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Magnon spectra of cuprates beyond spin wave theory
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The usual starting point for understanding magnons in cuprate antiferromagnets such as La2CuO4 is a spin
model incorporating cyclic exchange, which descends from a one-band Hubbard model, and has parameters taken
from fits based on non-interacting spin wave theory. Here we explore whether this provides a reliable description
of experiment, using matrix product states (MPS) to calculate magnon spectra beyond spin wave theory. We find
that analysis based on low orders of spin wave theory leads to systematic overestimates of exchange parameters,
with corresponding errors in estimates of Hubbard t/U . Once these are corrected, the “standard” model provides
a good account of magnon dispersion and lineshape in La2CuO4, but fails to fully capture the continuum observed
at high energies. The extension of this analysis to CaCuO2 and Sr2IrO4 is also discussed.
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Introduction. Cuprate perovskites, typified by La2CuO4,
are an important class of magnetic insulators, providing
some of the best examples of quasi-two-dimensional an-
tiferromagnets [1], as well as being parent materials for
high–temperature superconductors [2,3]. Early attempts to
understand magnon spectra in La2CuO4 rested on the antifer-
romagnetic (AF) Heisenberg model on a square lattice [4], as
derived from a one-band Hubbard model in the limit t/U → 0
[5]. More detailed measurements of magnon dispersion at
high energy revealed a dispersion on the magnetic Brillouin
zone boundary which could not be understood in terms of
a simple Heisenberg AF [6]. This lead to the adoption of a
more complicated model, including four-spin cyclic exchange
[6–12], derived from the same one-band Hubbard model at
finite t/U [13–16]. Variants of this model have been also used
to analyze magnon spectra in CaCuO2 [17,18], SrCuO2 [19],
and Sr2IrO4 [20–24].

To date, where such models have been compared with
experiment, the analysis has mostly rested on linear spin wave
theory (LSWT) [6,8–12], or LSWT with leading 1/S cor-
rections [7]. However, low-order spin-wave approximations
can show significant deviations from quantum calculations
[25]. In related work on the Heisenberg AF [26–33], and its
material instantiation Cu(DCOO)2 · 4D2O (CFTD) [34–36],
quantum effects missing from these theories were found to
have a significant impact on zone-boundary magnons. More-
over, estimates of Hubbard t/U taken from spin wave fits
in La2CuO4 [6–9,11] and CaCuO2 [17,18] are consistently
higher than ab initio values [37–39]. For this reason, it is
important to understand whether the model currently used
to understand magnetism in La2CuO4 provides a reliable
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description of experiment. This question is particularly sig-
nificant in the light of the ongoing efforts to understand
superconductivity in doped cuprates [40]. Magnon spectra can
provide important information about electronic interactions
[6]. But to access this, it is necessary to disentangle effects
arising from the spin-wave approximation.

The goal of this Letter is to explore how well the model
commonly used to describe magnetic excitations in cuprate
antiferromagnets [6–12] fits experiment, once quantum effects
beyond spin wave theory are taken into account. To this end,
we use numerical simulation based on matrix product states
(MPS) [41–47] to explore the magnon spectra of cuprate
materials. We make explicit comparison with experimental
results for La2CuO4, obtaining fits to magnon dispersion
and intensity, and estimating the corresponding value of t/U
within a one-band Hubbard model. We explore the errors
which arise in analysis of experiment based on LSWT, and
introduce a method of estimating t/U directly from magnon
energies at high-symmetry points. We find good agreement
with magnon dispersion and lineshapes in La2CuO4, with the
exception of the high-energy continuum observed near qX =
(π, 0) [9,12]. The analysis of magnon dispersion is extended
to CaCuO2 and Sr2IrO4, with consistent findings. Key results
are summarized in Fig. 1. We draw two main conclusions:
(i) that fits to magnon spectra based on LSWT have lead
to systematic errors in estimates of exchange parameters in
cuprate AF’s; and (ii) that the model provides a good descrip-
tion of spin-wave excitations in cuprate AF’s, but not of the
continuum at high energies.

Model. The model we consider is the one commonly used
to analyze magnon spectra in La2CuO4 [6–10,12],

Hσ = J1

∑
〈i j〉1

Si · S j + J2

∑
〈i j〉2

Si · S j + J3

∑
〈i j〉3

Si · S j

+ Jc

∑
〈i jlk〉

[(Si · S j )(Sk · Sl ) + (S j · Sk )(Sl · Si )

− (Si · Sk )(S j · Sl )], (1)
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FIG. 1. Magnon spectra of cuprate and iridate magnets, compared with predictions descended from a one-band Hubbard model.
(a) Dispersion and intensity of excitations in La2CuO4, as found in calculations of S⊥(q, ω) for the effective spin model Hσ [Eq. (1)], using
matrix product states (MPS), linear spin wave theory (LSWT), and interacting spin wave theory (LSWT + 1/S). Points show the results of
inelastic neutron scattering (INS) experiments [9], with energy measured in units of the first-neighbor interaction J1. (b) Equivalent results
for CaCuO2, compared with results of resonant inelastic x-ray scattering (RIXS) [17]. (c) Results for Sr2IrO4, characterized using RIXS
[22]. (d) Ratio of excitation energies at q� = (π/2, π/2) and qX = (π, 0), showing scaling with Jc/J1 ∼ t2/U 2 [Eq. (5)]. (e) Parameters
for La2CuO4 reported in the experimental literature [6,8,9], and subsequent analysis using self-consistent spin wave theory (sc-SWT) [7] and
modified spin wave theory (m-SWT) [11]. Results from this study are indicated with (*). Where fits have been characterized using the one-band
Hubbard model, values are quoted for t/U .

where exchange interactions on first, second, and third-
neighbor bonds, compete with four-spin terms originating
in cyclic exchange [15,48,49]. The relevant interactions are
illustrated in Fig. 2(a).

This spin model can in turn be derived from the one-band
Hubbard model which provides the minimal description of
La2CuO4 [3]:

HU = −t
∑
〈i j〉1σ

[c†
iσ c jσ + H.c.] + U

∑
i

c†
i↑ci↑c†

i↓ci↓ , (2)

cf., Fig. 2(b). Within an expansion about half-filling [13–16],
the corresponding exchange parameters are J1 = 4t2/U (1 −
6t2/U 2), Jc = 20J2 = 20J3 = 80(t4/U 3).

Further details of this mapping are given [50]. In La2CuO4,
ab initio estimates suggest that t/U ≈ 0.1 [37,38], and the
four-spin interaction Jc is therefore a significant fraction of
the first-neighbor exchange J1. We use Hσ [Eq. (1)], with
parameters appropriate to the one-band Hubbard model HU,
as the basis for all of the calculations in this Letter. Except
where comparing to experimental data, we set h̄ = 1.

Methods. Matrix product states [42] provide a means of
calculating ground-state and dynamical properties of quantum

systems, which is equally capable of describing the magnons
associated with conventional magnetic order [33], and the
fractionalized excitations found in quantum spin chains [52]
and quantum spin liquids [45]. The calculations in this Letter
were carried out for a square lattice wrapped onto a cylinder,
and are not subject to any intrinsic bias, but are subject to
corrections coming from from finite cylinder circumference
and MPS bond dimension. Technical details, including an
analysis of convergence, are provided in the Supplemental
Material [50].

Ground states. We first use density matrix renormaliza-
tion group (DMRG) [41,53] to determine the ground state of
the effective spin model [Eq. (1)]. The Néel order found in
La2CuO4 has ordering vector qM = (π, π ), and is character-
ized by a staggered magnetization

m2
s (π, π ) = 1

N2

∑
i j

ei(π,π )·(ri−r j )〈Si · S j〉 . (3)

In Fig. 2(c) we show results for m2
s (π, π ) as a function of

t/U for infinite cylinders with circumference Ly = 4, 6, 8.
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FIG. 2. Interactions and ground-state properties of model for
magnetism in cuprate antiferromagnets. (a) Parameters of effective
spin model Hσ [Eq. (1)]. (b) Parameters of parent one-band Hubbard
model HU. (c) Staggered magnetization squared, m2

s (π, π ), found
in calculations based on matrix product states (MPS), as a function
of t/U , (and equivalently, Jc/J1). The corresponding Néel order is
shown in an inset. (d) Equivalent results for m2

s (π, π ) in thermody-
namic limit, Ly → ∞. MPS results for the spin model are shown
using triangles. Predictions m̃2

s (π, π ), taking into account charge
fluctuations [51], are denoted with squares. All calculations were
carried out for Hσ [Eq. (1)], on cylinders of circumference Ly.

Interpolating Ly → ∞ by m2
s (q)|L = m2

s (q)|∞ + a/L +
b/L2 + O(1/L3) (cf., e.g., [54]), we find that ms(π, π ) takes
on a finite value for t/U � 0.2, and vanishes for larger values
of t/U [Fig. 2(d)], consistent with published results [55].
Where comparing with experiment, it is also necessary to take
into account charge fluctuations at O(t4/U 3) [51], which turns
the magnetization into m̃s = (1 − 2zt2/U 2)ms, where z = 4
is the coordination number. Allowing for these, the staggered
magnetization for t/U � 0.15 is largely independent of t/U ,
and takes on a value of m̃s(π, π ) ≈ 0.3 [Fig. 2(d)]. Assuming
isotropic g ≈ 2, this translates into an ordered moment of
∼0.6 μB, consistent with earlier theory for the Heisenberg
AF [56,57], but somewhat higher than experimental estimates
for La2CuO4 [58].

Excitation spectra. We now turn to spin dynamics, which
we calculate within the same MPS framework, using the time-
dependent variational principle (TDVP) [43,44]. Since we are
principally interested in magnon excitations, we concentrate
on the transverse structure factor [59]

S⊥(q, ω) =
∫ ∞

−∞

dt

2π

∑
ri

ei(ωt−q·(ri−r j ))

×〈S+
i (t )S−

j (0) + S−
i (t )S+

j (0)〉. (4)

In Fig. 1 we present results obtained for t/U = 0.102
[Fig. 1(a)], t/U = 0.141 [Fig. 1(b)], and t/U = 0.154
[Fig. 1(c)]. In all cases, energy is measured in units of J1, and
S⊥(q, ω) has been convoluted with Gaussian envelope with
σω ≈ 0.072 J1, such that an infinitely sharp excitation is ren-
dered as Gaussian with FWHM = 0.17 J1. For comparison,
we also show the results of linear spin-wave theory (LSWT),
and a spin wave theory with leading interaction corrections
(LSWT + 1/S) [50], calculated for the same parameter set.

TABLE I. Estimates of model parameters for square-lattice anti-
ferromagnets, obtained using empirical scaling relation Eq. (5). Cor-
responding predictions for magnon spectra in La2CuO4, CaCuO2,
and Sr2IrO4 are shown in Figs. 1(a)–1(c).

E�[meV] EX [meV] Jc/J1 [Eq. (1)] t/U [Eq. (2)]

CFTD [36] 13.3 14.5 0.0 0.0
La2CuO4 [9] 281 323 0.22 0.102
CaCuO2 [17] 240 375 0.45 0.141
Sr2IrO4 [22] 110 205 0.55 0.154
SrCuO2 [19] 191 362 0.56 0.155

The magnon dispersion found in MPS calculations shows
clearly defined, linearly dispersing magnons approaching the
ordering vector, qM = (π, π ). At higher energies, the disper-
sion is more complicated, and shows a progressive evolution
as a function of t/U . Two trends stand out. The first of these is
a reduction in the spin-wave velocity characterizing Goldstone
modes for q → qM . The second is a softening of excitations
at q� = (π/2, π/2), relative to qX = (π, 0). This effect is
particularly marked for t/U = 0.154 [Fig. 1(c)]. For small
t/U , LSWT + 1/S gives a reasonable account of magnon dis-
persion [Fig. 1(a)]. However, it fails to capture the softening at
�, leading to significant deviations from MPS results at larger
t/U [Fig. 1(c)].

These findings motivate us to introduce an empirical scal-
ing relation for ratio of magnon energies, E�/EX . Expressing
this in terms of the dominant interactions J1 and Jc, we find
that the results of MPS calculations are well described by

Jc/J1 ≈ −E�/EX + 1.09 , (5)

as illustrated in Fig. 1(d). This result can easily be reexpressed
in terms of t/U , and used to extract Hubbard model param-
eters from experimental measurements of E� and EX . The
resulting estimates for CFTD [36], La2CuO4 [9], CaCuO2

[17], Sr2IrO4 [22], and SrCuO2 [19] are listed in Table I.
Application to La2CuO4. In Fig. 1(a) we present a com-

parison of the magnon spectra found in MPS calculations
for t/U = 0.102, and inelastic neutron scattering experiments
on La2CuO4 [9]. Results are shown for both the dispersion,
characterized by S⊥(q, ω), and the intensity of the magnon
peak I (q) = S⊥(q, Eq), where Eq is the associated magnon
energy. We find excellent agreement for both quantities across
the vast majority of the Brillouin zone. Nonetheless, for q ≈
(π, 0), the intensity measured in experiment shows a small,
but systematic, reduction relative to simulation.

Turning to the magnon lineshape, in Fig. 3 we show a
comparison between dynamical structure factor measured in
INS and RIXS experiments, and calculated using MPS. In this
case, results are shown for S(q, ω), defined as

S(q, ω) =
∫ ∞

−∞

dt

2π

∑
ri

ei(ωt−q·(ri−r j ))〈Si(t ) · S j (0)〉. (6)

For q� = (π/2, π/2) [Fig. 3(a)], the majority of spec-
tral weight is found in the magnon peak, and MPS re-
sults provide a good account of experiment. However, for
qX = (π, 0) [Fig. 3(b)], a significant fraction of the spec-
tral weight measured in experiment is found in a broad
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FIG. 3. Comparison of excitations on the magnetic Brillouin
Zone boundary, as found in simulations using matrix product state
(MPS), and experiments on La2CuO4. (a) Dynamical structure fac-
tor S(q, ω) for q� = (π/2, π/2), showing good agreement between
MPS results for t/U = 0.102, inelastic neutron scattering (INS), and
resonant inelastic x-ray scattering (RIXS) [12]. (b) Equivalent results
for qX = (π, 0), showing agreement on peak position and amplitude,
but significant differences at high energy. (c) Evolution of S(qX , ω)
with increasing t/U , showing how spectral weight is redistributed
from the high-energy tail found in the Heisenberg model [t/U = 0],
to lower energies. All MPS simulations were carried out for Eq. (1),
with maximum bond dimension χ = 800, and energy resolution
0.13 J1, comparable to experiment.

high-energy continuum [9,10,12,60,61], which has been dis-
cussed as potential evidence for spinon excitations [10,31,62].
While MPS calculations for the effective spin model, Eq. (1),
correctly reproduce the dispersion for q ≈ qX , they do not re-
produce the lineshape seen in experiment. What distinguishes
them is the continuum at high energies, which manifests as
a broad, highly asymmetric peak in experiment, and as a
weaker, high–energy tail in simulation.

Calculations of S(q, ω) for the Heisenberg AF [Eq. (1),
lim t/U → 0], find a “roton minimum” in the magnon dis-
persion at qX = (π, 0) [27,28,30], accompanied by significant
spectral weight at high energies [31,33,36,63]. We have con-
firmed that our calculations are consistent with published
MPS results for the Heisenberg AF [33]. However, with in-
creasing t/U , we find that S(qX , ω) exhibits a transfer of
spectral weight from high to lower energies [Fig. 3(c)], lead-
ing to the result shown in Fig. 3(b). These calculations do
not, by themselves, resolve whether the high-energy continua
observed in La2CuO4, CaCuO2, and CFTD originates in frac-
tionalized excitations. However, since MPS results are robust
against changes in bond dimension, cylinder circumference,
and cylinder geometry [50], we infer that the disagreement be-
tween experiment and simulation for q ≈ qX [Fig. 3(b)] can-
not be explained using Eq. (1). We return to this point below.

Application to CaCuO2. The infinite-layer cuprate CaCuO2

is believed to exhibit particularly large cyclic exchange
[17,18,64]. In Fig. 1(b) we show magnon spectra found in
MPS calculations for t/U = 0.141, as compared with RIXS
experiments on the CaCuO2 [17]. Setting J1 = 172 meV, we
find reasonable agreement for the dispersion at high energies.
At low energies, the RIXS spectra show a gap at q = �,
which has been attributed to interlayer coupling [17]. Since
this is not included in our model, comparison is difficult.
However, the overall distribution of intensity I (q) shows good
agreement with experiment, except near qX = (π, 0), where
experiment shows a significant high-energy continuum, sim-
ilar to that found in La2CuO4. RIXS data for CaCuO2 have
previously been fitted using LSWT [17], leading to an esti-
mate t/U = 0.194, which places CaCuO2 near the limits of
stability of (π, π ) Néel order [Fig. 2(d)]. As in La2CuO4,
MPS results suggest that this is a significant overestimate,
cf., Fig. 1(d).

Application to Sr2IrO4. The quasi-two-dimensional anti-
ferromagnet Sr2IrO4 provides an interesting counterpoint to
La2CuO4, since it has a similar phenomenology [22,65], but
is known to exhibit strong spin-orbit coupling, with Ir4+

moments having the character j = 1/2 [66,67]. In Fig. 1(c)
we show comparison of RIXS data for Sr2IrO4 [22] with
MPS calculations for t/U = 0.154, setting J1 = 96 meV [65].
We find excellent agreement for dispersion and intensity of
magnon excitations across the entire Brillouin zone, consis-
tent with the idea that Sr2IrO4 can be described by a one-band
Hubbard model [68]. However, it should be noted the RIXS
data shown in Fig. 1(c) does not have sufficiently high reso-
lution to probe any gap at qM = (π, π ) coming from terms
breaking spin-rotation symmetry [24].

Limitations of LSWT. Spin wave theory (SWT) remains
an important tool for interpreting magnon spectra in experi-
ment [6,7,9,10,12,17,22]. Relative to MPS, fits based on low
orders of spin wave theory lead to systematic overestimates
in values of parameters [Fig. 1(e)]. This follows from two
effects: first that the spin model, Eq. (1), is underconstrained,
and second that corrections to LSWT from quantum fluctua-
tions are of the same scale as those coming from subleading
interactions.

While Eq. (1) has four parameters (J1, J2, J3, Jc), magnon
spectra for La2CuO4 are well described by LSWT calcula-
tions for an effective model with only two parameters: an AF
interaction Jeff

1 on first-neighbor bonds, and a FM interaction
Jeff

2 on second-neighbor bonds [8]. In [50] we show how
such a two-parameter model can be derived from Eq. (1),
and parametrized from a one-band Hubbard model, within
the lowest order of interacting SWT (LSWT + 1/S). How-
ever, in order to mimic the softening of magnon dispersion at
q� = (π/2, π/2) by quantum fluctuations, t/U must be made
artificially large. And this in turn leads to significant errors in
estimates of (J2, J3, Jc) [Fig. 1(e)].

In the case of La2CuO4, fits based on LSWT overestimate
J2, J3, and Jc by ∼100% [Fig. 1(e)]. Including 1/S correc-
tions reduces this error to �40%. Systematic calculations of
higher-order corrections [57,69–72] are currently lacking for
any realistic model of La2CuO4. However, recent calculations
for Eq. (1) within a modified spin wave theory, compare
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well with MPS results, at the expense of a more complicated
formalism [11].

What is missing from the spin model? If we take the dis-
agreement between experiment and simulations at face value
[Fig. 3(b)], we are obliged to ask what is missing from our
model of magnetism in La2CuO4? One possibility is that the
one-band Hubbard model [Eq. (2)] remains valid, but that
charge fluctuations at high order in t/U modify the spin dy-
namics. To rule this out, it would be necessary to calculate
directly from the Hubbard model, which is beyond the scope
of the present work. Alternatively, the Hubbard model itself
might need modification. The simplest extension would be
hopping t ′ on second-neighbor bonds [73], a term which has
been argued to play an important role in superconductiv-
ity [74,75]. Further refinements include spin-orbit coupling
[76–79], generalization to a three-band model [40,80,81], or
coupling to phonons. To distinguish between these alterna-
tives, it may also be necessary to revisit experiment. We leave
these as questions for future work.

Summary and conclusions. In this Letter, we have used
calculations based on matrix product states (MPS) to charac-
terize the magnon spectra of cuprate materials, starting from
the model commonly used to fit experiments: an effective
spin model with four-spin exchange [Eq. (1)], which descends
from a one-band Hubbard model [Eq. (2)]. We have made
explicit comparison with experimental results for La2CuO4

[Fig. 1(a)], CaCuO2 [Fig. 1(b)], and Sr2IrO4 [Fig. 1(c)], find-
ing generally good agreement with the measured magnon
dispersion throughout the Brillouin zone. We also find good
agreement for magnon lineshape, except near qX = (π, 0),
where experiment reveals a high-energy continuum which is
not well described by simulations [Fig. 3(b)]. We estimate

the ratio t/U that characterizes a one–band Hubbard in each
case (Table I), finding values which are systematically lower
than those obtained in published fits to linear spin wave the-
ory (LSWT). We also introduce a method of estimating t/U
directly from measured magnon energies at qX = (π, 0) and
q� = (π/2, π/2) [Fig. 1(d)].

These results suggest two main conclusions. First, that
fitting the magnon dispersion using linear spin-wave theory
leads to systematic errors in estimates of in values of ex-
change parameters, and corresponding overestimates of t/U .
And second, that, suitably parametrized, the “standard” model
describes some, but not all of the properties of the magnon
spectrum in cuprate antiferrimagents, providing a good overall
account of dispersion, but failing to capture the continuum
observed at high energies.
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