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Compass models provide insights into the properties of Mott-insulating materials that host bond-dependent
anisotropic interactions between their pseudospin degrees of freedom. In this article, we explore the classical
and quantum ground state properties of one such model relevant to certain layered perovskite materials akin to
Ba2IrO4 – namely, the Heisenberg-compass model on the square lattice. We first investigate the ground state
phase diagram of this model using classical Monte Carlo simulations. These reveal that the low temperature
classical phase diagram is divided into six different classes of long-range ordered phases, including four phases
that exhibit an order by disorder selection and two phases that are stabilized energetically. This model admits a
special duality transformation, known as the Klein duality, conveniently allowing to map one region of coupling
parameters onto another and constraining the phase diagram, and which we exploit in our study. From the
analysis of the zero-point energy and the free energy of the spin waves, we find that order by quantum disorder
at zero temperature and order by thermal disorder select the same orderings as those found from classical
Monte Carlo simulations. We further investigate the quantum ground states of this model using numerical exact
diagonalization on small clusters by exploiting the translational symmetry of the square lattice. We obtain a
ground state phase diagram bearing close resemblance to that found from the classical analysis.

I. INTRODUCTION

Lattice models with effective spin-spin interactions offer a
fundamental framework for understanding the intriguing be-
havior of Mott insulating magnets [1, 2]. A notable subclass of
these models is the family of compass models that have gained
significant attention in the context of strongly correlated tran-
sition metal (TM) oxides [3]. These models are character-
ized by spatially direction-dependent interactions among their
spins. The details of such bond-dependent interactions depend
strongly on the symmetries of the underlying system. A well-
studied compass model is the Kitaev spin model on the hon-
eycomb lattice [4] which involves three Ising-like spin-spin
compass couplings, namely x − x, y − y, or z − z, depending
upon the bond orientations of the underlying lattice. This is in
contrast to the isotropic Heisenberg interaction or anisotropic
interactions that take the same form on every bond in the lat-
tice. Compass interactions are often competing in nature or
frustrated, which can lead to a continuous accidental classi-
cal ground state degeneracy that is not due to any symme-
try of the Hamiltonian. Typically, such degeneracy is not ro-
bust to thermal or quantum fluctuations at low energies, and
is consequently lifted by these fluctuations, resulting in the
stabilization of a magnetically long-range ordered state. This
phenomenon is referred to as “order by disorder” [5–7]. Con-
versely, in certain systems, frustration can prevent ordering
down to absolute zero temperature, giving rise to unconven-
tional phases like classical [8, 9] and quantum [4, 10, 11] spin
liquids. Compass models thus provide a natural platform for
exploring the interplay between conventional notions of order
and more exotic disordered states that can arise in frustrated
magnets.

Compass models have garnered significant interest due to
their applicability across various domains of condensed matter
physics. Initially, they were introduced to elucidate a range of
physical phenomena in insulating TM oxides with weak spin-
orbit coupling, wherein the orbital degrees of freedom of the

TM ions couple with each other via compass interactions [12–
17]. Over time, compass interactions have also been identified
in materials with large spin-orbit coupling, where the interac-
tions are not between the orbitals, but rather between pseu-
dospin degrees of freedom [18]. For instance, there has been a
surge of efforts in realizing the Kitaev model in real materials
with 4d and 5d TM ions, including α-RuCl3 and iridates [18–
21]. Compass models have also been found relevant in other
contexts, such as p + ip superconducting Josephson-junction
arrays [22, 23], ultracold atoms trapped in optical lattices [24],
settings to safeguard qubits against unwanted decoherence in
quantum computing [25], higher-form subsystem symmetry
breaking [26], dimensional reduction [27], and strongly inter-
acting topological insulators [28].

Further, exploring material manifestations of compass in-
teractions, individual layers of certain iridium-based per-
ovskites, such as Ba2IrO4 and Tb-substituted Sr2IrO4, offer
potential realizations of compass interactions on the square
lattice [29–31]. For example, the Hamiltonian of a single
layer in Ba2IrO4 is thought to possess dominant antiferromag-
netic Heisenberg and sub-dominant compass exchange [29].
Unlike in its cousin Sr2IrO4 [18], the IrO4 octahedra in
Ba2IrO4 do not undergo a staggered rotation [32] and the
Dzyaloshinskii-Moriya (DM) interaction is forbidden. While
Ref. [29] has provided a detailed analysis of a microscopic
model of Ba2IrO4, the complete ground state phase diagram
of the in-plane Hamiltonian as a function of Heisenberg and
compass interactions has, to the best of our knowledge, not
yet been explored. Note that previous theoretical studies have
considered more general Heisenberg-compass models on the
square lattice [33, 34], wherein the compass couplings on the
x (horizontal) and y (vertical) bonds of the square lattice were
not constrained to be identical. These investigations have
revealed a rich quantum phase diagram with multiple phase
transitions. However, the symmetric compass interaction limit
(equal compass coupling on the x and y bonds) in the pres-
ence of isotropic Heisenberg exchange, which is relevant to
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the Ba2IrO4 layers, has not been examined in detail. Thus,
investigating the Heisenberg-compass model on the square
lattice with symmetric compass interactions is crucial to pro-
vide a foundation for understanding the behavior of these per-
ovskites as well as similar spin-orbit coupled magnets on the
square lattice that may be synthesized in the future.

In this article, we determine the low-temperature classical
and quantum phases of the symmetric compass model on the
square lattice in the presence of an additional Heisenberg ex-
change interaction, hereafter referred to as the “Heisenberg-
compass model”. Using classical Monte Carlo simula-
tions and spin-wave analysis, we first establish the classical
phase diagram of this model. Our analysis reveals six dis-
tinct regimes in the Heisenberg-compass coupling-parameter
space, each corresponding to a magnetically ordered phase.
These phases are pair-wise related via a unitary transforma-
tion – the so-called “Klein duality” familiar from generalized
Kitaev models [35]. Of particular interest to the present work
are four long-range ordered phases that we identify as aris-
ing from order by disorder (ObD) induced by thermal fluctu-
ations, while the remaining two result from conventional en-
ergetic selection. Next, we consider the quantum Heisenberg-
compass model. We find that in the semi-classical large spin
limit, the free energy of quantum spin waves predicts a quan-
tum ObD selection at zero temperature that matches the one
found from classical thermal ObD in all four revelant cou-
pling parameter regimes. This persists to finite temperature,
with combined quantum and thermal fluctuations preferring
the same states at low, but non-zero temperatures. Finally, we
tackle the S = 1/2 limit relevant for real materials. Using ex-
act diagonalization, we determine the quantum ground states
at zero temperature, obtaining a qualitatively similar phase di-
agram to the classical and semi-classical limit, including the
selection of the same states as from semi-classical quantum
ObD.

II. MODEL

We consider the Heisenberg-compass model on the square
lattice defined by the Hamiltonian

H =
∑

r

[
J
∑
δ=x,y

Sr · Sr+δ + K
(
S x

r S x
r+x + S yr S yr+y

)]
, (1)

where Sr ≡ (S x
r , S

y
r , S z

r) is a quantum spin-1/2 operator at site
r, and δ = x, y denotes the nearest-neighbor (horizontal and
vertical) bond with isotropic Heisenberg and anisotropic com-
pass couplings J and K, respectively, as shown in Fig. 1(a).
Since there are two coupling parameters (J,K) in Eq. (1), we
parameterize them using an angle ξ ∈ [0, 2π) with J ≡ cos ξ
and K ≡ sin ξ, setting

√
J2 + K2 ≡ 1 as the unit of energy with

ℏ ≡ kB ≡ 1. In other words, the interaction strengths are taken
in such a way that they live on a circle of unit radius, as shown
in Fig. 2. While the dynamics of ObD from thermal fluc-
tuations in the classical ferromagnetic Heisenberg-compass
model has recently been discussed [36], the full phase dia-
gram of this model has not yet been explored.

FIG. 1. The Heisenberg-compass model on the square lattice. (a)
Each nearest-neighbor bond corresponds to an isotropic Heisenberg
coupling, J, between the spins connected by the bond. Furthermore,
there is a bond-dependent compass coupling, K, operating between
the x components of spins connected by the horizontal (magenta)
bonds and between the y components of spins connected by the ver-
tical (green) bonds. (b) The square lattice is schematically shown
with (grey) clusters of four spins. The Klein duality transformation
of Eq. 2 applies identically on each cluster.

There are a number of important and well-understood limits
in the phase diagram of the model. First, at ξ = 0 and ξ = π,
the Hamiltonian [Eq. (1)] reduces to the well-known Heisen-
berg antiferromagnet (J = 1) and ferromagnet (J = −1), re-
spectively, as marked by ‘HAF’ and ‘HF’ in Fig. 2. At these
two special points, the model possesses a global SU(2) sym-
metry. However, away from these points with a non-zero com-
pass term (K , 0), the Hamiltonian no longer has any contin-
uous spin-rotation symmetry. Nevertheless, it still possesses
a discrete C4 symmetry about the ẑ axis, which lies normal to
the x̂ − ŷ plane, and C2 symmetries about the x̂ and ŷ axes.
In the special cases of ξ = π/2 and 3π/2, one has the well-
studied antiferromagnetic and ferromagnetic “pure” compass
model, respectively [3, 17, 37, 38]. These two special points
are related to one another by the following symmetry; a π-
rotation of the spins about the ẑ axis on one of the two sublat-
tices of the square lattice maps K → −K. We therefore refer
to both of the ferromagnetic and antiferromagnetic compass
models as ‘C’ in Fig. 2. At point C, extra discrete symme-
tries (special to that compass point) leads to a sub-extensive
ground state degeneracy (∼ 2L+1 for an L × L square lattice).
In the classical limit at point C, in addition to this symme-
try enforced sub-extensive ground state degeneracy, there are
accidentally degenerate ground states forming a continuous
O(2) manifold [37]. Interestingly, thermal or quantum fluctu-
ations lift the accidental degeneracy, thus yielding an ObD of
colinear states having long-range directional/nematic ordering
along the director x̂ or ŷ [37].

III. KLEIN DUALITY

We now discuss the existence of a special unitary transfor-
mation within the Heisenberg-compass model [Eq. (1)] that
strongly constrains the structure of its phase diagram. This
transformation is the so-called Klein duality [35], that maps
one set of coupling parameters (J,K) onto another set (J′,K′).
If the properties of the Heisenberg-compass model are known
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at (J,K), then by using this transformation, one is able to de-
termine its properties at (J′,K′). This duality has been pre-
viously discussed in the context of Heisenberg-Kitaev mod-
els on the triangular [35, 39, 40], honeycomb [19, 35, 41,
42], kagome [35], hyperkagome [35], cubic [39, 43, 44],
FCC [35], and pyrochlore lattices [35].

This transformation consists of a four sublattice operation;
we divide the square lattice into clusters of four spins, as
shown in Fig. 1(b) and apply the following transformation
identically on each of the clusters:

S′r ≡ 1 Sr = (S x
r , S

y
r , S

z
r),

S′r+x ≡ Rπx̂ Sr+x = (S x
r+x, −S yr+x, −S z

r+x),

S′r+y ≡ Rπŷ Sr+y = (−S x
r+y, S yr+y, −S z

r+y),

S′r+x+y ≡ Rπẑ Sr+x+y = (−S x
r+x+y, −S yr+x+y, S z

r+x+y), (2)

where 1 is the identity rotation and Rπx̂, Rπ
ŷ
, and Rπẑ denote

π-rotations about the x̂, ŷ, and ẑ axes, respectively. The rota-
tions,

{
1,Rπx̂,R

π
ŷ
,Rπẑ

}
form an Abelian group, isomorphic to

Z2 × Z2, known as the Klein four-group [45]. Hence, the
transformation in Eq. (2) is referred to as the Klein transfor-
mation. Under this transformation, the Hamiltonian [Eq. (1)]
maps back to itself, but with modified coupling parameters:
J → J′ ≡ −J and K → K′ ≡ (2J + K). Accounting for the
change in energy scale, the mapping of the coupling parame-
ters takes the following form,

(J,K)→ (J′,K′) ≡ 1√
J2 + (2J + K)2

(
− J, 2J + K

)
, (3)

where the prefactor 1/
√

J2 + (2J + K)2 takes into account the
renormalization of the overall energy scale from the parame-
ter change in (J,K) → (J′,K′). This transformation exactly
maps the properties of the Heisenberg-compass model from
one region of the (J,K) parameter space to another one, al-
lowing us to restrict our focus to a smaller subset of the phase
diagram and recovering the properties of the model within the
remaining regions by an application of the duality.

To visualize this mapping, we connect each pair of points
in the parameter space that are dual to one another by dashed
lines in Fig. 2. We note from Eq. (3) that when (2J + K) =
0, the anisotropic Heisenberg-compass model reduces to the
isotropic Heisenberg model (K′ = 0). We find that (2J +K) =
0 admits two solutions: ξ = π− tan−1(2) and 2π− tan−1(2). As
shown in Fig. 2, ξ = π − tan−1(2) is dual to the pure Heisen-
berg antiferromagnet (HAF) and labelled as HAF*. Similarly,
ξ = 2π − tan−1(2) is dual to the pure Heisenberg ferromagnet
(HF) and marked as HF*. The Klein duality also reveals that
the pure compass points (ξ = π/2, 3π/2) are their self-dual,
marked as C*, i.e., they map back to themselves (see Fig. 2).

The entire parameter space is naturally divided into six
regimes; Regime-I (HAF – C), Regime-II (C – HAF*),
Regime-III (HAF* – HF), Regime-IV (HF – C), Regime-V
(C – HF*), and Regime-VI (HF* – HAF). Using the above
duality mapping, as depicted in Fig. 2, it is clear that Regime-
II, V, and VI are dual to Regime-I, IV, and III, respectively.
For simplicity, we shall restrict ourselves only to Regime-I,

ξ
J

K

I

II

III

IV
V

VI

HAF
HF

HF∗

HAF∗
C/C∗

C/C∗

FIG. 2. Low temperature classical phase diagram of the Heisenberg-
compass model. The whole parameter space is divided into six dif-
ferent regimes (labeled I through VI and marked by different colored
arcs) separated by boundaries marked by different markers. Dashed
lines connect the points on the circle that are related by the Klein
duality. The points J = +1 and J = −1 correspond to the Heisen-
berg antiferromagnet (HAF) and ferromagnet (HF), respectively. The
K = ±1 points are the pure compass (C) limits, and by Klein dual-
ity, they are their self-duals (C = C*). The two pure compass limits
(ξ = π/2 and 3π/2) are also related by an exact symmetry (see text).
The points, ξ = π− tan−1(2) (marked as HAF*) and ξ = 2π− tan−1(2)
(marked as HF*) are dual to HAF and HF, respectively. Six regimes
exhibit six different ordering phases at low temperatures. To illus-
trate each phase, a corresponding representative configuration out of
its several symmetry related copies is shown in the same color as
that of its arc. This phase diagram has been confirmed by perform-
ing classical Monte Carlo simulations down to low temperatures.

III, and IV, obtaining the properties of Regime-II, V and VI
via the Klein duality.

IV. CLASSICAL GROUND STATES

We start by considering the model of Eq. (1) classically
where Sr is a three component vector of fixed length S at site
r. For this classical model, we can consider a further transfor-
mation given by

Sr → (−1)r Sr, (4)

that flips all the spins on one of the two sublattices of the
square lattice. This sublattice spin-flip transformation keeps
the classical Hamiltonian [Eq. (1)] invariant if the coupling
parameters (J,K) are changed to (−J,−K), i.e., ξ → ξ + π.
Similar to the Klein duality [Eq. (2)], this transformation
[Eq. (4)] maps different regions of the coupling parameter



4

space onto each other, specifically, relating Region-I, Region-
II, and Region-III to Regime-IV, Regime-V, and Regime-VI,
respectively. However, it is important to note that revers-
ing the sign of a spin is not a canonical transformation as
the Poisson bracket relation for the spin components is not
preserved: {S µr , S νr} = ϵµνδS δr changes to {S µr , S νr} = −ϵµνδS δr .
Consequently, all the properties of the model with parame-
ter set (J,K) are not directly determined by the model with
parameter set (−J,−K) resulting from the spin-flip transfor-
mation. For instance, the dynamical properties of the trans-
formed Hamiltonian must be different since the equations of
motion are not preserved under the sublattice spin-flip trans-
formation [Eq. (4)]. This is in contrast to the canonical Klein
duality transformation [Eq. (2)] where all model properties
can be mapped exactly between two parameter sets. Never-
theless, as far as the thermodynamic properties of the classi-
cal model are concerned, the sublattice spin-flip transforma-
tion [Eq. (4)] provides an exact mapping between the param-
eter sets as the partition function remains unchanged under
this transformation. This includes determining the classical
ground states and the low-temperature phases of the model,
thereby further constraining the classical phase diagram, in
addition to the constraints imposed by the Klein duality. Con-
sequently, for the analysis of the classical phase diagram, we
may focus on Regime-I and Regime-III, while employing the
transformations of Eq. (2) and Eq. (4) to determine the prop-
erties of the model in the remaining portions of the phase dia-
gram.

We begin our analysis using the Luttinger-Tisza
method [35, 46, 47] to obtain the candidate classical
ground states for a given phase angle ξ. The details of the
calculations are presented in Appendix A. We find that the
Luttinger-Tisza method yields (spin length) normalizable
states across the full phase diagram, providing the exact
classical ground states for all values of ξ.

• Regime-I: The ground states consist of Néel configurations
in the x̂ − ŷ plane with an arbitrary Néel direction. These
configurations are given by

Sr = (−1)rS (cos ϕ x̂ + sin ϕ ŷ), (5)

where ϕ ∈ [0, 2π). Thus, for any ξ in Regime-I, the classical
ground states form a continuous O(2) manifold of in-plane
Néel states parametrized by angle ϕ. These ground states are
accidentally degenerate since continuous spin-rotations do
not leave the anisotropic compass term of the Hamiltonian
of Eq. (1) invariant.

• Regime-II: Since this regime is dual to Regime-I, the ground
states for any ξ in Regime-II can be found from the Néel
states [Eq. (5)] using the Klein duality transformation in
Eq. (2). These are given by the following four-site magnetic
order,

Sr = S (+ cos ϕ x̂ + sin ϕ ŷ),
Sr+x = S (− cos ϕ x̂ + sin ϕ ŷ),
Sr+y = S (+ cos ϕ x̂ − sin ϕ ŷ) = −Sr+x,

Sr+x+y = S (− cos ϕ x̂ − sin ϕ ŷ) = −Sr. (6)

As in Regime-I, these ground states are accidentally de-
generate as well, forming again an O(2) manifold. These
ground states become colinear stripe configurations for ϕ =
0, π/2, π, 3π/2 [see Eq. (6)]. For example, the states with
ϕ = 0 or π can be described as ferromagnetically-ordered
spins aligned parallel or antiparallel to x̂ within each column
of the square lattice, with neighbouring columns ordered an-
tiferromagnetically. Thus, for these states, the spins are ei-
ther aligned along x̂ or −x̂, with the ordering wave vector or
the ‘stripe direction’ along x̂. On the other hand, the states
for ϕ = π/2 or 3π/2 are ferromagnetically-ordered rows of
spins aligned along ŷ or −ŷ, but arranged antiferromagneti-
cally across neighboring rows. Here, the spins are oriented
either along ŷ or −ŷ, with the ordering wave vector or the
stripe direction along ŷ. Thus, these four stripe states have
spins aligned either parallel or antiparallel to the stripe di-
rections. Hereafter, we shall refer to these colinear stripe
states [ϕ = 0, π/2, π, 3π/2 in Eq. (6)] simply as “Stripe-∥”.

• Regime-III: We find that there are only two discrete ground
states which correspond to ferromagnetic configurations
along the ± ẑ directions. Unlike Regime-I and II, these
ground states are not accidentally degenerate; they are re-
lated by an exact global C2 symmetry about the x̂ or ŷ axes.

• Regime-IV: Ground states in Regime-I and Regime-IV are
related by the sublattice spin-flip transformation given in
Eq. (4). Specifically, the ground states in Regime-I, the Néel
states in the x̂ − ŷ plane, map to the uniform ferromagnetic
configurations in the x̂ − ŷ plane. Thus, the ground states in
Regime-IV correspond to a ferromagnet with the magneti-
zation along any arbitrary direction in the x̂ − ŷ plane,

Sr = S (cos ϕ x̂ + sin ϕ ŷ). (7)

We thus have in Regime-IV an O(2) manifold of acciden-
tally degenerate classical ground states, as we found in
Regime-I.

• Regime-V: This regime is Klein dual to Regime-IV with the
classical ground states in Regime-V found from those in
Regime-IV. Using the Klein duality transformation [Eq. (2)]
on the ferromagnetic states described in Eq. (7), we ob-
tain the following four site unit cell magnetic ordering for
Regime-V,

Sr = S (+ cos ϕ x̂ + sin ϕ ŷ),
Sr+x = S (+ cos ϕ x̂ − sin ϕ ŷ),
Sr+y = S (− cos ϕ x̂ + sin ϕ ŷ) = −Sr+x,

Sr+x+y = S (− cos ϕ x̂ − sin ϕ ŷ) = −Sr. (8)

Being Klein dual to the O(2) degenerate states of Regime-
IV, these ground states are thus also accidentally degenerate
and form an O(2) manifold. Equation (8) reduces to col-
inear stripe states for ϕ = 0, π/2, π, 3π/2. The states with
ϕ = 0, π have ferromagnetically-ordered spins aligned along
x̂ or −x̂ within each row of the square lattice, with neigh-
boring rows arranged antiferromagnetically and form stripes
whose direction is along ŷ. The states with ϕ = π/2, 3π/2
have ferromagnetically-ordered spins aligned along ŷ or
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−ŷ within each column, but ordered antiferromagnetically
across neighboring columns. These two configurations thus
have a stripe direction that is along x̂. In contrast to the
stripe states in Regime-II [Stripe-∥] where the spins are ei-
ther parallel or antiparallel to the stripe directions, here in
Regime-V, in the four stripe states the spins are perpendic-
ular to the stripe directions. We shall refer to these colinear
stripe states [ϕ = 0, π/2, π, 3π/2 in Eq. (8)] as “Stripe-⊥”.
Note that these states can also be found by applying the sub-
lattice spin-flip transformation in Eq. (4) on Stripe-∥.

• Regime-VI: The ground states in this regime can be found
from those of its dual Regime-III. The Klein duality trans-
formation [Eq. (2)] on the two ferromagnetic ground states
along ± ẑ directions [ground states in Regime-III] provides
two discrete Néel states along the ± ẑ directions. Again,
these ground states can also be found from the ground states
in Regime-III by applying the sublattice spin-flip transfor-
mation of Eq. (4). As with Regime-III, these Néel states are
also not accidentally degenerate, being related to one an-
other by an exact global C2 symmetry about the x̂ or ŷ axis.

To summarize, we have found the classical ground states of
the Hamiltonian in Eq. (1) for all ξ using the Luttinger-Tisza
method, exploiting the Klein duality [Eq. (2)] and the sub-
lattice spin-flip [Eq. (4)] relation between various parameter
regimes. For any value of ξ in Regime-I, II, IV, and V, the
ground states are accidentally degenerate, forming a continu-
ous O(2) manifold. However, for any ξ in Regime-III and VI,
we have only two discrete ground states that are related by an
exact C2 symmetry about the x̂ or ŷ axis. Six representative
classical spin configurations corresponding to the six param-
eter regimes are shown in Fig. 2. Since there exists a con-
tinuous accidental ground state degeneracy for four parameter
regimes and this degeneracy is not a consequence of any ex-
act symmetry of the Hamiltonian, one must next determine
whether quantum or thermal fluctuations can lift this degener-
acy through ObD, as discussed in the Introduction.

V. LOW-TEMPERATURE CLASSICAL PHASE DIAGRAM

We have discussed the classical ground states of the
Heisenberg-compass model [Eq. (1)] in Sec. IV and shown
that there exists accidental degeneracy in four of the parame-
ter regimes. Given this, we next explore the question of ObD
from thermal fluctuations in those regimes. In doing so, we
determine the low-temperature classical phase diagram for the
full parameter space.

A. Order by disorder from thermal fluctuations

To determine ObD from thermal fluctuations at low temper-
atures for a given ξ, we consider a classical spin-wave expan-
sion about each of the ordered ground states for that ξ, and in-
vestigate how the spin-wave excitations contribute to the free
energy of the system [48–51]. We assume that we are at suffi-
ciently low temperature such that there are only small fluc-

tuations (spin-wave excitations) about a particular classical
ground state, i.e. a harmonic expansion is valid. The acciden-
tally degenerate ground state for which the free energy of the
harmonic spin wave fluctuations is minimal is the one selected
by ObD at low temperatures. This (classical) free energy can
alternatively be obtained from the quantum non-interacting or
linear spin-wave theory, as shown in Ref. [50]. If, for a given
ξ, the linear spin-wave spectrum at wave vector q about a clas-
sical ordered state parametrized by angle ϕ is ωq(ϕ), the clas-
sical free energy is given by F(ϕ) = T

∑
q lnωq(ϕ) [50] where

ωq(ϕ) implicitly depends on ξ. A quantum linear spin-wave
analysis using the Holstein-Primakoff formalism [1] is dis-
cussed in Appendix B, deriving the frequencies of the linear
spin-wave modes in the different parameter regimes. This al-
ternative route to compute the free energy of the classical spin
waves is convenient as we shall reuse the results of the quan-
tum linear spin wave analysis in the context of ObD selection
from quantum fluctuations in Sec. VI A and Sec. VI B.

In Regime-I, II, IV, and V, where there is an accidental O(2)
degeneracy among the classical ground states, the spin-wave
free energy F(ϕ) depends on the ground state (parametrized by
ϕ) about which the spin-wave analysis is performed. Minima
are found only about certain discrete states out of the contin-
uous O(2) manifold of states in all of the above four regimes,
a demonstration of ObD selection. For any ξ in Regime-I, the
free energy is minimized over four Néel states along ±x̂,±ŷ,
corresponding to ϕ = 0, π/2, π, 3π/2 in Eq. (5). Note that
these four states are related to one another by a C4 rotation
about the ẑ axis, a consequence of the exact C4 symmetry of
the Hamiltonian in Eq. (1). Now, applying the duality trans-
formation [Eq. (2)] to the states selected by ObD in Regime-I
maps them to stripe states along ±x̂,±ŷ directions correspond-
ing to ϕ = 0, π/2, π, 3π/2 in Eq. (6) [Stripe-∥], giving the
corresponding ObD selected states for any ξ in Regime-II. In
Regime-III, the low-temperature classical phase is described
by two discrete ground states – the ferromagnetic states along
± ẑ directions. The Klein duality between Regime-III and VI
demands that the phase in Regime-VI is given by two Néel
states along ± ẑ directions. Finally, in Regime-IV, the classi-
cal spin-wave free-energy, F(ϕ), is minimized and gives ObD
selection for the four ferromagnetic states along ±x̂,±ŷ direc-
tions corresponding to ϕ = 0, π/2, π, 3π/2 in Eq. (7). By the
Klein duality, in Regime-V, ObD selects four stripe states cor-
responding to ϕ = 0, π/2, π, 3π/2 in Eq. (8) [Stripe-⊥]. The
above analysis determines the complete low-temperature clas-
sical phase diagram of the Heisenberg-compass model on the
square lattice. A representative state of the symmetry related
classical phases selected by ObD for each of the four param-
eter regimes with accidential degeneracy is illustrated beside
each of the corresponding regimes in Fig. 2.

B. Classical Monte Carlo

To confirm the low-temperature classical phases found
from the analysis of spin-wave free energy in Sec. V A, we
perform classical Monte Carlo (MC) simulations over a range
of temperature spanning from well-below the ordering tem-
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Regime
Classical

ground states
Relevant

magnetization
Order

parameter
Low-temperature

phase
Ordering

mechanism

I
x̂ − ŷ Néel
[Eq. (5)] mI ≡ 1

N

∑
r(−1)m+nSr OI ≡

√
(mx

I )2 + (myI )2 cos(4ϕI)
Néel state

along ±x̂, ±ŷ ObD

II
States

in Eq. (6) mII ≡ 1
N

∑
r

(
(−1)mS x

r , (−1)nS yr , 0
)

OII ≡
√

(mx
II)

2 + (myII)
2 cos(4ϕII) Stripe-∥ ObD

III
Ferromagnet

along ± ẑ mIII ≡ 1
N

∑
r Sr OIII ≡ |mz

III|
Ferromagnet

along ± ẑ Energetic

IV
x̂ − ŷ ferromagnet

[Eq. (7)] mIV ≡ mIII OIV ≡
√

(mx
IV)2 + (myIV)2 cos(4ϕIV)

Ferromagnet
along ±x̂, ±ŷ ObD

V
States

in Eq. (8) mV ≡ 1
N

∑
r

(
(−1)nS x

r , (−1)mS yr , 0
)

OV ≡
√

(mx
V)2 + (myV)2 cos(4ϕV) Stripe-⊥ ObD

VI
Néel state
along ± ẑ mVI ≡ mI OVI ≡ |mz

VI|
Néel state
along ± ẑ Energetic

TABLE I. Summarizing the key results of the classical Heisenberg-compass model [Eq. (1)]. We take r ≡ mx̂ + nŷ where m and n assume
values 0, 1, · · · , (L − 1) for an L × L square lattice. The angle ϕi in the order parameter is defined as: ϕi ≡ tan−1(myi /m

x
i ) where i = I, II, IV, V.
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FIG. 3. Results obtained using classical Monte Carlo simulations. (a) Specific heat per spin, Cv/N, and the thermal average of the order
parameter, ⟨OI⟩ vs temperature, T for ξ = 1.03 in Regime-I, (b) Cv/N vs T and ⟨OIII⟩ vs T for ξ = 2.53 in Regime-III, and (c) Cv/N vs T and
⟨OIV⟩ vs T for ξ = 4.15 in Regime-IV for L = 16. MC error bars on Cv and the order parameters are found to be smaller than the marker size.
(d) Critical temperature, Tc vs the phase angle, ξ found from the location of the peak of the specific heat for each ξ for L = 16 and L = 20.
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perature, to well-above. To expose the orderings at low tem-
peratures, we define the following order parameters for each
of the six phases:

• Regime-I: The order parameter depends on the staggered
magnetization mI ≡ (mx

I ,m
y
I ,m

z
I) ≡ (1/N)

∑
r(−1)rSr. We

define the order parameter, OI ≡
√

(mx
I )2 + (myI )2 cos(4ϕI)

where ϕI ≡ tan−1(myI /m
x
I ), giving OI = 1 in the Néel states

along the ±x̂,±ŷ directions since
√

(mx
I )2 + (myI )2 = 1 and

cos(4ϕI) = 1 for those states. However, if there were no
selection of states at low temperatures and all the classical
ground states were equally likely, then the thermal average
of the order parameter, ⟨OI⟩ would vanish since the average
of cos(4ϕI) over the full range of ϕI ∈ [0, 2π) is zero.

• Regime-II: We define a different magnetization, motivated
from Eq. (6), mII ≡ 1

N
∑

r

(
(−1)mS x

r , (−1)nS yr , 0
)

with r =
m x + n y and m, n take values 0, 1, · · · , (L − 1) for an
L × L square lattice. We then define the order parameter,

OII ≡
√

(mx
II)

2 + (myII)
2 cos(4ϕII) where ϕII ≡ tan−1(myII/m

x
II).

Note that for ObD selected states in this regime, discussed
in Sec. V A, one has OII = 1.

• Regime-III: The order parameter is the absolute value of the
z-component of the net magnetization, OIII ≡ |(1/N)

∑
r S z

r|,
giving OIII = 1 for ferromagnetic states aligned along the
± ẑ directions.

• Regime-IV: We define the order parameter to be, OIV ≡√
(mx

IV)2 + (myIV)2 cos(4ϕIV), where mx
IV and myIV are respec-

tively the x and y components of the net magnetization per
spin and ϕIV ≡ tan−1(myIV/m

x
IV). The ObD selected states

in this regime, i.e., the ferromagnetic configurations along

±x̂,±ŷ yields
√

(mx
IV)2 + (myIV)2 = 1 and cos(4ϕIV) = 1,

resulting in OIV = 1.
• Regime-V: We define the order parameter in the same vein

as we did for Regime-II. With the magnetization defined as
mV ≡ 1

N
∑

r

(
(−1)nS x

r , (−1)mS yr , 0
)

with r = mx̂ + nŷ. The

order parameter OV ≡
√

(mx
V)2 + (myV)2 cos(4ϕV) where

ϕV ≡ tan−1(myV/m
x
V), giving OV = 1 for the ObD selected

states in this regime, discussed in Sec. V A.
• Regime-VI: The order parameter is the z component of the

staggered magnetization, OVI ≡ |(1/N)
∑

r(−1)rS z
r|, charac-

terizing the Néel states along the ± ẑ directions.

These order parameters along with the regime-relevant
magnetizations are summarized in Table I. Based on the low-
temperature classical expansion described in Sec. V A, we ex-
pect that the thermal average of the order parameters defined
for a particular regime should approach unity in that regime
(and approach zero elsewhere) as we move towards zero tem-
perature. We measure the thermal averages of these order pa-
rameters using classical MC simulations at low temperatures.
The simulations are performed on a square lattice with N = L2

sites assuming periodic boundary conditions. The spins un-
der consideration are the three component (Heisenberg) spins

of unit length. The MC simulations are carried out based on
an adaptive single-site Metropolis algorithm [52], combined
with over-relaxation moves [53]. We define a Monte Carlo
sweep at a certain temperature as a combination of adaptive
single-site Metropolis moves successively at N randomly cho-
sen sites with each followed by over-relaxation moves consec-
utively at 5 randomly chosen sites.

The full range of the phase angle ξ ∈ [0, 2π) is divided
into 105 equally spaced points. For each value of ξ, we start
with a random spin configuration at high temperature, T =
7 and decrease to T = 2 in temperature decrements of size
δT = 0.1, followed by a slower cooling down in steps of size
δT = 0.01 to a base temperature, T = 0.01. In this way of
cooling the system, at each temperature, we perform 5 × 104

Monte Carlo sweeps for equilibration and then, measure the
thermal averages of the above six order parameters as well
as the specific heat, Cv [54], over 106 MC samples, skipping
three MC sweeps in between consecutive measurements.

To estimate the error bars on Cv and on the order parame-
ters, the 106 measurements are divided into 25 blocks and then
resampled using the standard bootstrap method [55]. Roughly
O(103) bootstrap samples were generated from these blocks to
estimate the statistical errors. We perform the simulations for
L = 16 and find that as the temperature approaches zero, the
thermal average of the order parameter defined for a particular
regime goes to unity in that regime [56]. We present the spe-
cific heat vs temperature and thermal average of the (regime-
specific) order parameter vs temperature data with three differ-
ent ξ values belonging to three different regimes in Fig. 3(a),
3(b), and 3(c). Thus, across the whole phase diagram, the MC
simulations reproduce the phase diagram obtained by the low-
temperature expansion described in Sec. V A [see Fig. 2]. See
Table I for a summary of the low-temperature phases.

We briefly mention here some of the key points known
about the phase at the special parameters ξ = 0, π/2, π, and
their Klein duals, i.e., the six phase boundaries. In the ther-
modynamic limit, there is no long-range ordering at any non-
zero temperature with ξ = 0, π, or at their Klein duals,
as the Mermin-Wagner-Hohenberg theorem forbids sponta-
neously broken continuous symmetry at nonzero temperature
in two dimensions [57, 58]. These disordered phases would
be eliminated by any infinitesimally weak anisotropy, giving
way to long-range ordered phases. At the compass points,
a directional or nematic ordering along the director x̂ or ŷ
is found at low temperatures (T < Tc), with a phase transi-
tion into a disordered paramagnetic phase at high tempera-
tures (T > Tc) [17, 38] [59]. Ref. [17] argues that the ne-
matic ordering reduces to a conventional long-range ordering
at low temperatures in the presence of a weak XY exchange
which favors long-range order along the ±x̂ or ±ŷ directions.
In the context of the present study, the relevant non-compass
perturbation would be the Heisenberg interaction. However,
the nematic ordering should occupy a finite temperature fan
(Tc > T > J) that extends away from the compass points.

It is of interest to consider the critical temperature, Tc,
for the transition between the high-temperature paramag-
netic phase and the low-temperature ordered phase in the six
regimes found from the MC simulations. For each ξ, this tem-
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perature is obtained from the location of the peak of the spe-
cific heat data. We present Tc vs ξ data for two different sys-
tem sizes, L = 16 and 20, in Fig. 3(d). The existence of a
single peak in Cv in the wide range of temperature shown in
Fig. 3(d) and the smooth change of the order parameter with
T below the peak reveals the presence of a single phase transi-
tion from the paramagnetic phase to the ordered phase as tem-
perature is decreased from above Tc toward zero temperature.
Thus, for each ξ, there is a single magnetic ordered phase be-
low Tc, starting to develop at Tc and gradually strengthening
as T → 0. In other words, there is no further phase transition
at any temperature below Tc to any other phases from that de-
veloped just below Tc. As mentioned earlier, this single mag-
netic ordered phase below Tc is consistent with the ordering
found from the low temperature expansion valid at T ≪ Tc
described in Sec. V A.

It may seem surprising that the numerically observed criti-
cal temperatures at ξ = 0, π, and at their Klein dual points are
significantly different from zero [see Fig. 3(d)], where there
should not be any finite temperature phase transition due to
the Mermin-Wagner-Hohenberg theorem [57, 58][60]. The
apparent non-zero Tc at those points is a finite-size effect,
which should go to zero in the thermodynamic limit (N → ∞).
However, eliminating these finite size effects would be quite
computationally challenging [61] due to the infrared fluctua-
tions diverging logarithmically in L. Thus, showing the van-
ishing of the transition temperature at these isotropic points
in the parameter space would require significantly larger sys-
tem sizes. Elsewhere in the parameter space, the Hamilto-
nian is anisotropic and thus, Mermin-Wagner-Hohenberg the-
orem does not prohibit ordering at non-zero temperature [62].
Therefore, Tc is expected to converge as the system size takes
a moderately large value away from these fine-tuned isotropic
limits. This can be seen in the simulation results; the almost
overlapping Tc data for L = 16 and 20 in Fig. 3(d) suggests
that Tc has nearly converged even at the relatively small size of
L = 16 for all ξ values except for ξ = 0, π, and their Klein dual
points where Tc should vanish in the thermodynamic limit.

VI. QUANTUM GROUND STATE PHASE DIAGRAM

We have described above the classical phase diagram of
the Heisenberg-compass model using several complemen-
tary methods: Luttinger-Tisza analysis, low-temperature spin-
wave expansion and Monte Carlo simulations. In this section,
we explore the quantum ground state phase diagram of this
model. To begin, we examine the role of quantum fluctua-
tions on the classical ground states at zero temperature. We
commit a particular attention in the regions where the clas-
sical model displays an accidental degeneracy and quantum
ObD is expected to determine the ordering pattern.

A. Order by disorder from quantum fluctuations at T = 0

We start by considering the effects of quantum fluctuations
perturbatively in the spin-length, approaching from the clas-

sical limit S → ∞. This can be done through a quantum
linear spin-wave analysis which introduces quantum fluctu-
ations atop the classical ground state. This allows one to
examine how accidental classical ground-state degeneracies
may be lifted by these quantum fluctuations. As mentioned
in Sec. V A, we discuss in Appendix. B the formalism for
a quantum linear spin-wave analysis for various regimes of
the phase angle ξ. State selection via ObD due to quantum
fluctuations at zero temperature for a particular ξ is deter-
mined by the zero-point energy of the linear spin waves about
an accidentally degenerate ground state parametrized by an-
gle ϕ, ϵQ(ϕ) = (1/2)

∑
q ωq(ϕ). As mentioned previously

in Sec. V A, ωq(ϕ) implicitly depends on ξ. The accidental
ground state for which the zero-point energy is minimized is
selected by quantum fluctuations, resulting in quantum ObD.
We find that in Regime-I, II, IV, and V, the zero-point energy
distinguishes between different accidentally degenerate clas-
sical ground states and selects an ordering pattern. Interest-
ingly, in each of the above four regimes, the zero-point energy
is found to be minimized for the very same set of states cho-
sen by the classical thermal ObD mechanism at low tempera-
tures. Thus, ObD from quantum fluctuations at zero temper-
ature predicts the same phase diagram as was found from the
classical low-temperature expansion.

B. Order by disorder from combined quantum and thermal
fluctuations at T > 0

We have found that quantum ObD at zero temperature,
and classical ObD from thermal fluctuations at low temper-
atures select the same long-range magnetic orders. How-
ever, we have not yet investigated ObD from combined quan-
tum and thermal fluctuations at small non-zero temperatures.
This regime would appear when T ∼ O(ωq); between the low-
temperature quantum limit (T ≪ ωq) and the classical spin-
wave limit (ωq ≪ T ≪ TN) as discussed in Section V A [63].
ObD state selection at zero temperature and non-zero temper-
atures at O(1/S ) do not necessarily need to be the same, as
was found (e.g.) for the nearest-neighbor Heisenberg fcc an-
tiferromagnet [64]. Therefore, it is important to explore ObD
state selection at T > 0 including both quantum and thermal
fluctuations. For this purpose, we focus on the free energy of
the quantum linear spin waves, which is given by [65]

FQ(ϕ) =
1
2

∑
q
ωq(ϕ) + T

∑
q

ln
(
1 − e−ωq(ϕ)/T

)
, (9)

with ωq(ϕ) being the known spin-wave spectrum about an ac-
cidentally degenerate ground state characterized by ϕ for a
given ξ. The first and second terms in Eq. (9) correspond
to the zero-point energy, ϵQ(ϕ), and the non-zero temperature
contributions of the quantum spin waves to the free energy,
respectively. ObD selects the states for which the free energy
[Eq. (9)] is minimized. We numerically compute the free en-
ergy as a function of ϕ for any ξ in Regime-I and Regime-IV,
and find that it is minimized for the same states as those se-
lected by the zero-point energy alone, described in Sec. VI A.
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FIG. 4. Ground state energy per spin, ε0 ≡ E0/N where E0 is the
ground state energy eigenvalue, and the second derivative of ε0 with
respect to the phase angle ξ for L = 4. The spikes in the sec-
ond derivative provide the quantum phase boundaries, exhibiting ex-
cellent agreement with the classical phase boundaries (grey dashed
lines). Regime-I to VI are labelled in accordance with Fig. 2.

That is, the Néel states along ±x̂,±ŷ for any coupling parame-
ter in Regime-I, and the ferromagnetic states along ±x̂,±ŷ for
any coupling parameter in Regime-IV get selected by ObD at
non-zero temperatures. By using the Klein duality, Stripe-∥
and Stripe-⊥ are selected by ObD in Regime-II and V, respec-
tively.

In summary, quantum ObD at zero temperature, quantum-
thermal ObD at non-zero temperature, and classical thermal
ObD all select the same states. In other words, as has been
found in many systems exhibiting ObD [7, 49, 66–68], but
is not guaranteed [64], quantum and thermal fluctuations do
not compete in their respective selection of ground states via
ObD.

C. Numerical exact diagonalization

Given the material examples of interest have spin S = 1/2,
the semi-classical results derived at large-S must be cor-
roborated by direct calculations in the small-S limit. To
this end, we investigate the quantum spin-1/2 Heisenberg-
compass model [Eq. (1)] using exact diagonalization [69] on
small clusters with periodic boundary conditions. For a sys-
tem of N = L2 spins, the dimension of the Hilbert space is
given by 2N , which grows rapidly with system size and lim-
its the size of cluster that can be realistically considered. To
consider clusters that are as large as possible, we exploit the
discrete translation symmetry of the model which divides the
Hilbert space into L2 momentum sectors which block diag-
onalize the Hamiltonian (see Ref. [69] for details). These
blocks can be diagonalized individually using sparse diago-
nalization methods [70], such as the Lanczos algorithm, which
can efficiently extract the low-lying energy eigenvalues and
eigenvectors. Using this approach we are able to consider
system sizes up to L = 5 (N = 25) with reasonable computa-
tional effort. Since the ground state orderings that we expect
in Regime-I, II, V, and VI have two sublattice magnetic unit
cells, these are only compatible with even values of L, limiting

a global phase diagram to only L = 4. However, the ferromag-
netic orderings are compatible with the L = 5 case and thus
Regimes III and IV can be studied at this larger size. To cap-
ture the full phase diagram, we primarily present the results
obtained using exact diagonalization performed on a square
lattice of size L = 4, which is compatible with the magnetic
ordering in all parameter regimes, unless otherwise specified.

We first determine the ground state and its energy, E0, for
a range of ξ values across the full parameter space for L = 4.
In Fig. 4, we illustrate how the ground state energy per spin,
ε0 = E0/N varies with ξ. Near a quantum phase transition, we
expect the ground state energy to change sharply with ξ [71]
and thus to identify changes in the ground state phase, we con-
sider not just ε0 itself, but also its derivatives with respect to ξ.
Explicitly, to clearly identify the points at which ε0 is chang-
ing quickly, we numerically computed the second derivative,
−∂2ε0/∂ξ

2 [72]. This quantity is expected to show sharp peaks
near any phase transition; for example, for a level crossing
(first order transition) we would expect a discontinuity in the
first derivative of ε0 and thus a δ-function in the second deriva-
tive. Consequently, the peaks in −∂2ε0/∂ξ

2 [shown in Fig. 4]
provide good indicators for the locations of the boundaries
between different phases. As depicted in Fig. 4, ε0 exhibits
pronounced kinks near ξ = π/2, π, and HF*. Looking at the
second derivative, we find that there are pronounced peaks at
ξ = π/2, π and HF*, suggesting transitions at those points, and
less pronounced peaks at ξ = 0, HAF*, and 3π/2, suggesting
weaker transitions [66]. The location of these peaks is in ex-
cellent agreement with the phase boundaries obtained from
the classical or semi-classical methods, and what one expects
based on the constraints from the Klein duality. Therefore,
given the system sizes for which we are able to perform ex-
act diagonalization, the same number of phases are observed
in the quantum spin-1/2 version of the Heisenberg-compass
model as seen in its classical counterpart.

With the phase boundaries identified, we next investigate
the nature of the quantum ground state obtained via exact di-
agonalization. To this end, we consider the spin-spin corre-
lations within the ground state, particularly, those encoded in
the diagonal elements of the static structure factor,

Sµµ(q) =
1
N

∑
i, j

e−iq·(ri−r j)⟨S µi S µj ⟩, (10)

where µ = x, y, z and ⟨· · ·⟩ is the expectation value in the
ground state. The structure factors are computed at several
wave vectors in the first Brillouin zone, including four high
symmetry points, Γ = (0, 0), X = (π, 0), Y = (0, π), and M =
(π, π). We find that apart from these four special points, the
structure factors at all other wave vectors are not very intense.
We thus present the results only for the wave vectors: Γ,X,Y,
and M in Fig. 5(a). The combinations, Sxx(M) + Syy(M)
and Sxx(Γ) + Syy(Γ) are the largest in Regime-I and IV, re-
spectively. This suggests that the ground state is largely anti-
ferromagnetically and ferromagnetically ordered in the x̂ − ŷ
plane in Regime-I and IV, respectively. Similarly, in Regime-
II and V, Sxx(Y)+Syy(X) and Sxx(X)+Syy(Y) are the largest,
respectively. This indicates that the orderings in Regime-II
and V are well described by Eq. (6) and Eq. (8), respectively.
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FIG. 5. (a) Results obtained from exact diagonalization of the quantum Heisenberg-compass model [Eq. (1)] on the 4 × 4 square lattice with
periodic boundary conditions. Several static structure factors [Eq. (10)] computed over the full range of ξ at the four high symmetry points of
the Brillouin zone, Γ = (0, 0),X = (π, 0),Y = (0, π), and M = (π, π). Well-defined crossovers in the dominant structure factor are in excellent
agreement with the classical phase boundaries (grey dashed lines). Regime-I to VI are labelled in accordance with Fig. 2. (b) Ratio of the
ground state overlap with the Néel coherent state along ϕ, ΩAFM(ϕ), to the maximum of the overlap over the full range of ϕ with ξ = 0.25π for
several system sizes in Regime-I. (c) Ratio of the ground state overlap with the ferromagnetic coherent state along ϕ, ΩFM(ϕ), to the maximum
of the overlap over the full range of ϕ with ξ = 1.25π for several system sizes in Regime-IV. The range of ϕ is restricted to be only [0, π/2) due
to the C4 symmetry of the model.

In Regime-III and VI, Szz(Γ) and Szz(M) are the largest, re-
spectively. The orderings are thus largely ferromagnetic and
antiferromagnetic along the ± ẑ directions in Regime-III and
VI, respectively. In summary, the structure factors reveal that
the quantum ground states exhibit ordering wave vectors and
(staggered) magnetization directions consistent with the clas-
sical ground states discussed in Sec. IV.

The nature of the phases in the spin-1/2 model near the
compass points (ξ = π/2 and 3π/2) deserves some discus-
sion. An earlier exact diagonalization study [37] has found
a set of 2(L+1) low lying states that collapse into degenerate
ground states as the system size is increased. A quantum
Monte Carlo study [38] reveals that the spin-1/2 case also ex-
hibits a directional or nematic ordering transition at finite tem-
perature, similarly to the classical result. We are not aware of
any detailed study of the robustness of the directional-ordered
phase at non-zero temperature against weak symmetric per-
turbations such as the Heisenberg interaction considered here.
How these perturbations affect the phase in the compass limit
– and in particular its stability – is a question we leave to fu-
ture work.

We now examine the ObD state selection within exact di-
agonalization. Since quantum ground states of finite systems
do not exhibit spontaneous symmetry breaking, they can be
more usefully thought of as superpositions of states with def-
inite ordering directions. ObD preference for specific order-
ings would result in having more weight on the states corre-
sponding to those orderings in the superposition. For instance,
the Néel states along the ±x̂,±ŷ directions would be expected
to have more weight than any other in-plane Néel state in the

quantum ground state for any ξ in Regime-I. To confirm this,
we compute the overlap of the in-plane Néel states and the
ground state wavefunction for a given ξ in Regime-I obtained
from exact diagonalization, |Ω⟩. A simple Néel state charac-
terized by the in-plane angle ϕ is given by the product coherent
state [1],

|ϕ⟩AFM =
⊗

r

1√
2

(
|↑⟩ + (−1)reiϕ |↓⟩

)
where |↑⟩, |↓⟩ are ẑ quantized spin-1/2 states and r labels the
sites of the lattice. The overlap of this Néel state with |Ω⟩,
that we refer to as Ω(ϕ)AFM ≡ | ⟨Ω|ϕ⟩AFM |2, for ξ = π/4 is
presented in Fig. 5(b), exhibiting maximal overlap with the
Néel states corresponding to ϕ = 0, π/2, π, 3π/2 (i.e., the Néel
states along ±x̂,±ŷ). We also find that this overlap increases
as the system size increases. We note that while Ω(ϕ)AFM
does not explicitly represent the probability of finding the
Néel coherent state along ϕ in the ground state due to the non-
orthogonality of different coherent states, this quantity gives
us a qualitative idea of how close the ground state is to a given
product state. We find this to be true for any value of ξ in
Regime-I. This thus confirms the preference for ObD-selected
Néel states along ±x̂,±ŷ within the quantum ground state in
this regime. Note the smallness of the change in the overlaps
as a function of angle ϕ likely originates from the smallness
of the ObD selection, which is several orders of magnitude
smaller than the scale of J or K.

We can proceed similarly in Regime-IV by considering
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overlaps [73] with the in-plane ferromagnetic coherent states

|ϕ⟩FM =
⊗

r

1√
2

(
|↑⟩ + eiϕ |↓⟩

)
,

defining Ω(ϕ)FM ≡ | ⟨Ω|ϕ⟩FM |2 where |Ω⟩ now represents
the ground state wavefunction for a given ξ in Regime-IV
obtained from exact diagonalization. We show the results
for various system sizes with ξ = 1.25π in Fig. 5(c). The
overlap is found to be maximal for the in-plane angles ϕ =
0, π/2, π, 3π/2, confirming the preference for the ObD se-
lected ferromagnetic states along ±x̂,±ŷ within the quantum
ground state. While Fig. 5(c) is shown for a particular ξ [i.e.,
ξ = 1.25π], the same is true for any ξ in Regime-IV. Us-
ing the Klein duality, we argue that the ObD-selected prod-
uct states have dominant contributions to the quantum ground
state wavefunctions in Regime-II and V, as well. Therefore,
the quantum ground state phase diagram found from exact
diagonalization on small systems like 4 × 4 square lattice is
qualitatively similar to the low-temperature classical phase di-
agram and zero temperature semi-classical phase diagram dis-
cussed previously.

VII. SUMMARY AND DISCUSSION

In this work, we examined the zero-temperature quantum
ground state phase diagram and the low-temperature classi-
cal and quantum phase diagram of the Heisenberg-compass
model on the square lattice. Notably, this model admits a
Klein duality which facilitates a mapping of the spin-spin
interaction parameters from one set to another. This dual-
ity analysis partitions the entire parameter space into six dis-
tinct regimes, with three of them being Klein-dual counter-
parts of the remaining three. As a result, the properties of
the model in a parameter regime are related to those in its
dual regime. For two of those six regimes, the classical zero
temperature ground states consist of two symmetry-related
discrete configurations. In the remaining four regimes, the
classical ground states display an accidental continuous de-
generacy characterized by an O(2) manifold. Using classi-
cal Monte Carlo simulations and spin-wave analysis, we an-
alyzed the low-temperature classical phase diagram of this
model. This reveals six different ordered phases in the six
parameter regimes, with four order by disorder (ObD) phases
stemming from thermal fluctuations and two energetically or-
dered phases. By considering quantum fluctuations via a
quantum spin-wave analysis at zero temperature, we find that
ObD from quantum fluctuations stabilizes the same ordered
states as those derived from the preceding classical method-
ologies. Furthermore, a calculation of the free energy from
quantum spin waves at T > 0 finds that the combined effect of
thermal and quantum fluctuations at low temperatures favors
the same states as those selected by the quantum fluctuations
alone at zero temperature. Additionally, by investigating the
zero-temperature quantum ground state phase diagram using
numerical exact diagonalization on small finite clusters, we
find identical phase diagram as that obtained from the classi-
cal analysis and the quantum spin wave analysis.

A. Perspective on applications to materials

It is of interest to briefly discuss the relevance of our work
to real materials. Generically, a magnetic material with its
magnetic ions on a square lattice will not precisely corre-
spond to the Heisenberg-compass model, even at the nearest-
neighbor level, and can possess additional symmetry-allowed
interactions. Explicitly, the space group symmetries of the
square lattice allow for an additional bond-independent Ising
interaction, S z

rS
z
r′ , on each nearest-neighbor bond [31]. In-

corporating such a term in the original Heisenberg-compass
model of Eq. (1), yields

H =
∑
r,δ

[
JSr · Sr+δ + KS δr S δr+δ + ∆ S z

r S z
r+δ

]
, (11)

where ∆ parametrizes the strength of S z
rS

z
r′ Ising anisotropy.

Interestingly, we note that even in the presence of the addi-
tional S z

rS
z
r′ interaction, a version of the Klein duality still

holds, with the rotation described in Sec. III providing an
exact mapping between two parameter sets: (J,K,∆) →
(−J, 2J + K,−∆).

Importantly, a small ∆ (∆ ≪ J and ∆ ≪ K), either posi-
tive or negative, does not lift any of the aforementioned in-
plane accidental classical O(2) degeneracies, and therefore
does not qualitatively affect the order by disorder physics
of the Heisenberg-compass model. This is a generic state-
ment for any symmetry allowed bilinear spin-exchanges, as
is found in other order-by-disorder material candidates, such
as Er2Ti2O7 [68]. Adapting the arguments of Ref. [68], the
classical energy of any of the in-plane, accidentally degener-
ate states is characterized by an order parameter m ≡ (mx,my)
(listed in Table I) which transforms as (mx,my) → (my,−mx)
under the C4 symmetry. It is straightforward to show that the
only bilinear energy function that can be constructed from m
is ∝ |m|2 which enjoys an accidental O(2) symmetry. We thus
see that these accidental degeneracies, and thus the order-by-
disorder, persists even in the presence of generic symmetry al-
lowed bilinear interactions and should thus be relevant in real-
istic material-relevant extensions of the Heisenberg-compass
model.

As reported in Ref. [29], a single layer of the perovskite iri-
date Ba2IrO4 can effectively be described by the Heisenberg-
compass model on the square lattice. Using ab initio
quantum-chemistry computational techniques, the authors of
Ref. [29] estimated exchange couplings J ≈ 65 meV and K ≈
3.5 meV, positioning the system within Regime-I of the cur-
rent study. Notably, the authors of Ref. [29] found a negligible
value for the Ising anisotropy ∆ in Eq. (11). The smallness of
this coupling could potentially be attributed to the enhanced
symmetries that appear when one restricts the ab initio cal-
culations to exchange paths considering two ideal neighbor-
ing IrO6 octahedra. Unlike the full layer, this pair of octahe-
dra possesses an additional C4 symmetry about the bond axis
which, if exact, forbids any Ising anisotropy (but allows for
a compass interaction, K). Therefore, this ∆ S z

r S z
r+δ coupling

should only be generated by exchange processes that go be-
yond the pair octahedra or involve tetragonal distortions of
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the IrO6 octahedra in the out-of-plane direction. The limit of
small or perturbative ∆, where our results are valid, is thus
relevant in the context of Ba2IrO4. [74]

Although our results are relevant for understanding the
ground states properties of a single-layer Ba2IrO4 [J ≈ 65
meV, K ≈ 3.5 meV, and perturbative ∆] [29], it does not
explain the experimentally observed magnetic ordering in
Ba2IrO4 – Néel order along [110] direction [75] (as opposed
to the expected ordering in Regime-I of our study). To ex-
plain the experimentally observed ordering, Ref. [29] argues
that, along with nearest-neighbour exchanges, one needs to
take into account a subset of the inter-layer exchanges which
competes with the intra-layer exchanges. In light of these re-
sults and the real material context they speak to, it would be
interesting to extend the work presented in this study to con-
sider the competition between energetic and ObD state selec-
tion in a model that incorporates the symmetry-allowed in-
plane (J,K,∆) interactions as well as out-of-plane couplings.

B. Avenues for future work on the Heisenberg-compass model

Since the Heisenberg-compass model displays four distinct
parameter regimes exhibiting both thermal and quantum ObD,
it provides a rich playground for investigating the conceptual
underpinnings of ObD more broadly. Within this model, the
following open avenues may be of particular interest to ex-
plore further:

(a) ObD induces a dynamically generated pseudo-Goldstone
gap [76, 77] in the excitation spectrum. This gap has been
computed previously in the context of ObD from quan-
tum fluctuations at T = 0 [78] and from purely thermal
fluctuations at non-zero T [36] in order to explore and
expose model-independent universal signatures of ObD.
However, the characteristics of the pseudo-Goldstone gap
arising from ObD due to combined thermal and quantum
fluctuations at T > 0, perhaps the most general and rele-
vant scenario for real magnetic systems, have, to the best
of our knowledge, not yet been systematically explored
in the literature. The Heisenberg-compass model offers
an opportunity to investigate this in all four of its ObD
regimes.

(b) A magnet with long-range order may exhibit excita-
tions different from conventional magnons, such as two-
magnon bound states [79–83]. Such quasi-particle ex-
citations may, for example, impact the heat transport at
low energies [84]. Study of such bound states in magnets
with long-range order arising from ObD has, again to the
best of our knowledge, remained unexplored. Since the
pseudo-Goldstone gap generated by ObD may be typi-
cally small, there may exist two-magnon bound states of
energy scale comparable to the gap, which could signifi-
cantly impact the low energy properties of a system har-
boring ObD.

(c) Much of the literature on ObD has focused on the classi-
cal or semi-classical limit (S → ∞) and does not readily
apply in the more realistic quantum limit (e.g. S = 1/2).

A well-understood and unbiased method to study spin-
1/2 systems is exact diagonalization [69]. As this method
is limited to small systems, observables often exhibit
large finite-size effects. Therefore, one avenue to better
understand ObD and its dynamical implications in spin-
1/2 systems may be to characterize the finite-size mani-
festations of ObD and understand how they might appear
in exact diagonalization calculations. The topic of finite-
size signatures of ObD has been little explored [85, 86],
warranting further investigation. More practically, under-
standing of such finite-size signatures could be directly
relevant to finite size real quantum magnetic systems,
such as small magnetic flakes or molecular magnets [87]
and trapped ion quantum simulators [88].

To conclude, we believe that the Heisenberg-compass
model in two dimensions is a simple and compelling model to
explore and shed some light on the above interesting theoret-
ical questions. We look forward for theoretical developments
in these, and perhaps other directions. These would deepen
our understanding of ObD and help uncover ways to unam-
biguously expose its manifestation in real physical systems.
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Appendix A: Luttinger-Tisza method for determination of the
classical ground states

In this appendix, we describe the Luttinger-Tisza
method [35, 46, 47] to determine the classical ground states
of the model of Eq. (1). We start by rewriting the Hamiltonian
in the following way,

H = 1
2

∑
r,γ

S⊺r JγSr+γ, (A1)

where γ = ±x, ±y denotes all four nearest-neighbor bonds.
The prefactor 1/2 comes from the double counting of each
bond, and the interaction matrices are

Jx = J−x =

 J + K 0 0
0 J 0
0 0 J

 , Jy = J−y =

 J 0 0
0 J + K 0
0 0 J

 .
(A2)

Under Fourier transform, Sr =
(
1/
√

N
)∑

q Sqeiq·r, Eq. (A1)
becomes

H = 1
2

∑
q

S⊺−q JqSq, (A3)
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where the Fourier transformed interaction matrix, Jq =∑
γ Jγeiq·γ = 2(cos qx)Jx + 2(cos qy)Jy using the fact, Jx =

J−x and Jy = J−y. Using Eq. (A2), Jq takes the form,

Jq =

 λ1(q) 0 0
0 λ2(q) 0
0 0 λ3(q)

 , (A4)

where

λ1(q) = 2(J + K) cos qx + 2J cos qy
= 2(cos ξ + sin ξ) cos qx + 2 cos ξ cos qy,

λ2(q) = 2J cos qx + 2(J + K) cos qy
= 2 cos ξ cos qx + 2(cos ξ + sin ξ) cos qy,

λ3(q) = 2J(cos qx + cos qy)
= 2 cos ξ(cos qx + cos qy). (A5)

Since Jq is diagonal, λ1(q), λ2(q), and λ3(q) are its eigenval-
ues, and the corresponding eigenvectors are simply the Carte-
sian directions, i.e., x̂, ŷ, and ẑ. With this, the Fourier trans-
formed Hamiltonian in Eq. (A3) takes the following form,

H = 1
2

∑
q

(
λ1(q) |S x

q|2 + λ2(q) |S yq|2 + λ3(q) |S z
q|2

)
. (A6)

The modulus square in Eq. (A6) comes from the fact that
S−q = S∗q (spin components are real valued in direct space).
For a given ξ, let λmin be the smallest of the minimum values
of λ1(q), λ2(q), and λ3(q) across the first Brillouin zone (BZ).
Then Eq. (A6) can be written as

H =
1
2

∑
q

(
(λ1(q) − λmin) |S x

q|2 + (λ2(q) − λmin) |S yq|2

+ (λ3(q) − λmin) |S z
q|2

)
+
λmin

2

∑
q
|Sq|2. (A7)

Since (λ1(q) − λmin), (λ2(q) − λmin), and (λ3(q) − λmin) are all
positive semi-definite, the classical ground state energy corre-
sponds to the last term in Eq. (A7), and is given by,

Emin =
λmin

2

∑
q
|Sq|2 = λmin

2

∑
r
|Sr|2 = λmin

2
N, (A8)

where N is the total number of spins. Note that, to finally
obtain the classical minimum energy, Emin, the Luttinger-
Tisza method has made use of the “weak” spin-length con-
straint

∑
r |Sr|2 = N, and not the “hard” spin-length constraint

|Sr|2 = 1 for all r. Thus, we find that the ground state en-
ergy per site is λmin/2. The minima of λ1(q), λ2(q), and λ3(q)
across the first BZ, denoted respectively as λ1,min, λ2,min, and
λ3,min, are shown in Fig. 6(a) for the entire range of ξ. By
tracking λmin (i.e., minimum of λ1,min, λ2,min, and λ3,min), one
finds six regions in the coupling parameter space divided by
kinks as shown in Fig. 6(a). This partition of the parameter
space into six regimes is consistent with the six regimes found
from the Klein duality in Sec. III. λmin/2 and its functional
form with respect to (J,K) are shown in Fig. 6(b). In the fol-
lowing subsections, we shall determine the classical ground

states of the model [Eq. (1)] in Regime-I and III using the
Luttinger-Tisza method and, from these states determined, we
can find the classical ground states in other regimes using the
Klein duality transformation [Eq. (2)] and the sublattice spin-
flip transformation [Eq. (4)].

1. Regime-I : ξ ∈ (0, π/2)

In this regime, λ1(q) and λ2(q) possess simultaneous global
minima, λmin, at qmin = (π, π) [see Fig. 6(a)] and the classi-
cal ground state energy per site is, λmin/2 = −(2J + K) [see
Fig. 6(b)]. Therefore, from Eq. (A7), the minimum energy
spin configuration would be such that

S z
q = 0 for all q,

S x
q,qmin

= S yq,qmin
= 0. (A9)

Thus, from Eq. (A7), the ground state energy can be written
as

Emin =
λmin

2

(
|S x

qmin
|2 + |S yqmin |2

)
. (A10)

Equating this to the ground state energy λminN
2 leads to

|S x
qmin
|2 + |S yqmin |2 = N. (A11)

Using S∗q = S−q, at qmin = (π, π) we have the property
S∗(π,π) = S(−π,−π) = S(π,π), where the last step involves (π, π) ≡
(−π,−π). This shows that Sqmin is real. Using the real valued-
ness of Sqmin and using Eq. (A9) and Eq. (A11), we can write
Sqmin=(π,π) =

√
N(cos ϕ, sin ϕ, 0) where ϕ ∈ [0, 2π). We can

now obtain a description of the spins Sr in the direct space by
taking the inverse Fourier transform,

Sr =
1√
N

∑
q

Sqeiq·r =
1√
N

Sqmin=(π,π)ei(π,π)·r

= (−1)r(cos ϕ, sin ϕ, 0). (A12)

We finally see that Sr = (−1)r(cos ϕ, sin ϕ, 0), a Néel state
in the x̂ − ŷ plane with the Néel direction specified by the
in-plane angle ϕ. Note that these states satisfy the hard spin-
length constraint, |Sr|2 = 1, and are thus legitimate ground
states produced by the Luttinger-Tisza method.

2. Regime-III :
(
π − tan−1(2) < ξ < π

)
In this regime, λ3(q) has the global minimum, λmin, at

qmin = (0, 0) [see Fig. 6(a)] and the classical ground state
energy per site is, λmin/2 = 2J [see Fig. 6(b)]. Therefore,
from Eq. (A7), the minimum energy configuration must sat-
isfy S x/y

q = 0 for all q and S z
q,qmin

= 0. We can thus write the
ground state energy from Eq. (A7) as

Emin =
λmin

2
|S z

qmin
|2. (A13)
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FIG. 6. (a) Minima of the eigenvalues of the Fourier transformed interaction matrix over the first Brillouin zone, λi,min [where i = 1, 2, 3]
multiplied by a factor of one-half shown for different ξ. By tracking the minimum of λ1,min, λ2,min, and λ3,min at each ξ, λmin, the full ξ range
can be divided into six smooth regions separated by kinks in λmin, (0, π/2), (π/2, π− tan−1(2)), (π− tan−1(2), π), (π, 3π/2), (3π/2, 2π− tan−1(2)),
and (2π − tan−1(2), 2π). Wave vectors of the corresponding λmin, qi,min are specified in each region. These six regimes are labelled as Regime-I
to VI separated by grey dashed lines. (b) λmin/2 plotted against ξ. At each of the above six regimes (Regime-I to VI), the functional form of
λmin/2, εcl

0 (J,K) is specified, giving the classical ground state energy per site as a function of J and K.

Equating this to the ground state energy λminN
2 yields |S z

qmin
|2 =

N. The Fourier component of the real valued Sr at qmin =

(0, 0), Sqmin , is real. All the above conditions on the Fourier
transformed spins yields Sqmin =

√
N(0, 0,±1) which, in direct

space, amounts to

Sr =
1√
N

∑
q

Sqeiq·r =
1√
N

Sqmin=(0,0)ei(0,0)·r = (0, 0,±1).

(A14)

Therefore, we find only two discrete states corresponding to
ferromagnetic order along ± ẑ directions. As we have |Sr|2 =
1, these two states are legitimate ground states.

Appendix B: Spin-wave analysis

In this appendix, we provide the details of the spin wave
analysis of the Heisenberg-compass model [Eq. (1)] in the
four parameter regimes [Regime-I, II, IV, V] that exhibit ObD,
using the Holstein-Primakoff formalism [1]. We present the
analysis only in Regime-I and IV, and then use the Klein du-
ality to extend the results to the cases of Regime-II and V.
We assume for the purpose of this analysis that there is only
one sublattice in the magnetic unit cell in the classical ground
state. While this is true for the ground state in Regime-IV
(ferromagnetic state), the Néel ground state in Regime-I has
two magnetic sublattices. However, we can make a transfor-
mation to the spins in Regime-I, changing the Néel state to a
ferromagnetic state (one sublattice magnetic ordering) so that
our one sublattice spin-wave analysis can be applied to obtain
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the results in Regime-I as well.
We begin with the Hamiltonian written in a slightly differ-

ent form as in Eq. (A1). Assuming there is only one sublattice
in the magnetic unit cell in the ground state, we define a local
frame,

(
êx(ϕ), êy(ϕ), ê0(ϕ)

)
, aligned with this sublattice spin

direction characterized by ϕ. Here, ê0(ϕ) points in the direc-
tion of the sublattice spin in the ground state and êx(ϕ), êy(ϕ)
are two mutually perpendicular directions to ê0(ϕ). We further
define,

ê±(ϕ) ≡
(
êx(ϕ) ± i êy(ϕ)

)
/
√

2. (B1)

We then define the local exchanges as

Jµνγ (ϕ) ≡ ê⊺µ (ϕ)Jγêν(ϕ), (B2)

where êµ(ϕ), êν(ϕ) are ê+(ϕ), ê−(ϕ), and ê0(ϕ), and γ = ±x,±y,
the nearest-neighbor bonds. The Fourier transforms of the ex-
change matrix elements, Jµνγ (ϕ), are defined as

Jµνq (ϕ) ≡
∑
γ

exp (−iq · γ)Jµνγ (ϕ). (B3)

Performing the Holstein-Primakoff expansion [1] to O(S ) on
this model yields [36, 78]

H ≈ NS (S + 1)ϵ +H2, (B4)

where ϵ = 1
2J00

q=0(ϕ) and

H2 =
∑

q

[
Aq(ϕ) a†qaq +

1
2!

(
Bq(ϕ) a†qa†−q + B∗q(ϕ) a−qaq

)]
,

(B5)
with a†q (aq) is the bosonic creation (annihilation) operator at
wave vector q. Here H2 denotes the linear spin-wave Hamil-
tonian. In terms of the local exchanges, we have

Aq(ϕ) = S
(
J+−q (ϕ) − J00

0 (ϕ)
)
,

Bq(ϕ) = SJ++q (ϕ). (B6)

This linear spin-wave Hamiltonian [Eq. (B5)] can be diag-
onalized using a Bogoliubov transformation [1]. Defining the
matrix

Mq(ϕ) ≡
(

Aq(ϕ) Bq(ϕ)
B∗q(ϕ) Aq(ϕ)

)
, (B7)

the linear spin-wave energy spectrum is given by the eigen-
values of σz Mq(ϕ), where σz is a (block) Pauli matrix and the
spectrum is

ωq(ϕ) =
√

Aq(ϕ)2 − |Bq(ϕ)|2. (B8)

We next derive the Fourier transformed local exchanges
[Eq. (B3)] in different regimes of the phase angle, from which
we can calculate the linear spin-wave spectrum using Eq. (B6)
and Eq. (B8).

1. Regime-I

In this regime, the classical ground state is a Néel state with
two sublattices given by,

SA = +S (cos ϕ x̂ + sin ϕ ŷ),
SB = −S (cos ϕ x̂ + sin ϕ ŷ). (B9)

Note that {x̂, ŷ, ẑ} is the global coordinate frame in the spin
space. We now consider a canonical transformation, π-
rotation of the spins on one of the two sublattices of the
square lattice about the ẑ axis. This transformation changes
the Hamiltonian as well as the ground state configuration. The
change in the Hamiltonian can be expressed as a change in the
coupling exchange matrix of the Hamiltonian [Eq. (A1)],

Jx = J−x =

 J + K 0 0
0 J 0
0 0 J

→ J̃x = J̃−x =

 −J − K 0 0
0 −J 0
0 0 J

 ,
Jy = J−y =

 J 0 0
0 J + K 0
0 0 J

→ J̃y = J̃−y =

 −J 0 0
0 −J − K 0
0 0 J

 .
(B10)

By this transformation, the Néel ground state configuration
changes to a ferromagnetic configuration in the x̂ − ŷ plane
which has only one sublattice given by,

Sr = S (cos ϕ x̂ + sin ϕ ŷ). (B11)

The advantage of performing this transformation is that we
now have only one sublattice describing the ground state, ren-
dering the analysis discussed above to find the spin wave spec-
trum [Eq. (B8)] applicable.

We now define a local frame aligned with an arbitrary
ferromagnetic ground state parameterized by an angle ϕ
[Eq. (B11)],

êx(ϕ) = − sin ϕ x̂ + cos ϕ ŷ, (B12a)
êy(ϕ) = ẑ, (B12b)
ê0(ϕ) = cos ϕ x̂ + sin ϕ ŷ, (B12c)

and have the corresponding ê±(ϕ) as defined in Eq. (B1). We
then have the local exchanges as defined in Eq. (B2),Jµνδ (ϕ) =
ê⊺µ (ϕ)J̃δêν(ϕ). Using Eq. (B3), we obtain the Fourier trans-
form of the local exchanges, which are necessary to compute
the linear spin-wave spectrum,

J+−q (ϕ) = −K
(
sin2ϕ cos qx + cos2ϕ cos qy

)
,

J00
q (ϕ) = −2

(
J + Kcos2ϕ

)
cos qx − 2

(
J + Ksin2ϕ

)
cos qy,

J++q (ϕ) = −
(
2J + Ksin2ϕ

)
cos qx −

(
2J + Kcos2ϕ

)
cos qy.

Note that J00
0 (ϕ) = −2(2J + K). Using these Fourier trans-

formed local exchanges, we can compute the linear spin wave
spectrum, ωq(ϕ), using Eq. (B8) as a function of ϕ. With this
spectrum, we next compute the zero-point energy, ϵQ(ϕ) =
(1/2)

∑
q ωq(ϕ) as a function of ϕ. The zero-point energy is

found to have minima at ϕ = 0, π/2, π, 3π/2 corresponding
to the Néel states along ±x̂,±ŷ directions. Thus, these are the
states picked by quantum ObD at zero temperature in Regime-
I.
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2. Regime-IV

In this regime, the classical ground states are ferromagnetic
states pointing along arbitrary directions in the x̂− ŷ plane. To
perform the spin-wave analysis, we start with the same refer-
ence ground state as in Eq. (B11) and the same local frame
convention as in Eq. (B12). Using the coupling exchange ma-
trix in the global frame in this regime, shown in Eq. (A2), we

obtain the following Fourier transformed local exchanges

J+−q (ϕ) =
(
2J + Ksin2ϕ

)
cos qx +

(
2J + Kcos2ϕ

)
cos qy,

J00
q (ϕ) = 2

(
J + Kcos2ϕ

)
cos qx + 2

(
J + Ksin2ϕ

)
cos qy,

J++q (ϕ) =
(
Ksin2ϕ

)
cos qx +

(
Kcos2ϕ

)
cos qy.

Using these exchanges, we compute the spectrum using
Eq. (B8), ωq(ϕ), as a function of ϕ. The zero-point energy
is found to have minima at ϕ = 0, π/2, π, 3π/2, corresponding
to the ferromagnetic states along ±x̂,±ŷ directions, resulting
in quantum ObD at zero temperature.

[1] A. Auerbach, Interacting Electrons and Quantum Magnetism,
Graduate Texts in Contemporary Physics (Springer New York,
1998).

[2] Patrick Fazekas, Lecture Notes on Electron Correlation and
Magnetism (World Scientific, 1999).

[3] Zohar Nussinov and Jeroen van den Brink, “Compass models:
Theory and physical motivations,” Rev. Mod. Phys. 87, 1–59
(2015).

[4] Alexei Kitaev, “Anyons in an exactly solved model and be-
yond,” Annals of Physics 321, 2–111 (2006), January Special
Issue.

[5] J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, “Order as an
effect of disorder,” J. Phys. France 41, 1263–1272 (1980).

[6] E. F. Shender, “Antiferromagnetic garnets with fluctuationally
interacting sublattices,” Sov. Phys. JETP 56, 178 (1982).

[7] Christopher L. Henley, “Ordering due to disorder in a frus-
trated vector antiferromagnet,” Phys. Rev. Lett. 62, 2056–2059
(1989).

[8] P. W. Anderson, “Ordering and antiferromagnetism in ferrites,”
Phys. Rev. 102, 1008–1013 (1956).

[9] R. Moessner and J. T. Chalker, “Low-temperature properties of
classical geometrically frustrated antiferromagnets,” Phys. Rev.
B 58, 12049–12062 (1998).

[10] B. Canals and C. Lacroix, “Pyrochlore antiferromagnet: A
three-dimensional quantum spin liquid,” Phys. Rev. Lett. 80,
2933–2936 (1998).

[11] Lucile Savary and Leon Balents, “Quantum spin liquids: a re-
view,” Reports on Progress in Physics 80, 016502 (2016).

[12] Kliment I Kugel´ and D I Khomskiı̆, “The Jahn-Teller effect
and magnetism: transition metal compounds,” Soviet Physics
Uspekhi 25, 231 (1982).

[13] Louis Felix Feiner, Andrzej M. Oleś, and Jan Zaanen, “Quan-
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