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Competing interactions in frustrated magnets can give rise to highly degenerate ground states from
which correlated liquidlike states of matter often emerge. The scaling of this degeneracy influences the
ultimate ground state, with extensive degeneracies potentially yielding quantum spin liquids, while
subextensive or smaller degeneracies yield static orders. A long-standing problem is to understand how
ordered states precipitate from this degenerate manifold and what echoes of the degeneracy survive
ordering. Here, we use neutron scattering to experimentally demonstrate a new “nodal-line” spin liquid,
where spins collectively fluctuate within a subextensive manifold spanning one-dimensional lines in
reciprocal space. Realized in the spin-orbit-coupled, face-centered-cubic iridate K2IrCl6, we show that the
subextensive degeneracy is robust, but remains susceptible to fluctuations or longer-range interactions
which cooperate to select a magnetic order at low temperatures. Proximity to the nodal-line spin liquid
influences the ordered state, enhancing the effects of quantum fluctuations that in turn act to stabilize the
sublattice magnetization through the self-consistent opening of a large spin-wave gap. Our results
demonstrate how quantum fluctuations can act counterintuitively in frustrated materials: Even in a case
where fluctuations are ineffective at selecting an ordered state from a degenerate manifold, at the brink of
the nodal spin liquid, they can act to protect the ordered state and dictate its low-energy physics.
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I. INTRODUCTION

The promise of discovering novel states of matter
governed by quantum and thermal fluctuations drives a
sustained interest in highly frustrated magnetic materials.
One of the oldest and most important examples is the
Heisenberg antiferromagnet (AFM) on the face-centered-
cubic (fcc) lattice. Anderson [1] showed that classically its
ground-state degeneracy scales subextensively in the sys-
tem size and includes coplanar spin spirals characterized by

all magnetic wave vectors spanning one-dimensional lines
in reciprocal space. As the temperature is lowered, fluctua-
tions of the spins become more confined to states on these
lines, forming a correlated state we term a “nodal-line spin
liquid.” This spin liquid is distinguished from a conven-
tional paramagnet by having growing correlations along
two spatial directions as the temperature is lowered but only
short-range correlations along the third. As shown in Fig. 1,
some examples of correlated paramagnets include spiral-
spin liquids, where the degenerate states span surfaces in
momentum space [2,3], and classical spin liquids [4–8],
where degenerate states span a volume, and all exhibit
significant and structured magnetic correlations. Among
these correlated paramagnets, the nodal-line spin liquid has
the least degeneracy and thus sits closest to conventional
magnetic order.
Because of its subextensive degeneracy, the nodal-line

spin liquid is susceptible to order via quantum or thermal
fluctuations—“order by disorder” [9–12]. For the fcc
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Heisenberg AFM, thermal [13,14] and quantum [15] fluc-
tuations each favor a subextensive set of collinear Néel
states [1,16], both ultimately selecting so-called “type-I”
magnetic order characterized by a (1, 0, 0) propagation
vector [Fig. 2(a)]. However, the selection of this type-I order
among the collinear states is extremelyweak, with an energy
difference of only approximately 0.25% of the Heisenberg
exchange J, and with many other metastable collinear states
lying within approximately 1% of J in energy [15]. While
the classical degeneracy of the nodal-line spin liquid and

fluctuation-induced selection are robust to nearest-neighbor
anisotropic exchange interactions, it can be lifted energeti-
cally by further-neighbor couplings. For example, next-
nearest-neighbor (NNN) Heisenberg exchange selects type-
I order when ferromagnetic, but selects the “type-III” state, a
collinear Néel order with propagation vector (1, 0.5, 0)
[Fig. 2(b)], when antiferromagnetic [17].
In each case, ordering out of the nodal-line spin liquid

proceeds through a multistep process. First, order by
disorder singles out the submanifold of discrete collinear
states from the continuous manifold of the nodal-line spin
liquid. Despite their near degeneracy, each of these local
minima exhibits conventional magnetic order with no
gapless spin-wave excitations, aside from any required
Goldstone modes. Second, a specific collinear state among
the local minima is selected by either fluctuations or
energetic effects. While the ordered state is ultimately
determined by the second stage, the low-energy physics—
including the excitations and thermodynamic properties—
are dictated by the fluctuation-induced selection arising in
the first stage. This leads to a counterintuitive result: Even
though the final order-by-disorder selection of the ground
state is very weak, each of the collinear states is stable, with
a large spin-wave gap generated by strong quantum
fluctuations along the nodal-line directions of the parent
spin liquid. This large gap then suppresses fluctuations that
would otherwise reduce the ordered moment. Thus, despite
the difficulty of fluctuations in selecting a unique ground
state, they act to stabilize whichever particular ordering is
singled out by subleading perturbations and ultimately
dictate the physics of the material.
While much theoretical and experimental effort has been

made on fcc AFMs [18–25], a clear example of this physics
has not been found. An important compound in this context
is the vacancy-ordered double perovskite K2IrCl6 which
has sustained more than 70 years of interest [18–22,26–38].

FIG. 2. Illustration of several magnetic ground states of the
Heisenberg-Kitaev-Γ model on the fcc lattice when K > 0,
including (a) type-I and (b) type-III Néel states and (c) and
example of a generic “stacked” state formed by Néel planes
stacked along the x̂ direction. Moments are parallel or antiparallel
to the stacking direction, with the stacked Néel planes high-
lighted, and all magnetic ordering vectors Q are indexed in the
cubic fcc unit cell.
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FIG. 1. Illustration of the spin correlations encoded in the equal time structure factors SðQÞ of a variety of model magnetic phases:
from the highly frustrated extensively degenerate Coulomb spin liquid and subextensively degenerate spiral and nodal spin liquids to
conventional magnetic order. These structured correlations are present throughout momentum space for the Coulomb case, along
surfaces for the spiral-spin liquid, along lines for the nodal-line spin liquid, and are confined to points for conventional order.
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Despite such an effort, the magnetic Hamiltonian of
K2IrCl6 has yet to be resolved due to an absence of any
inelastic neutron-scattering data. In addition to the presence
of geometric frustration, the magnetic degrees of freedom
in K2IrCl6 are spin-orbital entangled j ¼ 1=2 states [39]
supporting bond-dependent Kitaev interactions, which are
believed to be significant relative to the Heisenberg
exchange [24,28,36,40]. A minimal nearest-neighbor
Hamiltonian including Kitaev exchange can be written [41]

X
hijiγ

h
JSi · Sj þ KSγi S

γ
j

i
; ð1Þ

where we have divided the bonds of the lattice into three
types: x, y, and z, depending on whether they lie in the cubic
yz, zx, or xy planes. Early magnetic neutron-diffraction
experiments on K2IrCl6 revealed a type-III antiferromag-
netic order below approximately 3K [31] shown in Fig. 2(b).
Based on this observation and a consistent explanation of the
bulk magnetic properties, K2IrCl6 has long been considered
to represent a near ideal fcc lattice with weak antiferromag-
netic NNN interactions [36,37]. However, recent electron
spin resonancemeasurements indicate NNN termsmay play
only a perturbative role and order-by-disorder physics may
be essential [38] in explaining its properties. To date, there
are no reported measurements of momentum-resolved
dynamic correlations characterizing the excitation spectrum
of this highly frustrated anisotropic magnet.
In this article, we show the physics of this nodal-line spin

liquid, and its consequences in the ordered phase is realized
in K2IrCl6. First, through comprehensive neutron-scatter-
ing measurements and theoretical modeling of the dynamic
spin correlations, we conclusively demonstrate that K2IrCl6
is a nearly ideal realization of the Heisenberg-Kitaev model
on the fcc lattice. This model is highly frustrated, with a
specific Néel ordering only weakly selected by small NNN
interactions or by quantum fluctuations even in the pres-
ence of Kitaev interactions. Despite the appearance of static
magnetic order, as observed by diffraction measurements, a
hard excitation gap, and long-lived spin waves, linear spin-
wave theory (LSWT) theory completely fails as a descrip-
tion of magnetic excitations in K2IrCl6. Instead, we find
that the physics of the excitation spectrum is dominated by
fluctuation effects that generate a large, approximately
0.7 meV, excitation gap—about 30% of the overall approx-
imately 2.5-meV magnon bandwidth. Above the Néel
temperature TN ¼ 3.1 K, we establish that the nodal-line
spin liquid survives as a thermally stable phase, even in the
presence of significant Kitaev interactions that act to lower
the symmetry from continuous to discrete. We demonstrate
that the magnetic correlations in this phase form character-
istic one-dimensional rods in reciprocal space, as illustrated
in Fig. 1. The proximity to the nodal-line spin liquid in this
Heisenberg-Kitaev magnet enhances quantum fluctuations
that open the self-consistent gap and, counterintuitively, act

to stabilize the sublattice magnetization in the ordered
phase by quenching out the zero-point corrections to the
ordered moment.

II. FLUCTUATION-INDUCED SPIN-WAVE GAP

We first present inelastic neutron-scattering spectra
collected at T¼300mK, well below the onset of type-III
(0.5, 0, 1) magnetic order shown in Fig. 3. There are sharp
spin waves present throughout the Brillouin zone spanning
a bandwidth of 2.5 meV with a (0.7� 0.05)-meV gap at the
(1, 0, 0) dispersion minimum. Although the strong neutron
absorption from Ir places limitations on the signal-to-noise
ratio and achievable energy resolution of our experiments,
the spectrumwe observe is dominated by resolution-limited
single-magnon excitations, and any multimagnon scatter-
ing is not measurable. The observed spectrum is surprising
for two reasons. First, the dispersion minimum does not
occur at the wave vector of static magnetic order (1, 0.5, 0),
but instead near (1, 0, 0), and second for the generic
symmetry-allowed spin model relevant to K2IrCl6, LSWT
predicts a gapless pseudo-Goldstone mode in the type-III
phase [42,43].
The large excitation gap could potentially be explained

within LSWT by a reduction of the crystal symmetry from
cubic to (say) tetragonal, as might arise from a weak
structural distortion at TN [24,44] or may arise self-
consistently from quantum fluctuations. Given the docu-
mented structural instabilities in the vacancy-ordered dou-
ble perovskites [35–37], we first rule out lattice distortions
as the origin of the excitation gap. We then consider the
effects of quantum fluctuations through nonlinear spin-
wave theory (NLSWT) for the fcc Heisenberg-Kitaev
model and show that such quantum fluctuations are
responsible for the large spin-wave gap in K2IrCl6.

A. Ruling out a lattice distortion as the origin of the gap

Although all previous diffraction measurements have
reported K2IrCl6 as cubic for T < TN [36,37], there is
spectroscopic evidence that K2IrCl6 may exhibit local
structural distortions [45]. Furthermore, recent high-reso-
lution single-crystal x-ray-diffraction measurements reveal
a 0.025% compression of the c axis accompanied by a
0.024% expansion of the a and b axes coinciding with the
magnetic transition [44]. To conclusively identify this large
spin-wave gap as fluctuation induced, we first determine
whether these distortions could potentially account for its
observed magnitude.
Since S ¼ 1=2 pseudospins have both a spin and orbital

contribution to their magnetic moment, they can couple
more easily with lattice deformations of the appropriate
symmetry [46]. Because of this coupling, the type-III
ordering will necessarily generate structural deformations,
which is consistent with the observed tetragonal
distortion [44] and the reported anisotropic magnetization
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density in K2IrCl6 [47]. Such magnetoelastic couplings will
also give rise to spatially anisotropic exchange interactions
D that can induce a magnon gap ∝

ffiffiffiffiffiffiffi
JD

p
[46], where J is

the (dominant) Heisenberg exchange. We estimate the
magnetic anisotropy from the measured tetragonal strain
ε ≈ 2 × 10−4 [44] and spin-lattice-coupling constant g̃ ≃
ðt2=UÞ3=2λðJH=UÞ where t, U, JH, and λ are the hopping
amplitude, Coulomb repulsion, Hund’s coupling, and spin-
orbit coupling, respectively [46]. Based on similar esti-
mates in Sr2IrO4 [46], but with a nearest-neighbor
exchange constant J ∼ t2=U in K2IrCl6 that is a factor
of approximately 100 smaller, we estimate g̃ ≈ 0.25 meV
and thus, D ∼ g̃ε ≈ 0.025 μeV. This yields a distortion-
induced gap of approximately 5 μeV—2-orders of magni-
tude too small to account for the observed 0.7-meV
value [43]. As an additional check, we have carried out
an LSWT calculation including all symmetry-allowed
terms with only tetragonal symmetry [43]. This includes
different exchanges within (J, K) and perpendicular to
(J⊥; K⊥) the basal plane (perpendicular to the tetragonal
axis). Fitting a tetragonal model that can account for the
measured gap yields significant differences in the
exchanges within the plane and in the perpendicular

direction; the Heisenberg exchange yielding a modest
J⊥=J ¼ 1.29, but a much larger K⊥=K ¼ 1.93 for the
Kitaev exchange [43]. Given the smallness of the observed
tetragonal distortion and our estimate of the magnetoelastic
coupling, we find this level of spatial anisotropy in the
exchanges implausible and rule it out as an explanation for
the large spin-wave gap in our data.

B. Nonlinear spin-wave theory

Given that magnetic excitations in the ordered state of
K2IrCl6 cannot be explained qualitatively by LSWT when
cubic symmetry is maintained, we must then consider the
effects of quantum fluctuations beyond LSWT. Including
interactions between the spin waves can lift the pseudo-
Goldstone modes, inducing a gap through quantum
fluctuations [42,48]. To account for these fluctuation-
induced gaps, we have computed the dynamical structure
factor for the fcc Heisenberg-Kitaev (HK) model (as
measured by inelastic neutron-scattering) about the type-
III ordering using Oð1=S2Þ self-consistent NLSWT [43].
As shown in Fig. 3, we find excellent quantitative agree-
ment with our experimental data—including the large
gap—using only nearest-neighbor Heisenberg exchange
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FIG. 3. Spin waves in the ordered phase of K2IrCl6. Measured (left) and calculated (right) energy-momentum slices along (a) ½1; k; 0�
and (b) ½0; k; 0� integrated over h� 0.15 r.l.u. and l� 0.15 r.l.u. (c)–(f) Constant energy slices across the magnon spectra integrated
over ω� 0.15 meV. The measured spectrum is shown in the upper left, and the calculated spectrum is shown in the lower right.
(g) Constant Q cuts at high-symmetry wave vectors indicated by colored arrows at the top of (a) and integrated over �0.1 r.l.u.. Data in
panels (a)–(g) were collected at T ¼ 300 mK, and error bars represent 1 standard deviation. Spectrum calculated at Oð1=S2Þ using self-
consistent nonlinear spin-wave theory for an fcc Heisenberg-Kitaev model with type-III magnetic order (domain averaged) using best-fit
exchange parameters J ¼ 0.74 meV and K ¼ 0.15 meV.
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J ¼ 0.74 meV and Kitaev exchange K ¼ 0.15 meV
(K=J ¼ 0.2). These exchange parameters are comparable
to density functional theory predictions [36] and estimates
from electron spin resonance measurements [38]. Neither
the symmetric anisotropy Γ nor NNN interactions are
required to describe the inelastic neutron data for
K2IrCl6, suggesting they are small relative to J and K.

III. NODAL-LINE SPIN LIQUID

With the ordered phase understood, we now consider the
paramagnetic nodal-line spin-liquid phase. In the absence of
further-neighbor interactions, the fcc Heisenberg AFM
supports a subextensive degeneracy and a finite-temperature
nodal-line spin-liquid phase [Fig. 1]. Kitaev interactions in
K2IrCl6 act to reduce the continuous symmetry of the
Heisenberg model to a discrete one. Despite this symmetry
reduction, we will show below that the subextensive degen-
eracy of the nodal-line spin liquid survives in the presence of
significant anisotropic interactions and dictates some of the
structure we have observed in the excitation spectrum.

A. Classical ground states from stacked states

To understand the qualitative features of the paramag-
netic phase of K2IrCl6, we first revisit the classical phase
diagram of the J-K-Γmodel on the fcc lattice [43] using the
Luttinger-Tisza method [49,50] that has been considered in
previous works [36,40,51,52]. We find a rich phase dia-
gram including multiple commensurate and incommensu-
rate magnetic phases, as well as a broad region where
K > 0 and jΓj < K=2 that has a ground-state degeneracy
along “spiral lines” with wave vectors ½q; 1; 0�, ½0; q; 1�,
½1; 0; q�, and equivalents [43]. In the paramagnetic phase,
these degeneracies imply the presence of spin correlations
localized along these lines in reciprocal space (as would be
found, e.g., in standard large-N treatment)—the key sig-
nature of the nodal-line spin liquid. Along these spiral lines,
the Luttinger-Tisza energy is E0 ¼ −2ðJ þ KÞS2 where S
is the spin length, which provides a lower bound on the true
classical ground-state energy.
A subextensive number of states that saturate this bound

can be constructed by stacking Néel planes along the cubic
directions, as illustrated in Fig. 2. Each plane has two
possible choices for the Néel state that can be encoded by
an Ising variable σμn ¼ �1 with the index μ ¼ x, y, z
indicating the stacking direction. For each of these states,
the contribution of the interplane couplings cancels for all
J, K, and Γ, and only the plane perpendicular to the
stacking direction contributes to the classical energy. For
K > 0 and jΓj < K=2 the intraplane energy is minimized
by a Néel state (satisfying the Heisenberg part) with
moment parallel to the stacking direction (satisfying the
Kitaev part), with Γ dropping out.
For example, a type-I Néel state can be constructed by

stacking Néel planes uniformly along the x̂ direction with

the spins oriented along x̂, with the associated propagation
vector (0, 0, 1), as shown in Fig. 2(a). The type-III state can
be constructed from a þ1;þ1;−1;−1 stacking sequence
corresponding to ð1=2; 1; 0Þ as shown in Fig. 2(b).
Arbitrary stackings of the Néel planes along a fixed cubic
direction give a large family of collinear stacked ground
states. These stacked states are identical to those that make
up the subextensive discrete degeneracy of the fcc Ising
antiferromagnet [53]. Since there are two choices for the
Néel state in each plane and three choices of stacking
direction (x̂, ŷ, or ẑ), there are 3 × 22L collinear states where
L is the number of cubic unit cells along the stacking
direction. More explicitly, we can define three families of
colinear stacked states as

Sxi ¼ Sð−1Þn1þn2σxn2þn3 x̂; ð2aÞ

Syi ¼ Sð−1Þn2þn3σyn3þn1 ŷ; ð2bÞ

Szi ¼ Sð−1Þn3þn1σzn1þn2 ẑ; ð2cÞ

where we have expressed the position ri ¼ n1a1 þ n2a2 þ
n3a3 in terms of the primitive lattice vectors a1, a2, and a3.
This discrete subextensive degeneracy of collinear states

does not exhaust the ground-state manifold. As these
stacked states are collinear and can be oriented along
perpendicular axes, linear combinations of these states can
also be shown to be ground states. More explicitly, if we
define

Si ≡ S½αxSxi þ αyS
y
i þ αzS

z
i ; �; ð3Þ

where
P

μ α
2
μ ¼ 1, then we can see that these are normal-

ized jSij2 ¼ 1. The cross terms in the energy vanish for
distinct stackings, yielding the same −2ðJ þ KÞS2 energy.
These mixed states thus establish a very large continuous
manifold of ground states in the Heisenberg-Kitaev
Hamiltonian relevant to K2IrCl6. For each discrete ground
state, e.g., stacked along the x̂ direction, we can “rotate” it
into two arbitrary ground states stacked in the ẑ and ŷ
directions, producing a new (noncollinear) ground state.
This continuous manifold forms the basis of the nodal-

line spin liquid and is a subset of the continuous mani-
fold found in the Heisenberg limit when J > 0 and
K ¼ Γ ¼ 0 [1,54]. In the Heisenberg limit, this manifold
is considerably larger including, for example, the mixing of
states stacked along the same direction, but with orthogonal
moment directions. The presence of these continuously
connected ground states affects the dynamics of K2IrCl6
within its ordered phase, implying that, at least at the
LSWT level, the presence of gapless spin-wave modes
along nodal lines in reciprocal space [43]. The absence of
these low-lying excitations experimentally, and the neces-
sity of going beyond the linear theory (Fig. 3), is thus a
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strong signature of the significance of quantum effects
in K2IrCl6.

B. Observation of the nodal-line spin liquid

With theoretical expectations established, we now exam-
ine the dynamics of K2IrCl6 in the paramagnetic phase.
Figure 4 shows inelastic neutron-scattering data collected at
T ¼ 6 K. There are rods of intensity averaged over a broad
energy window [Figs. 4(a) and 4(b)] that directly demon-
strate two-dimensional correlations in K2IrCl6 well above
the Néel transition TN ¼ 3.1 K. Such anisotropic, two-
dimensional, correlations arising from an underlying iso-
tropic, three-dimensional, magnetic Hamiltonian are the
experimental signature of a nodal-line spin liquid.
The rods of intensity extend along equivalent ½1; q; 0�

reciprocal-space directions characteristic of the set of
coplanar spin spirals of the nodal-line spin liquid.
Momentum-energy slices shown in Fig. 4(c) reveal a
continuum of scattering extending from these rods, with
intensity concentrated near Q ¼ ð1; 0; 0Þ momentum trans-
fers and extending to 2 meV. There is no evidence for a
buildup of critical intensity near the Q ¼ ð1; 0.5; 0Þ wave
vector of the type-III magnetic ordering that appears below
TN. Instead, dynamic magnetic correlations are localized

along lines in reciprocal space, establishing K2IrCl6 as a
nodal-line spin-liquid state in this temperature regime.
We compare these correlations with expectations from

the classical spin dynamics of the fcc HK model. As shown
in Fig. 4(a), the low-energy-momentum-dependent corre-
lations we observe are well captured by classical spin
dynamics of our best-fit fcc HK model within its para-
magnetic phase, further establishing the validity exchange
parameters we have determined from the NLSWT in the
ordered state of K2IrCl6. Although the classical calculation
can reproduce much of the observed momentum-dependent
scattering, there is a notable discrepancy for energy trans-
fers above 1 meV where the data reveal an intensity
maxima near Q ¼ ð1; 0; 0Þ not seen in the theoretical
calculation [Figs. 4(b) and 4(d)]. This discrepancy reflects
strong quantum fluctuations in K2IrCl6 that are not cap-
tured in the classical spin dynamics and redistributes
magnetic fluctuations to higher energies.
Similar rods of scattering signifying emergent two-

dimensional correlations have been observed in the pyro-
chlore XY ferromagnet Yb2Ti2O7 [55–60]. While the
emergence of correlations in reduced spatial dimension
compared with the parent Hamiltonian is common between
Yb2Ti2O7 and the nodal-line spin liquid in K2IrCl6, there
are essential differences between the respective origins of
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FIG. 4. Dynamic correlations of the nodal-line spin liquid. (a),(b) Constant energy neutron-scattering intensity at T ¼ 6 K integrated
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the two. The XY Hamiltonian appropriate for Yb2Ti2O7 has
several competing phases that are very close in energy.
Although there is a single, nondegenerate, ground state for
a particular set of exchange interactions in the Hamiltonian,
the actual exchange parameters in Yb2Ti2O7 place it in
close proximity to many of these phases. The two-dimen-
sional rods of scattering are believed to arise from the
proximity to both the ferromagnetic and antiferromagnetic
phases [59,60]. This competition between two distinct
phases that are proximal in energy is distinct from the
emergent one-dimensional correlations of the nodal-line
spin liquid in K2IrCl6, where the Hamiltonian describing
the material has a (much larger) continuous subextensive
degeneracy of ground states for a single set of exchange
parameters.
Since the degeneracy of the nodal-line spin liquid

scales subextensively, either fluctuations, small additional
magnetic interactions, or both are expected to select a long-
range ordered state as the temperature is lowered.
Consistent with these expectations, K2IrCl6 undergoes a
magnetic ordering transition into a type-III Néel state at
TN ¼ 3.1 K. Our best-fit model for the magnetic excitation
spectra, which contains only nearest-neighbor Heisenberg
and Kitaev interactions, provides a quantitative description
of the excitations in the ordered and nodal-line spin-liquid
states of K2IrCl6. However, without further-neighbor inter-
actions our model does not clearly predict a type-III ground
state. Thermal fluctuations show a preference for type-I

order, but even including fluctuations to Oð1=S2Þ the
energy difference between the type-I and -III states is
expected to be incredibly small [48]. This close competi-
tion between type-I and -III states indicates the mechanism
selecting type-III order in K2IrCl6 is delicate, and the
ordering transition in K2IrCl6 deserves closer scrutiny.

IV. TYPE-I AND TYPE-III ORDER

Heat capacity measurements on our samples display a
single sharp peak at 3.1 K, in agreement with the critical
temperature extracted from the (1, 0.5, 0) magnetic order
parameter [Figs. 5(a) and 5(b)]. However, a broader
reciprocal-space survey on the same samples revealed
additional weak magnetic Bragg reflections at Q ¼
ð1; 0; 0Þ corresponding to type-I order, with an onset
temperature of TI

N ¼ 3.4 K, confirmed via neutron diffrac-
tion as shown in Fig. 5(b). The magnetic origin of (1, 0, 0)
reflections was confirmed through energy- and polariza-
tion-dependent resonant x-ray diffraction that indicates an
absence of any charge signal [Figs. 5(d)–5(f)]. The fine
momentum-space resolution x-ray measurements also
revealed that (0.5, 0, 5) magnetic Bragg peaks correspond-
ing to type-III Néel order are resolution limited, while the
(0, 0, 3) magnetic peak corresponding to type-I order has a
finite correlation length of 877 Å. Although there is no heat
capacity anomaly visible at TI

N, we find substantial mag-
netic entropy extending beyond T ∼ 15 K that is consistent

(a)

(b)

(e)(c)

(d) (f)

FIG. 5. Coexistence of type-I and -III collinear magnetic orders in K2IrCl6. (a) Measured zero-field specific heat Cp and estimated
lattice contribution Cph. (b) Temperature dependence of (0.5, 1, 0) (type-III) and (0, 1, 0) (type-I) intensities obtained from neutron
diffraction. (c) Polarized neutron diffraction of a type-III peak at 1.5 K indicating the absence of a spin component along the [0, 0, 1]
direction. (d) Energy-dependent elastic x-ray scattering demonstrating that both peaks arise from a magnetic resonance. Resonant x-ray
rocking curves on (e) type-III and (f) type-I peaks at 2 K measured on the same crystal as for (a). Error bars in all panels represent 1
standard deviation.
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with an extended regime of stability for the nodal-line
spin liquid and the onset of short-range type-I order
at 3.4 K.
A simultaneous appearance of (1, 0.5, 0) and (1, 0, 0)

magnetic peaks is consistent with either a coexistence of
collinear magnetic phases across multiple domains or a
multi-Q order. Polarized neutron diffraction presented in
Fig. 5(c) rules out the possibility of noncoplanar multi-Q
states. The spin-flip neutron intensity of the Q ¼
ð1;−0.5; 0Þ Bragg reflection is sensitive to both in-plane
and out-of-plane components of the magnetization for
guide fields P parallel to Q, and in-plane components of
the magnetization, along ½1; 2; 0�, for P⊥Q. While the non-
spin-flip neutron intensity is only sensitive to out-of-plane
components of the magnetization, along [0, 0, 1], when
P⊥Q. We observed identical ð1;−0.5; 0Þ peak intensities
for PkQ and P⊥Q spin-flip channels, and no magnetic
signal in the non-spin-flip component, ruling out any out-
of-plane component, as expected for a collinear type-III
Néel state [Fig. 5(c)]. We also find that the polarized
diffraction from Q ¼ ð1; 0; 0Þ magnetic peaks is most
consistent with a collinear arrangement of magnetic
moments that are parallel to the [0, 0, 1] direction, expected
for a type-I Néel state [43]. The linear polarization analysis
presented here can rule out only noncoplanar ordering
associated with each of the magnetic wave vectors. Neutron
spherical polarimetry measurements are required to reveal
the degree of collinearity and fully constrain the type-I
and -III AFM ordering in K2IrCl6. Nevertheless, the
polarized diffraction data support a coexistence of type-I
and -III magnetic orders across different spatial regions
of the sample. This is consistent with expectations from
order by disorder, which strongly favor collinear single-Q
states. From the integrated magnetic Bragg intensities, we
extract a relative phase fraction NI=NIII ≈ 11%. This phase
fraction did not change between measurements on two
different samples from different crystal growths indicating
that the small fraction of the type-I phase is likely intrinsic
and does not arise from quenched disorder in our samples.
The appearance of both type-I and -III orders near TN in

K2IrCl6 implicates weak and competing selection effects
from fluctuations or further-neighbor exchange for these
nearly degenerate states. To better understand the role of
these selection mechanisms near TN, we consider energetic
selection via a NNN exchange J2 in the classical model.
When J2=J ¼ 0, we find that thermal order by disorder
selects a type-I order for the fcc HK model [13,15,43].
A small J2=J ∼ 0.02 selects type-III order instead, onset-
ting at a nearly identical Néel temperature to the J2 ¼ 0
case [43]. Together, our data and modeling demonstrate that
K2IrCl6 uniquely displays a competition between energetic
and entropic mechanisms for order selection. Temperature-
dependent neutron diffraction shown in Fig. 5(b) demon-
strates that thermal fluctuations initially favor type-I order,
but as the temperature is lowered and the influence of

entropy diminishes, quantum fluctuations or weak further-
neighbor interactions select type-III order. Such a com-
petition between weak selection mechanisms for the
magnetic order in K2IrCl6 is consistent with nearly neg-
ligible NNN interactions and underscores the dominant role
played by quantum fluctuations in this material.

V. DISCUSSION

The conventional lore of frustrated quantum magnetism
is that degenerate and competing ground states tend to
suppress the tendency toward magnetic long-range order. In
the quantum limit of S ¼ 1=2, quantum fluctuations persist
as T → 0 and act to reduce the sublattice magnetization of
any ordered state. Since the total moment SðSþ 1Þ is
conserved, this ordered moment reduction experimen-
tally manifests as a transfer of neutron intensity from
the magnetic Bragg peak (order parameter) to the
excitations [61]. Thus, a sublattice magnetization that is
reduced from the classical limit of gSz is a direct indication
of quantum fluctuations. K2IrCl6 presents an important
counterpoint to these expectations, where despite a well-
formed static Néel state and long-lived magnon excitations,
higher-order (in 1=S) corrections from quantum fluctua-
tions are essential to describe the spectra on even a
qualitative level.
The ordered moment reduction can be quantified through

the energy distribution of magnetic neutron intensity. The
momentum- and energy-integrated intensity gives the total
moment of g2SðSþ 1Þ, while the elastic intensity for a fully
ordered moment is g2S2. Longitudinal fluctuations will
tend to reduce the sublattice magnetization by a factor ΔSz
that can be quantified directly through the ratio of elastic to
total integrated intensity R ¼ ðSz − ΔSzÞ2=SðSþ 1Þ. For
K2IrCl6, we find R ≈ 0.31, and a sublattice magnetization
reduction of ΔSz ≈ 0.018. This is consistent with both the
ordered moment of m ¼ 0.85 μB determined from our
neutron-diffraction measurements saturating the classical
sublattice magnetization of gSz ¼ 0.89 μB, g ¼ 1.79
[27,33,38], and with the small moment reduction predicted
by NLSWT. Such a negligible reduction in sublattice
magnetization for a highly frustrated magnet is surprising.
For comparison, the zero-point moment reduction for a
S ¼ 1=2 Heisenberg antiferromagnet on a cubic lattice,
where quantum fluctuations give negligible corrections, is
ΔS ∼ 0.078 [62], demonstrating that by self-consistently
generating a large spin-wave gap, quantum fluctuations are
remarkably effective to stabilize the sublattice magnetiza-
tion in K2IrCl6. This smallness of this correction makes
clear that quantum fluctuations do not necessarily manifest
in the ordered moment, but instead can appear in other
characteristic features of the system, such as the excitation
spectrum.
Above TN, K2IrCl6 is a unique realization of a new

classical spin liquid: the nodal-line spin liquid. This correlated
paramagnet is similar to the spiral-spin liquid recently
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observed in MnSc2S4 [3]. Both have a subextensive degen-
eracy and are susceptible to thermal order by disorder, but
fluctuations in the nodal-line liquid are confined to one-
dimensional lines instead of spiral surfaces. Despite this
reduced degeneracy, the role of quantum fluctuations is
significantly enhanced in K2IrCl6. Magnetic ordering in
MnSc2S4 is controlled by further-neighbor, dipolar, and
anisotropic exchange interactions, the excitation spectrum
is fully described by LSWT [63,64], and there is no
experimental support for an order-by-disorder transition
[63–65]. This difference likely arises from the small
S ¼ 1=2moments (Mn2þ is S ¼ 5=2) and negligible dipolar
interactions in K2IrCl6.
It is the scale of 1=S quantum fluctuations in K2IrCl6 that

distinguishes it as an important frustrated magnet. These
quantum fluctuations can be quantified by the relative size
of the fluctuation-induced magnon gap compared to the
bandwidth that exceeds 30% in K2IrCl6. For comparison,
quantum order-by-disorder spin-wave gaps have been
found in the garnet Fe2Ca3ðGeO4Þ3 [66], the pyrochlore
Er2Ti2O7 [67–70], and the honeycomb lattice
CoTiO3 [71,72]. In all of these, the spin-wave gap-to-
bandwidth ratio is less than 10% and nearly all details of the
magnon spectra besides the fluctuation induced gaps are
reproduced by linear spin-wave theory, while this fails
qualitatively for K2IrCl6.
The scale of quantum fluctuations in K2IrCl6 is further

reflected by the dynamics of the nodal-line spin-liquid
phase that are only partially reproduced by a classical
spin dynamics calculation. Such a departure from classical
expectations is distinct from other correlated paramagnets.
For example, even the excitation spectrum of the highly
frustrated Heisenberg model on the pyrochlore lattice can
be qualitatively captured by classical spin dynamics cal-
culations renormalized by a classical-to-quantum corre-
spondence factor [73]. Departures from renormalized
classical spin dynamics calculations in the nodal-line spin
liquid realized by K2IrCl6 calls for further work to under-
stand the quantum-to-classical crossover in classical spin
liquids.
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APPENDIX: METHODS

1. Sample synthesis and characterization

Commercially available powder of K2IrCl6 was obtained
from Fisher Scientific. K2IrCl6 crystals were prepared by
slow evaporation from a saturated solution of K2IrCl6 in
dilute hydrochloric acid (pH ∼ 3). The evaporation process
was controlled to maintain a temperature of 32 deg Celsius.
Larger crystals were obtained by successive seeding of
solution growths.
Specific heat and magnetization were measured in

a Quantum Design Physical Properties Measurement
System. Specific heat was measured upon warming in
zero magnetic field after a zero-field cooling. Additional
sample characterization is provided in Supplemental
Material [43].

2. Neutron scattering

Inelastic neutron-scattering measurements were per-
formed on a sample comprised of 11 coaligned crystals
with total mass 0.3 g using the Cold Neutron Chopper
Spectrometer (CNCS) at the Spallation Neutron Source at
Oak Ridge National Laboratory (ORNL) and the MACS
spectrometer [74] at the NIST Center for Neutron Research.
The neutron momentum transfer is indexed using the Miller
indices of the cubic unit cell, ðh;k;lÞ¼ð2π=a;2π=a;2π=aÞ,
where a ¼ 9.66 Å, and all inelastic neutron-scattering data
have been corrected for the energy-dependent neutron
absorption from Ir [43].
On CNCS, we used an incident neutron energy of Ei ¼

3.32 meV in the high-flux configuration with a chopper
frequency of 180 Hz to give an elastic line energy
resolution of 0.17 meV (FWHM). A He cryostat and
He3 insert was used to cool the sample to a base temper-
ature of T ¼ 0.3 K. Data were collected for a 360° rotation
of the sample with 1-deg step size. Measured neutron count
rates were placed into absolute units of the neutron-
scattering cross section using incoherent elastic scattering
from the sample. The scale factor for conversion to absolute
units was additionally cross-checked against the integrated
intensity for (200) and (220) nuclear Bragg reflections. All
data reduction and analysis were carried out using the
MANTID software suite [75].
Measurements on MACS were conducted with the

sample oriented in the ðh; h;lÞ scattering plane using a
double-focusing configuration and fixed final energy of
3.7 meV with a BeO filter after the sample and no incident
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beam filter. The data were corrected for contamination from
high-order harmonics in the incident beam neutron monitor.
Unpolarized neutron-diffraction measurements were car-

ried out on the HB-1A diffractometer of the High Flux
Isotope Reactor (HFIR) at ORNL with collimations of
40’-40’-40’-80’ and fixed incident energy Ei ¼ 14.5 meV.
Polarized neutron-diffraction measurements were carried
out on the HB-1 triple-axis spectrometer of HFIR at ORNL
with collimations of 48’-80’-60’-open and fixed incident
energy Ei ¼ 13.5 meV. Both experiments on HB-1A and
HB-1 were conducted on the same single crystal with a
mass of 42.5 mg aligned in the ðh; k; 0Þ scattering plane.

3. X-ray scattering

Resonant elastic x-ray-scattering measurements at the Ir
L3 edge Ei ¼ 11.215 keV were performed on Beamline
6-ID-B at the Advanced Photon Source. A Pilatus 100K
detector with 487 × 195 pixels of 175 × 175 micron size
was utilized for the measurement. Polarization analysis was
performed using the (008) reflection of a pyrolytic graphite
analyzer and the Cyberstar scintillator detector. A Joule-
Thompson displex cryostat was used to reach a base
temperature of 2 K. The resonant elastic x-ray scattering
measurements were performed on the same sample used for
heat capacity measurements.

4. Heisenberg-Kitaev model on the fcc lattice

We model the j ¼ 1=2 doublets of the Ir4þ atoms as
effective S ¼ 1=2 spins Si on an fcc lattice with an isotropic
g factor. We consider a model with nearest-neighbor
Heisenberg exchange and Kitaev exchanges [24,29,40]

X
hijiγ

�
JSi · Sj þ KSγi S

γ
j

�
; ðA1Þ

where we divide the bonds of the fcc lattice into three types:
x, y, and z, depending on whether they lie in the yz, zx, or
xy planes. When NNN interactions are included, we
consider only a Heisenberg exchange J2

P
hhijii Si · Sj.

Our best-fit parameters (as described in the main text)
correspond to J ¼ 0.74 meV and K ¼ 0.15 meV.

5. Self-consistent nonlinear spin-wave theory

We consider a semiclassical expansion about the type-III
ordered state, starting from the S → ∞ limit. We use the
Holstein-Primakoff representation [76] of the spin

Si ≡
ffiffiffi
S

p ��
1 −

nrα
2S

�
1=2

arαêα;− þ a†rα

�
1 −

nrα
2S

�
1=2

êα;þ

�

þ ðS − nrαÞêα;0; ðA2Þ

where nrα ≡ a†rαarα and i≡ r; α labels the unit cell and
sublattice of a spin. For the collinear type-III orders a
four-sublattice unit cell is sufficient for each of the
domains. The vectors êα;� ≡ ðx̂α � iŷαÞ=

ffiffiffi
2

p
and êα;0 ≡

ẑα define a local frame with ẑα being along the ordering
directions of the type-III state. Expanding in powers of 1=S
then yields a semiclassical expansion. Including terms up to
Oð1Þ we find

H ¼ NSðSþ 1Þϵcl þH2 þH4;

where theOðS2Þ part ϵcl is the classical ground-state energy
density, and we define the OðSÞ and Oð1Þ parts in
symmetrized form as

H2 ¼
1

2

X
αβ

X
k

�
Aαβ
k a†kαakβ þ Aβα

−ka−kαa
†
−kβ

þ
�
Bαβ
k a†kαa

†
−kβ þ B̄αβ

k a−kβakα
��

; ðA3aÞ

H4 ¼
1

Nc

X
αβμν

X
kk0q

�
1

ð2!Þ2 V
αβμν
kk½q�a

†
kþq;αa

†
k0−q;βak0μakν

þ 1

3!

�
Dαβμν

kk0q a
†
kαa

†
k0βa

†
qμakþk0þq;ν þ H:c:

��
: ðA3bÞ

In terms of the exchange matrices expressed in these local

frames J μμ0
δ;αα0 ≡ ê⊺α;μJδ;αα0 êα0;μ0 , the coefficients are

Aαβ
k ¼ S

�
J þ−

k;αβ − δαβ
X
μ

J 00
0;αμ

�
; ðA4aÞ

Bαβ
k ¼ SJ þþ

k;αβ; ðA4bÞ

Vαβμν
kk0½q� ¼

�
δαμδβνJ 00

k−k0þq;αβδανδβμJ
00
q;αβ

�

−
�
δμνδμβJ

þ−
kþq;αν þ δαβδαμJ

þ−
k;αν

�
; ðA4cÞ

Dαβμν
kk0q ¼ −

3

4

�
δαμδανJ

þþ
k0;βα þ δμβδνβJ

þþ
k;αβ

�
; ðA4dÞ

where the interaction vertices have been left unsymme-
trized for brevity.
At leading order in perturbation theory, these magnon

interaction terms renormalize the LSWT spectrum, giving
corrections to δAk and δBk to Ak and Bk. We treat these
corrections self-consistently by writing
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δAαβ
k ¼ 1

Nc

X
qμν

�
Vαμνβ
kq½0�ha†qμaqνiMFþ

1

2

�
Dαμνβ

k;−q;qha†−qμa†qνiMFþD̄βμνα
k;q;−qhaqμa−qνiMF

��
;

δBαβ
k ¼ 1

Nc

X
qμν

�
Dμαβν

q;k;−kha†qμaqνiMFþ
1

2
Vαβνμ
q;−q;½k−q�haqμa−qνiMF

�
:

where Nc is the number of unit cells, and the averages
h� � �iMF are with respect to the quadratic Hamiltonian
H2 þ δH2, where we have replaced Ak → Ak þ δAk and
Bk → Bk þ δBk. These equations are solved self-consis-
tently (via iteration) to obtain an (effective) corrected
quadratic Hamiltonian.

6. Calculation of inelastic neutron-scattering intensity

The inelastic neutron-scattering intensity is computed
theoretically in terms of the spin-spin-correlation function

Sμνðk;ωÞ≡ 1

2πN

Z
dte−iωthMμ

−kM
ν
kðtÞi; ðA5Þ

where Mk ≡ gμB
P

i e
−ik·riSi is the magnetization operator

at wave vector k, and N is the total number of spins. The
observed intensity is given by

Iðk;ωÞ ∝ FðkÞ2
X
μν

�
δμν − k̂μk̂ν

�
Sμνðk;ωÞ; ðA6Þ

where FðkÞ is the Ir4þ magnetic form factor.
Within linear spin-wave theory, the dynamical structure

factor can be expressed in terms of the transverse-trans-
verse part of the spin-spin correlation function. This
remains true in our nonlinear spin-wave theory (up to an
overall intensity renormalization), and Iðk;ωÞ can be
computed using the self-consistently determined H2 þ
δH2 as in LSWT. For more details, including the averaging
needed to emulate the binning of the experimental data, we
refer the reader to Supplemental Material [43].

7. Classical spin dynamics simulations

In the paramagnetic phase, we consider the fcc HKmodel
with J ¼ 0.74 meV andK ¼ 0.15 meV in the classical limit
where the spins are unit length vectors jSij2 ¼ 1. The spins
obey conventional Landau-Lifshitz dynamics

dSi
dt

¼ −Si ×
∂H
∂Si

; ðA7Þ

where−∂H=∂Si ≡ Bi is the (local) exchange field due to the
neighboring spins. The initial conditions Sið0Þ are drawn
from a thermal distribution at temperature T using
Monte Carlo sampling. Once a sample of trajectories SiðtÞ
is obtained, the part of the dynamical structure factor relevant
for inelastic neutron scattering is given by

Sclðk;ωÞ ¼
X
μν

�
δμν − k̂μk̂ν

�
hS̄μkðωÞSνkðωÞi; ðA8Þ

where SkðωÞ is the Fourier transform of SiðtÞ in both space
and time. To account for K2IrCl6 being S ¼ 1=2 we rescale
frequencies by a factor of S, ensuring that in the low-
temperature limit the classical and quantum spin-wave
frequencies agree. To partially account for quantum effects
we also multiply by an energy-dependent correction
factor [59,73]

FquðωÞ≡ βωð1þ nBðωÞÞ; ðA9Þ

where nBðωÞ ¼ 1=ðeβω − 1Þ is the Bose distribution.
Thermal samples are generated using Monte Carlo with

single-site heat bath [77] and over-relaxation [78] updates,
annealing down from high temperature Oð10JÞ to the
temperature of interest and then thermalizing for the same
number of sweeps. For Fig. 4 in the paramagnetic phase
only a small number of sweeps, typically Oð103Þ, are
necessary to reach equilibrium, and the system size used
wasN ¼ L3 with L ¼ 32. For each initial state we solve the
coupled nonlinear ordinary differential equations using an
adaptive fourth-order Runge-Kutta method. At the temper-
atures of interest Oð102Þ samples are sufficient to reach
convergence in both energy-resolved and energy-averaged
quantities. The adaptive time stepping was performed with
(absolute and relative) error tolerances of 10−8.
Simulations used to establish the dependence of the

ordering type and ordering temperature on J2=J used a
larger number of sweeps Oð105Þ on smaller system sizes
with a conventional cell N ¼ 4L3 where L ¼ 8, 10, 12, as
well as parallel tempering to aid in reaching equilibrium.
The phase transition temperature was inferred from the
location of a sharp maximum in the heat capacity and the
onset of a type-III order parameter.
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