12

π2
((∂xθ1ρ)(∂xθ2ρ) − (∂xϕ1ρ)(∂xϕ2ρ)), (30)

Vσ =
∑

a

λσ
aa cos(2

√
2θaσ ) + 2λσ

12�̂ cos(2θσ+) cos(2ϕσ−)

+
∑

a

λσ
aa

8π2
((∂xϕaσ )2 − (∂xθaσ )2)

+ λσ
12

4π2
((∂xϕ1σ )(∂xϕ2σ ) − (∂xθ1σ )(∂xθ2σ )), (31)

where w
μ

12 and λ
μ

ab (a,b = 1,2 and a � b; μ = ρ,σ ) are
parameters that control the interaction strength. Moreover, as
in Ref. 9, the parameters λσ

ab satisfy the following RG equations
at the one-loop level:

dλσ
aa

d�
= −

(
λσ

aa

)2

2πva

,
dλσ

12

d�
= −

(
λσ

12

)2

π (v1 + v2)
, (32)

such that the only instabilities caused by Vσ arise from λσ
ab < 0.

Note that even after incorporating Vρ , the resulting La-
grangian density L′ = L0 + Vρ remains quadratic. However,
scaling dimensions of operators that contain the charge fields
will be modified. As a result, the terms in W will in general
acquire scaling dimensions that are different from their bare
value. Hence, we can consider separately the case in which
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W contains the most relevant terms and the case in which Vσ

contains the most relevant terms.
If W contains the most relevant terms, then in general ϕρ−

is pinned, and correspondingly θρ− is completely disordered.
From the bosonization formula and from the definition of θρ−
it can be checked that the bosonized expression of a product of
fermions does not contain θρ− if and only if it carries momenta
that are multiples of π/2. Consequently, the pinning of ϕρ−
will kill the singularities of any correlation functions located
at incommensurate wave vectors. This is inconsistent with
the DMRG results. Hence, we conclude that in the bosonized
theory of the QS phase W must be irrelevant.

Next we consider the case in which Vσ contains marginally
relevant terms. In the simplest scenarios, the terms with which
λσ

ab < 0 contain mutually commuting variables. There are four
such cases:

(i) λσ
11 > 0, λσ

22 > 0, λσ
12 < 0;

(ii) λσ
11 < 0, λσ

22 < 0, λσ
12 > 0;

(iii) λσ
11 < 0, λσ

22 > 0, λσ
12 > 0;

(iv) λσ
11 > 0, λσ

22 < 0, λσ
12 > 0.

In cases (i) and (ii) two mutually commuting spin fields
are pinned. Consequently, all spin-spin correlations must be
void of singularities. Thus, these cases are inconsistent with
the DMRG results. In cases (iii) and (iv), one spin field
associated with wave vector kFa is pinned. Thus, at the level
of fermion bilinears, the only singularities in the spin-spin
correlations that survive are the ones at ±2kFa′ , where a′ �= a

[cf. Eqs. (16)–(27)]. These singularities can be identified with
the singularities present in DMRG QS phase. Moreover, recall
that in the DMRG results there are broad peaks in the nickel
(but not electron) spin-spin correlation located roughly at wave
vectors π ± ksing, where ±ksing are the wave vectors of which
the prominent singularities are seen. These broad peaks can be
interpreted as the remnants of the singularities at ±2kFa after
the associated spin field is pinned. Recall that the Fermi points
at ±kF2 have nonnegligible electron character while the Fermi
points at ±kF1 are predominately spinon in character. Since
in the DMRG the singularities are observed in both the nickel
and the electron spin-spin correlation, while the broad peaks
are observed only in the nickel spin-spin correlation, we may
identify the state obtained in DMRG with scenario (iv). Since
we also assume that θρ+ is pinned, the resulting state would be
a c = 2 Luttinger liquid with one charge mode and one spin
mode (“C1S1”).

One potential objection to this identification is that it
implies that the electron density-density correlation function
〈δn−kδnk〉 possesses singularities at ±2kF1 and ±2kF2, which
are not observed. However, it is known that when the
charge fluctuation is reintroduced to the SBM, as the system
approaches the Mott transition and when it is in the insulating
phase, the nonuniversal amplitudes in the density-density
correlation can be sufficiently small that in numerics it can
appear smooth.26 The situation that we found in the DMRG
study of the present model may correspond to such a situation.

More generally, one might pose the question of whether
the DMRG results can be explained by other combinations of
pinned fields, which can arise from higher order interactions.
Here we briefly consider such possibilities.

Since we assume that θρ+ is pinned, the {ρ+, ρ−} basis is
the appropriate basis to describe the charge sector. The only

question left for the charge sector is whether ϕρ− or θρ− can
be pinned. As already mentioned, the pinning of ϕρ− would
kill all correlations at incommensurate wave vectors and hence
is inconsistent with the DMRG results. As for θρ−, one can
check that it carries an incommensurate momentum kF1 − kF2

(i.e., θρ− → θρ− + kF1 − kF2 under the translation i → i +
1), and hence cannot be pinned. Thus, unless one appeals to
vanishingly small nonuniversal amplitudes, exactly one spin
degree of freedom must be gapped to produce the single pair of
prominent singularities in the spin-spin correlation observed
in DMRG. Therefore, we are left with a “C1S1” case similar
to the one we analyzed, except that the pinned spin field may
more generally be a linear combination of the 1σ and 2σ fields.

VI. DISCUSSION AND CONCLUSIONS

In this paper we considered a 1d underscreened Kondo
chain with alternating spin-1 and electron sites, which in
addition to the familiar electron hopping and Kondo term also
contained a spin-dependent hopping term. We analyzed the
model numerically using DMRG and found that the phase
diagram consists of a ferromagnetic (F) phase, a quasi-long-
range antiferromagnetic (QAF) phase, a charge-density (CD)
ordered phase, and, importantly, a quasi-long-range spiral (QS)
phase, in which singularities in the spin-spin correlation are
observed at incommensurate wave vectors. The phases in our
model can in principle be distinguished experimentally by
many experimental means. For example, the charge order can
be observed by x-ray scattering, or by its effect on the crystal
structure. The magnetic order is readily probed by neutron
scattering, susceptibility measurements, and nuclear magnetic
resonance.

To interpret the DMRG results, we introduced a slave-
particle representation of the spin-1 spins, from which we
obtained a mean-field Hamiltonian. Taking the simplest class
of mean-field Ansätze and making use of second-order
degenerate perturbation theory, we were able to map the
mean-field Hamiltonian to an effective spin-1/2 model, from
which follows a quantum mean-field phase diagram that
resembles the one obtained from DMRG, with the exception
of the QS phase. We then focused on the QS phase, by
extending our class of mean-field Ansätze and considering
the bosonized interacting theory that arose from them. By
considering various possible interactions at the four-fermion
level, we argued that the QS phase is best reproduced by an
interacting bosonized theory with one charge and one spin
degree of freedom (“C1S1”), in which the spin fields carry
an incommensurate wave vector. This particular interacting
bosonized theory is proximate to the spin Bose metal phase
proposed by Sheng, Motrunich, and Fisher.9 Consequently, our
results point to a possible route to obtain gapless quantum spin
liquids with singularities at incommensurate wave vectors that
does not involve the “ring-exchange” terms,9,27 and might pave
the way for realizing such states in 1d as well as constructing
similar states in higher dimensions.

While we believe that the current work presents a coherent
and comprehensive analysis of the system we considered, we
also mention a few opportunities for further study. On the
numerical side, it is clearly desirable to obtain the central
charge of the QS phase from DMRG and check against
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the c = 2 prediction from mean-field theory. This requires
either further computation resources or improvements of the
methodology. Moreover, it would be helpful to check the
projected energetics of the mean-field Ansätze we proposed,
and compare them against the energy obtained from DMRG,
via variation Monte Carlo (VMC). Unfortunately, because
the slave-particle representation we used requires additional
constraints on top of the local conservation of spinon number
[cf. Eq. (3)], such a calculation is challenging. On the analytic
side, it would be desirable to develop a method that can directly
obtain the CD phase from the slave-particle representation
without appealing to an indirectly argument based on sym-
metry. We also note that there is an alternative slave-particle
representation of the spin-1 spins in the literature,28,29 and
it would be good to check whether results similar to those
we obtained can be derived in this alternative slave-particle
representation.

Finally, we return to the nickel valence controversy that
motivated this work, which in the simplest case can be
considered as a three-dimensional (3d) extension of the
present model. From our mean-field analysis and from general
arguments on Kondo problems we are quite convinced that the
low-energy physics of such 3d model will still be described
by an effective spin-1/2 model, which tends to exhibit static
spin orders. However, the dimer phase in the effective spin-1/2
model, which we argue to correspond to the oxygen-centered

charge-density order, is a special feature in 1d, and is unlikely
to persist to 3d. In any case, our DMRG phase diagram shows
no sign of nickel-centered charge order (or its symmetry-
equivalent order—we do not insist upon any significant charge
accumulation), which has been interpreted as due to local
Kondo singlet formation. Thus, the direct extension of our
model to 3d is unlikely to exhibit any charge order, whether
it is oxygen-centered or nickel-centered. In our opinion this
points to the necessity of including explicit coupling to oxygen
motions in the mechanism of charge ordering. It would be
interesting to explore this directly by explicitly including
lattice degrees of freedom in a model similar to ours. We
leave this topic for future study.
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