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Hidden spin liquid in an antiferromagnet: Applications to FeCrAs
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The recently studied material FeCrAs exhibits a surprising combination of experimental signatures, with
metallic, Fermi-liquid-like specific heat but resistivity showing strong nonmetallic character. The Cr sublattice
posseses local magnetic moments, in the form of stacked (distorted) kagome lattices. Despite the high degree
of magnetic frustration, antiferromagnetic order develops below TN ∼ 125 K suggesting the nonmagnetic Fe
sublattice may play a role in stabilizing the ordering. From the material properties we propose a microscopic
Hamiltonian for the low-energy degrees of freedom, including the nonmagnetic Fe sublattice, and study its
properties using slave-rotor mean-field theory. Using this approach we find a spin-liquid phase on the Fe
sublattice, which survives even in the presence of the magnetic Cr sublattice. Finally, we suggest that the features
of FeCrAs can be qualitatively explained by critical fluctuations in the nonmagnetic Fe sublattice due to proximity
to a metal-insulator transition.
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I. INTRODUCTION

The ubiquity of Landau’s Fermi liquid is a testament
to universality in the solid state. As such, departures from
these classic experimental signatures in metallic systems act
as a guide to novel and interesting physics. Non-Fermi-
liquid behavior appears in many strongly correlated materials
such as unconventional superconductors,1–3 heavy fermion
materials,4,5 and near quantum phase transitions.6,7 Some
routes to realize this behavior include coupling itinerant
electronic systems to localized magnetic moments and through
intermediate to strong electron-electron interactions. These
mechanisms can give rise to characteristics and experimental
signatures that do not fit neatly in the Fermi-liquid paradigm.

A recently reexamined compound, FeCrAs,8–10 provides a
direct example of a material that does not fit completely within
Fermi-liquid theory and combines aspects of the mechanisms
discussed above. The unit cell of FeCrAs shown in Fig. 1
shows Cr and Fe form alternating two-dimensional lattices
along what we will denote the c axis. Cr forms layers with
the structure of a distorted kagome lattice where the Cr-Cr
distances are approximately constant. The Fe layers have a
more complicated structure, forming a triangular lattice of
three atom units, which we will call trimers, as shown in Fig. 2.
The As is interspersed throughout both the Fe and Cr layers,
as well as in between. Most of the known experimental data is
nicely presented in Wu et al.,10 which we summarize below.

The specific heat exhibits Fermi-liquid behavior at low
temperatures, i.e., C ∼ γ T , where the slope γ is sample
dependent.11 The measured linear range is roughly T ∼
2–10 K. Resistivity measurements show nonmetallic behavior
at low and high temperatures. In-plane (ab) and out-of-
plane (c) resistivities are of the same order over the entire
temperature range considered. The resistivity monotonically
decreases (i.e., dρ/dT < 0) as T is raised from 4 K up to
∼800 K except for a small peak in the c-axis resistivity around
T ∼ 125 K. A low-temperature power law ρ ∼ ρ0 − AT α

is observed for T ∼ 80–10 K in both ab planes and c-axis
resistivity with α ∼ 0.6–0.7.

There is a peak in the susceptibility at TN ∼ 125 K indicat-
ing a magnetic transition with a lack of hysteresis pointing

to antiferromagnetic ordering. Below TN the susceptibility
is anisotropic, differing between the ab plane and the c

axis. Elastic neutron scattering12 done deep in the magnetic
phase, at T = 2.8 K, is consistent with the antiferromagnetic
order inferred from the susceptibility, signaling an ordering
vector at �Q = ( 1

3 , 1
3 ,0), indicating ferromagnetic (stacked)

order along the c axis, but with a tripled unit cell in the ab

plane. While measurements of the specific heat give a result
consistent with a metallic Fermi liquid, transport is unusual
and deviates strongly from the classic Fermi-liquid result
for metals, while being distinct from the expected result for
insulators. Furthermore, this material has a frustrated magnetic
sublattice that nonetheless orders at low temperatures, while
the remaining sublattices show either small or no magnetic
moment.10,12 The magnetic sublattice takes the form of a
distorted kagome lattice, where even classical Heisenberg
models fail to order magnetically for both the stacked13,14

and purely two-dimensional cases.15–19 Very few experiments
have been carried out on FeCrAs, so theoretical models are
not completely restricted. Regardless, there are a number of
questions that need to be addressed, such as the nature of
the stabilization of magnetic order, the cause of the very
different thermodynamic and transport signals, and the role
of the nonmagnetic sublattice.

The nature of the magnetic order has been recently
addressed by Redpath et al.,20 where a minimal model
was proposed which suffices to explain the experimentally
observed stabilization of a particular magnetic ordering vector.
However, transport and thermodynamic behavior remain to
be explained, along with the role of the nonmagnetic Fe
sublattice. In this paper, we elaborate a microscopic route
to an effective model for the compound FeCrAs, taking
into account the Fe sublattice, and present a scenario to
address the incongruities between the conflicting metallic,
Fermi-liquid specific heat and nonmetallic transport signals.
This model consists of interacting electrons of the nonmagnetic
Fe sublattice coupled to magnetic moments of the magnetic
Cr sublattice. Here we do not address the detailed nature
of the moments themselves, treating them classically,20 with
the non-Fermi-liquid physics arising from strong charge
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(a) View along c axis (b) Tilted view

FIG. 1. (Color online) FeCrAs unit cell viewed along the c axis
(left) and tilted away by 70◦ (right). Fe atoms are indicated in green,
Cr in blue, and As in yellow.

fluctuations occurring at intermediate Hubbard coupling in
the Fe sublattice. In this picture we are excluding any Kondo
physics, a view supported by the experimental results. Our
emphasis is on the interplay between strong charge fluctuations
near the metal-insulator transition on the Fe sublattice and the
magnetic order of the Cr sublattice. For this we turn to the
slave-rotor method which allows access to the intermediate
coupling regime and metal-insulator transition.

The structure of the paper is as follows: in Sec. II we
present an argument to pass from the atomic limit through
to an effective model of the electronic degrees of freedom
in FeCrAs. In Sec. II D we discuss the localized moments and
magnetic interactions and we present the effective Hamiltonian
relevant for FeCrAs. We proceed to review the slave-rotor
method in Sec. III and the assumptions and implementation
of our mean-field theory in Sec. IV. In Sec. V we comment
on the application of our results to FeCrAs and summarize
conclusions in Sec. VI.

II. EFFECTIVE HAMILTONIAN

A. Local environments and spin states

Considering the common oxidation states of Fe we will
take (in the atomic limit) Fe3+ as a starting point. This leaves
the valence configuration being 3d5 for Fe3+. Following the
experimental data, we assume that the Fe atoms are in a low
spin state, due to the lack of a detectable magnetic moment.12

The tetrahedral arrangement of the As atoms about each Fe
atom, shown in Fig. 3(a), implies a crystal field producing a
splitting of the Fe d levels, shown in Fig. 4(a), with a pair of
low-lying e levels and a threefold degenerate set of t2 levels,
separated by the crystal-field gap. Assuming the low spin case
is relevant, the two e states are filled and there is a single
electron in the t2 triplet shown in Fig. 4(b).

The case of Cr is more complicated, as the experiments
do not single out a more probable spin state. For Cr we will
take an ionic charge of Cr2+, giving a valence configuration of
3d4. A distorted octahedral environment, shown in Fig. 3(b),

(a) Trimer Lattice (b) Relation to Cr sublattice

FIG. 2. (Color online) (a) The Fe sublattice with trimers shown
explicitly. (b) The local environment of the trimer, with respect to the
Cr sublattice.

(a) Tetrahedral (b) Pyramidal (c) Trimer

FIG. 3. (Color online) The local environments of the Fe (a), Cr
(b), and trimer (c). The Fe atom is tetrahedrally coordinated and the
Cr atom is approximately octahedrally coordinated. The trimer is
surrounded by three tetrahedra that share a common axis.

reduces the symmetry about this site to C4v , with crystal-field
splittings shown in Fig. 5(a). The low spin state [shown in
Fig. 5(b)] can still yield an S = 1 spin moment, while the high
spin state has an S = 2 moment. In the low spin case, hopping
onto the Cr2+ will be suppressed by the orbital repulsion, while
for the high spin case the crystal-field energy will give a further
supression.

We would like to emphasize that the arguments and models
presented here are underconstrained by both experimental
results and first-principles electronic structure calculations.21

Due to this limitation the precise details could fail quanti-
tatively, but the subsequent effective Hamiltonian appears to
be robust to a variety of ionic configuration changes in the
underlying model. For example, the specific oxidation state we
use for the Cr will be irrelevant to our final discussion, as only
the localized character is needed to capture the gross magnetic
features.20 With this in mind, below we present a possible route
from the microscopic Hamiltonian to the effective model.

B. Iron-chromium interactions

Since the Fe-Cr distance is considerably smaller than the
direct Fe-Fe distances outside the trimers and the indirect
Fe-As-Cr distance, we will consider interactions induced by
Fe-Cr-Fe hopping paths. First we define a simple model for
an isolated Cr atom, assuming a low spin state as shown in
Fig. 5(b). The local Hamiltonian for the Cr e doublet assumes
the natural form

HCr = �
∑
jασ

njασ + U
∑
jα

njα↑njα↓ − J
∑

j

( ∑
α

�Sjα

)2

,

(1)
where njασ = e

†
jασ ejασ is the number operator for the state

in the doublet α. We have denoted the atomic potential as �,

(a) Effect of the tetrahedral
crystal field

(b) Low spin state for Fe3+

FIG. 4. The effect of the crystal field on the Fe3+ ion. The local
symmetry about this site is tetrahedral; that is, the group Td .
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(a) Effect of the crystal fields (b) Low spin
state for Cr2+

FIG. 5. The effect of crystal fields on the Cr2+ ion. The Cr ion
is biased toward one direction of the octahedron. This reduces the
symmetry to the group C4v .

the intraorbital repulsion as U , and the Hund’s coupling as J .
Allowing for hopping between Fe and Cr, we include the term

HCr-Fe = −
∑
ijσα

tαij d
†
iσ ejασ + H.c., (2)

where i runs over the orbitals on sites connected to the Cr
atom at site j and d is the annihilation operator on the Fe site
i. Integrating out all of the high-energy degrees of freedom on
the Cr atom, the ground state for sufficiently large J is given
by the doubly occupied, S = 1 triplet states, which we denote
by |tja〉 with a = 0,±. Noting that HCr-Fe does not connect
triplet to triplet states, as it changes the electron number on the
Cr atom we can formulate the effective Hamiltonian following

Heff = PtHCr-Fe (E0 − HCr)
−1 H

†
Cr-FePt , (3)

where E0 is the triplet energy and Pt = ∑
ja |tja〉〈tja| projects

onto the triplet subspace. Carrying out the expansion of the
effective Hamiltonian, denoting the spin operators on the Cr
and Fe atoms as �Si and 1

2d
†
i �σdi , respectively, our full effective

Hamiltonian is given by

Heff = −
∑
ij l

1

W

(∑
α

tαij
(
tαlj

)∗
)

d
†
i (1 − �σ · �Sj )dl, (4)

where

1

W
= U + 5J

2

�2 + (
5J
4

)2 + U
(

5J
4 − �

) > 0. (5)

For i = l this represents an antiferromagnetic exchange
between the Fe and Cr atoms, while i 
= l presents a spin-
dependent hopping term, nonzero for both intratrimer and
intertrimer hopping paths. Based on overlap of the orbital wave
functions, we assume that the hopping

∑
α |tαij |2 is dominant for

i = l and independent of the orbitals, leading to the effective
exchange Hamiltonian

H exch
eff =

∑
ij

1

W

(∑
α

∣∣tαij ∣∣2

)
d
†
i (�σ · �Sj )di, (6)

up to a shift of the chemical potential. For future use, we will
denote the effective exchange as

JK = 1

W

∑
α

∣∣tαij ∣∣2
> 0. (7)

C. Trimer approximation for Fe

From the interatomic distances we expect that the Fe-Fe
atoms in the trimer structure are tightly coupled. We can
take advantage of this by grouping the degrees of freedom
in the trimer into a single unit and formulating the rest
of our theory in terms of these variables. This process is
similar to the treatment of the pairs of molecules as the
effective degrees of freedom frequently employed in studies of
organic superconductors.3 This assumes the energy scales for
interactions and intertrimer hopping matrix elements are small
relative to the intratrimer hoppings. In addition, we require that
the tetrahedral crystal-field splitting be much larger than our
intraorbital interactions (this is the low spin assumption) and
both the intra- and intertrimer hopping elements.

With this in mind, let us find the low-energy degrees
of freedom of a trimer, keeping only the three-site cluster.
Considering the C3 symmetry, there are four possibilities for
the degeneracies of the two lowest levels, leading to either
a half- or quarter-filled band as the relevant states (assuming
all gaps are large compared to the relevant energy scales).
Motivated by the Slater-Koster argument in the Appendix, we
start with a model for the xy, xz, and yz orbitals of the trimer:

Htrimer = −
∑
〈ij〉

d
†
i

⎛
⎝ 0 txz,yz 0

txz,yz 0 0
0 0 txy,xy

⎞
⎠ dj , (8)

where d
†
i = (d†

i,xz d
†
i,yz d

†
i,xy) and i,j = 1,2,3 are the sites in

the trimer. The xy part is just a simple three-site chain with a
ground state at −2txy,xy and a pair of excited levels at txy,xy . For
the xz and yz orbitals we can diagonalize Htrimer by changing
the basis:

di,+ = 1√
2

(di,xz + di,yz), (9)

di,− = 1√
2

(di,xz − di,yz). (10)

This gives a pair of decoupled three-site chains with hoppings
±txz,yz and thus energy levels of ±2txz−yz and ∓txz,yz. When
1
2 txy,xy < txz,yz < 2txy,xy a single half-filled level in the trimer,
symmetric under permutations of the three sites, is realized.
Ignoring all of the other matrix elements in the complete
hopping matrix, we find (see the Appendix)

txz,yz ∼ 1
32 (7tδ − 16tπ + 9tσ ) , (11)

txy,xy ∼ 1
64 (49tδ − 12tπ + 3tσ ) . (12)

A more complete model would include mixing between
all three orbitals but the qualitative picture should remain the
same. The naive choice of tδ < tπ < tσ seems to select the
case of txy,xy > txz,yz and thus the single occupied band has
d+ character (shown in Fig. 6). Note the gap between the
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(a)Spectrum when
txz ,y z > txy ,xy

(b)Spectrum when
txy ,xy > txz ,y z

FIG. 6. The two cases that give rise to a half-filled band, with
txy,xy ≈ txz,yz. We can either have a band with (a) dxy character or
with (b) d+ character.

occupied level and the half-filled level is given by

�trimer ∼ 2|txy,xy − txz,yz| = 5
64 |7tδ + 4tπ − 3tσ | , (13)

and must be fairly large to ensure that the trimer approximation
is valid. We emphasize that regardless of the exact details of
the these hoppings the qualitative picture will remain, as long
as this half-filling is found such as for Fe3+. Other oxidation
states will give a different relevant molecular orbital, possibly
with extra orbital degeneracy, and could change the picture
presented here.

D. Effective Hamiltonian and magnetic interactions

The gross magnetic structure of FeCrAs can be captured
by a classical model of localized moments interacting with
the Fe sublattice via a simple exchange.20 The utility of the
classical model for the moments is also supported by the fact
that Kondo-like signatures are absent in the experimental data.
Futhermore, due to the uniform character of the relevant trimer
states and the assumption of equal exchanges between Cr and
different Fe orbitals, the effective exchange between the Cr
and the trimers will be equal and between all of the Cr in the
surrounding hexagons in the layers above and below. We thus
take our Hamiltonian to have the form

H = −t
∑

〈ij〉∈ab

∑
σ

c
†
iσ cjσ − t ′

∑
〈ij〉∈c

∑
σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓

+ JK

2

∑
i,a∈ i

(c†i �σci) · �Sa + JH

∑
〈ab〉

�Sa · �Sb, (14)

where the low-energy degrees of freedom on the trimers are
denoted using the operators c

†
iσ ,ciσ and the classical Cr spins

are denoted as �Sa . The trimer sublattice is afforded hoppings t

and t ′ which originate from direct overlaps between trimers (or
indirectly via Cr or As) in the ab planes and along the c axis,
respectively. Here we denote sites on the Fe sublattice as i and
j , while sites on the Cr sublattice are denoted as a and b. The
notation a ∈ i indicates that the sum on the Cr sublattice
is over sites in the hexagon that surround the trimer at i on
the Fe sublattice. Furthermore, 〈ij 〉 ∈ ab,c denotes bonds in
the ab plane or c direction, respectively. The interactions are
given as follows: U is the intratrimer repulsion, inherited from
the Fe atoms, JK is the Fe-Cr exchange and JH is the Cr-Cr
exchange. This is shown in Fig. 7. In this Hamiltonian the
Cr spins appear as an effective magnetic field for the trimers,
which we will denote as �hi = ∑

a∈ i
�Sa .

Trimer (Fe)

Cr

t

t

JHJK

FIG. 7. (Color online) The hoppings and exchanges for the model
Hamiltonian in Eq. (14). The notations are discussed in the text.

In the large U limit, where U � t and t2/U,(t ′)2/U �
JK,JH , this model should reproduce the model studied in
Ref. 20, and thus their classical results provide a useful point
of comparison for our large U/t behavior. To attack the
intermediate U/t regime we will use a slave-rotor approach,
reviewed in the following section.

III. SLAVE ROTORS

For completeness and standardization of notation, we
review the general properties of two-dimensional rotors and
follow with a discussion of the slave-particle representation
that bears their name.22

A rotor in two dimensions is an object that possesses only
angular momentum, prototypically of the form H ∝ L2, where
L is the angular momentum operator about some axis, say the
ẑ axis. We classify states by the eigenstates of the L operator,
L |n〉 = n |n〉, where n is an integer. Raising and lowering
operators are defined as

U † |n〉 = |n + 1〉 , U |n〉 = |n − 1〉 ,

where U is a unitary operator. From this definition it is simple
to show that L and U satisfy the commutation relations,

[L,U ] = −U, [L,U †] = U †.

Since U is unitary it can be written as U = exp(−iθ ), where
θ † = θ and one can show that this implies the canonical
commutation relation [θ,L] = i, showing that L and θ are
canonically conjugate variables.

To use these rotors as a slave particle we associate the local
electron basis with the product of the states of slave fermion
and the states of an O(2) rotor,

|0〉 = |0〉f |+1〉θ ,

|↑〉 = |↑〉f |0〉θ ,

|↓〉 = |↓〉f |0〉θ ,

|↑↓〉 = |↑↓〉f |−1〉θ .

The slave fermion is called a spinon and spinon states are
denoted by an f subscript. The slave rotor will be referred to
as a rotor and a θ subscript will be used to denote rotor states.
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The natural interpretation is to have the spinon be neutral
and the rotor carry the charge of the electron, thus explicitly
separating the spin and charge degrees of freedom. Having
expanded our local Hilbert space, a constraint is required to
remove the unphysical states. The four physical states above
are characterized by

Li +
∑

σ

n
f

iσ = 1,

where Li is the rotor angular momentum operator and n
f

iσ is the
spinon number operator. This is the Hilbert space constraint.
The electron operators can therefore be expressed as

ciσ = fiσ eiθi ,

where exp (−iθi) is the rotor-lowering operator and fiσ ,f †
iσ

are the fermionic spinon operators. Using this representation
the electronic Hamiltonian for the trimers (14) is written as

He = −t
∑

〈ij〉∈ab

∑
σ

f
†
iσ fjσ e−i(θi−θj )

− t ′
∑
〈ij〉∈c

∑
σ

f
†
iσ fjσ e−i(θi−θj )

+ U

2

∑
i

Li(Li − 1) + JK

2

∑
i,a∈ i

(f †
i �σfi) · �Sa.

The Hubbard term is now a kinetic term for the rotors, so
the complexity of the Hubbard interaction has been moved to
the hopping term and the constraint. We note that the Fe-Cr
coupling term only involves the spinon degrees of freedom.

IV. MEAN-FIELD THEORY

We approach this problem using mean-field theory. For
simplicity we take the perspective of Florens and Georges,22

first decoupling the hopping term into

f
†
iσ fjσ e−i(θi−θj ) ≈ χij e

−i(θi−θj ) + Bijf
†
iσ fjσ − χijBij ,

where we have introduced the mean fields χij =
1
2

∑
σ 〈f †

iσ fjσ 〉 and Bij = 〈e−i(θi−θj )〉. Note that we have as-
sumed that χij is independent of spin. To handle the constraint
we treat it both on average in space and on average in our states.
For the case of half-filling this leads to the two conditions∑

i

〈Li〉 = 0,
∑
iσ

〈
n

f

iσ

〉 = 1.

Note that applying this on average in space prohibits us from
considering charge ordering in our calculations. To enforce
these constraints we introduce chemical potentials for the
rotors and for the spinons, μL and μf , respectively. This leads
to two independent Hamiltonians which only talk to each other
through the mean fields χij and Bij ,

Hf = −
∑
〈ij〉σ

(tijBij + μf δij )f †
iσ fjσ

+ JK

2

∑
i,a∈ i

(f †
i �σfi) · �Sa,

HL = −2t
∑
〈ij〉

χij e
−iθi eiθj + U

2

∑
i

(
L2

i − μLLi

)
,

where we have introduced tij which is equal to t on the in-plane
triangular bonds and equal to t ′ on the out-of-plane bonds.
While the spinon Hamiltonian can be treated using mean-field
theory, the rotor Hamiltonian needs a different strategy.

Two approaches for the rotor Hamiltonian have been used
in the literature: a self-consistent cluster approach23 and a
bosonic approach.22 Taking the bosonic approach, which is
most simply tackled using a path-integral formulation, the
imaginary time action takes the form

S(θ,L) =
∫ β

0
dτ

[ ∑
i

(
iLi∂τ θi + U

2
L2

i

)

− 2
∑
ij

tijχij e
−iθi eiθj

]
,

where μL is chosen to eliminate the linear terms in S. Due
to the symmetry of the action this guarantees that 〈Li〉 = 0.
Next, we integrate out L to get the following action:

S(θ ) =
∫ β

0
dτ

⎡
⎣ 1

2U

∑
i

(∂τ θi)
2 − 2

∑
〈ij〉

tijχij e
−iθi eiθj

⎤
⎦ .

(15)
We write this using a bosonic variable φi = eiθi subject to the
constraint that |φi |2 = 1, giving

S(φ̄,φ; λ) =
∫ β

0
dτ

[
1

2U

∑
i

|∂τφi |2 − i
∑

i

λi

+
∑
〈ij〉

(iλiδij − 2tijχij )φ̄iφj

]
, (16)

where λ is an auxiliary field introduced to enforce the
constraint. Treating this new constraint in saddle-point approx-
imation, the solution of the bosonic part of the Hamiltonian
is reduced to solving this saddle-point equation and a free
bosonic problem. These saddle-point equations simply fix the
boson number at each site to one.

We assume a uniform state on the Fe sublattice, by
considering χij ≡ χ and Bij ≡ B in plane, with χij = αχ

and Bij = αB out of plane, where α is chosen so that we
smoothly match the noninteracting limit.1 For the Cr spins
it is natural to assume that the periodicity is that found by
experiments10,12 and previous classical calculations,20 with
wave vector (1/3,1/3,0). Within this space of magnetic states,
we consider only canted classical ground states; that is, states
where the in-plane components in each triangle are at 120◦
apart, but they are tilted out of plane by a canting angle
ψ . These states interpolate between a subset of the ground
states for JH � JK at ψ = 0 and the ferrimagnetic state20

valid for JK � JH with ψ = π/2. Among these states one
can see that only those with a finite moment, as one sums
around a hexagon in the kagome lattice, will be favored due
to the JK interaction. With these constraints we only have a

1More general ansatzes could be employed while maintaining
uniformity, such as varying the phases of χ and B over the tripled
unit cell or including spin-dependent χ . For simplicity we leave these
considerations for future work.
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φ = 0

ψ = 0

χ, B = 0
φ = 0

ψ = 0

χ = B = 0
φ = 0

0 < ψ < π
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χ = B = 0
φ = 0

ψ = 0
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ψ = π
2

JH/t = 0.4

FIG. 8. (Color online) Phase diagram as a function of JK/t and
U/t for the value JH /t = 0.4. The inset diagrams show a sample of
the Cr spin configuration on one of the kagome triangles. χ and B

are the slave-rotor mean-field parameters, 〈φ〉 is the rotor condensate,
and ψ is the Cr canting angle (see text).

single set of magnetic states to consider parametrized by the
canting angle ψ . Under these assumptions the trimer feels the
following effective magnetic field (defined as �hi = ∑

a∈ i
�Sa)

after summing around the hexagon

�hi = 6S cos ψ[cos ( �Q · �ri)x̂ + sin ( �Q · �ri)ŷ] + 12S sin ψẑ,

where �Q = (1/3,1/3,0) and S is the magnitude of the Cr
moment. Note the factor of 2 between the in-plane and out-
of-plane components due to the partial cancellation as we sum
around the hexagon. The phase diagram for JH/t = 0.4 is
shown in Fig. 8, and demonstrates the full range of phases.

There are three distinct phases shown in these phase dia-
grams. At low JK/t and U/t we find a metallic phase on the Fe
sublattice with zero canting angle (i.e., in plane, 120◦ ordering)
on the Cr sublattice. This metallic state is characterized by
condensation of the bosonic degree of freedom (〈φ〉 
= 0) and
a uniform, real χij = |χ | implying the existence of an electron
Fermi surface and gapless charge excitations. Futhermore, the
Fe trimers have an induced moment (antiferromagnetically)
following the Cr moment. This moment scales with JK/t , and
thus will be small so long as JK/t is. As we increase U/t

and keep JK/t small, we find a metal-insulator transition near
Uc/t ≈ 3.5 into a uniform, U (1) spin-liquid (SL) phase. The
metal-insulator boundary is very flat, as seen in Fig. 8, since
under the mean-field ansatz we have employed the critical U is
only a function of χ , which changes only by a small amount as
we increase JK (below the jump into the paramagnet phase).
This SL phase is also characterized by a uniform, real χij but
gapped bosons (〈φ〉 = 0), meaning the existence of a spinon
Fermi surface but gapped charge excitations. This insulating
phase carries the induced moment as in the metallic phase,
with the magnitude also being proportional to JK/t . In both
the metallic and insulating phases as JK/t is increased (but
remains small) the χ -order parameter decreases toward zero.

From the spin-only model of Ref. 20 (accounting for the
differing normalizations) one expects that for large U/t the
canting angle will become nonzero at JK = 2JH and saturate
at JK = 4JH as one sees in Fig. 8. We find that the uniform spin
liquid does not support a nonzero canting angle. By this we

mean that as JK/t is increased, the canting angle remains zero
until some critical JK/t , wherein the spin liquid is replaced
by the canted antiferromagnet (AF) with χ = B = 0. The
converse is not true, as can be seen in Fig. 8. We see that
the spin-liquid phase can be destroyed before the onset of
the canted magnetic state, leaving a window where we have
a simple insulating, in-plane antiferromagnet. Once inside
this canted AF phase with χ = B = 0, the canting angle
increases with JK/t until it becomes saturated and we enter
a ferrimagnetic phase, with a net magnetic moment. The key
feature of the phase diagrams we want to emphasize is that for
a variety of values of JH and for small JK this spin-liquid state
is stable and does not coexist with a finite canting.

V. DISCUSSION

To discuss the applications of this to FeCrAs the effects of
fluctuations must be taken into account near the metal-insulator
transtion. These include both charge and gauge degrees of
freedom and are treated in detail in the work of Podolsky
et al.24 In this work it is found that there are two relevant
temperature scales T ∗ and T ∗∗ that determine the qualitative
features of the thermodynamic and transport properties. These
temperature scales vanish as one approaches the critical point
separating the metal and insulator. At temperatures above these
scales the specific heat has weak logarithmic corrections

C ∼ T ln ln(1/T ), (17)

while the conductivity has a strong temperature dependence.
Specifically, writing σ = σf + σb, where σf is the spinon con-
ductivity and σb is boson conductivity, under the assumption
of weak disorder we have σf ∼ σ

imp
f due to impurity scattering

and

σb ∼ T ln2(1/T ). (18)

This implies that the effects of the fluctuations on the specific
heat are much more difficult to discern experimentally than
the effect on the resistivity, which will be a monotonically
decreasing function of T , as seen in the experiments on
FeCrAs. This is a possible scenario for FeCrAs where
a nearly linear specific is observed, as these logarithmic
corrections would only be visible over large temperature
ranges, where other contributions would begin to dominate
and wash out the signature. This is also consistent with the
magnetoresistance measurements,10 where no change is seen
in the low-temperature resistivity under magnetic fields up to
8 T, as the magnetic field would only couple weakly to the
rotor fluctuations.

A method to test this hypothesis experimentally would
be a study of the pressure dependence of the transport
and thermodynamic properties. Naively one expects that the
application of pressure should drive the material through the
metal-insulator transition, into the quantum critical metal and
eventually into a Fermi-liquid phase. Under our scenario,
this could, in principle, be visible as the development of a
maximum in the resistivity at low temperatures as the pressure
is increased. Furthermore, the specific heat should be relatively
unaffected, still only being renormalized by a logarithmic
term.
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(a) xy orbital (b) xz orbital (c) yz orbital

FIG. 9. (Color online) The orbitals of the t2 level, rotated along
the local axes of an As tetrahedron.

The limitations of the current study deserve some discus-
sion as they lead to future directions. Due to the natural ansatz
used in the slave-rotor study, a number of nontrivial spin-liquid
states have been excluded from the analysis, such as those with
a nontrivial phase structure or those that break translational
symmetry.25 A full exploration of the possible phases in this
model could yield useful insights for FeCrAs. Another aspect
of this problem that requires future work is the inclusion of
quantum effects in the description of the Cr spins, leading
to a Kondo-Heisenberg model with strong interactions for
the conduction electrons. While the addition of frustrating
interactions for the Kondo spins has attracted attention
recently,26,27 the inclusion of electronic interactions is largely
unaddressed (particularly with frustration on the conduction
electrons) and is an interesting, but highly nontrivial, question
for future study.

VI. SUMMARY

In this paper we have presented and motivated a minimal
model for the low-energy degrees of freedom in the compound
FeCrAs. Starting from the crystal structure and using the
experimental facts, we have argued that the magnetic degrees
of freedom are well described by a set of classical, localized
moments and the electronic degrees of freedom take the
form of a half-filled Hubbard model on the trimer sublattice.
The coupling between these two subsystems stabilizes a
definite magnetic order on the localized moments despite
the high degree frustration. To explain the thermodynamic
and transport properties of this material at low temperatures
we propose that the electrons residing on the Fe trimers
could be close to a quantum critical point separating metallic
and insulating phases. The charge fluctuations associated
with these critical points strongly renormalize the transport
properties but provide only small corrections to the thermody-
namics, qualitatively consistent with the experimental results
on FeCrAs. Finally, we have discussed unexplored experi-

mental consequences of this proposal and future directions for
theoretical work.
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APPENDIX: HOPPING INTEGRALS

We first consider direct hopping between the Fe atoms in a
trimer. The t2 level is composed of xz, yz, and xy orbitals with
respect to the canonical choice of tetrahedron axes. Rotating
these into the axes of a tetrahedron in a trimer, the orbitals are
oriented as shown in Fig. 9.

From Fig. 9 one can estimate that the only significant
hoppings would be between xy − xy, xz − yz, and yz − xz.
One can approach this more quantitatively using the ideas of
Slater-Koster28 theory to compute the orbital overlaps in terms
of rotation matrices and irreducible overlaps. We identify the
vector connecting two sites in a trimer â as (x̂ + √

3ŷ)/2,
giving the (Euler) representation R = Rẑ(0)Rŷ(−π

2 )Rẑ(−π
3 ).

The rotation that takes our tetrahedron into the proper axes is
given as RT = Rẑ(−π

2 )Rŷ(π
2 )Rẑ(π

4 ) giving the transformation
to local axes RT and Rẑ( 2π

3 )RT for the neighboring tetrahedron
in the trimer. This reduces the number of parameters to three,
given by overlaps of l = 2, m = 0, ± 1, ± 2 orbitals displaced
along the ẑ direction, which we will denote as tσ , tπ , and tδ ,
respectively. The hopping matrix in the basis of xz, yz, and xy

is then given by

1

32

⎡
⎢⎣

tδ−8tπ −9tσ 7tδ−16tπ +9tσ

√
3
2 (−7tδ−4tπ +3tσ )

7tδ−16tπ +9tσ tδ−8tπ −9tσ

√
3
2 (−7tδ+4tπ −3tσ )√

3
2 (7tδ+4tπ −3tσ )

√
3
2 (−7tδ−4tπ +3tσ ) 1

2 (49tδ−12tπ +3tσ )

⎤
⎥⎦ .

Considering the orbitals at atomic separations, we expect tσ
and tδ are positive with tπ negative. The simplest ansatz to try
is tσ = tδ = −tπ ≡ t . This gives

t

⎛
⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎠ , (A1)

as one might guess by looking at the orbital overlaps in the
rotated axes. Varying the numerical values for the irreducible
hopping parameters around this point gives qualitatively the
same picture as this simple case, justifying our naive guess.
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