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I. TIGHT-BINDING MODEL FOR EDGE-SHARING OCTAHEDRA

Consider a single xy(z) type bond, placing the Ir4+ ions at the origin and along ŷ− x̂ as shown in

Fig. 1. The remaining bonds can generated using lattice symmetries. We denote the corresponding

t2g electron operators as d†1 = (d†1,yz d†1,zx d†1,xy) and d†2 = (d†2,yz d†2,zx d†2,xy). The bond Hamiltonian

can be seen to be

T + T † = d†1T12d2 + d†2T21d1 (1)

where T21 = T †12. Due to inversion about the bond center and time-reversal, in the t2g basis we

have that T12 = T †12 = T ∗12 so T12 is real and symmetric.

ŷ− x̂

xy(z)

FIG. 1: The xy(z) bond on which we will compute the effective Hamiltonian

When only the two Ir4+ ions and the octahedra of O2− ions are included the form of T12 is

constrained by symmetry. These symmetries are inversion through the bond center, as well as C2

axes through the [110], [11̄0] and [001] axes, giving the form

T12 =


t1 t2 0

t2 t1 0

0 0 t3

 (2)

with the three independent real parameters t1, t2 and t3. The actual bond symmetry in the crystal

can be lower, for example due to trigonal distortion. Within the t2g manifold this can introduce

additional xz − xy and yz − xy hoppings such as

T12 =


t1 t2 t4

t2 t1 t4

t4 t4 t3

 (3)
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(a) Ir-Ir overlap for t1 (b) Ir-O-Ir overlap for t2

(c) Ir-Ir overlap for t2 (d) Ir-Ir overlap for t3

FIG. 2: Schematic visual representation of the types orbital overlap contributing to the hoppings

t1, t2 and t3 in Eq. 4a for the xy(z) bond.

We will discuss two possibilities relevant for Na2IrO3and Li2IrO3: direct overlap between the d

orbitals and hopping mediated through the O2− ions.

t1 =
1
2

(tddπ + tddδ) (4a)

t2 =
1
2

(tddπ − tddδ) +
t2
pdπ

∆pd
(4b)

t3 =
1
4

(3tddσ + tddδ) (4c)

The three parameters tddσ, tddπ and tddδ are the usual Slater-Koster parameters for direct d-orbital

overlap, with one expecting |tddσ| > |tddπ| > |tddδ|. The oxygen mediated hopping is through the tpdπ

overlap with ∆pd being the chemical potential difference between the Ir4+ and O2− ions. A visual

representation of these overlaps is shown in Fig. 2.

II. STRONG COUPLING EXPANSIONS

To derive the effective Hamiltonian for the jeff = 1/2 states we consider two forms of strong

coupling expansion. The first is the conventional case, where we take U, JH � λ � t. We consider

the Kanamori Hamiltonian for the two atoms

H1 + H2 =
U − 3JH

2

[
(N1 − 5)2 + (N2 − 5)2

]
− 2JH(S 2

1 + S 2
2) −

JH

2
(L2

1 + L2
2) (5)
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where U is the (screened) Coulomb interaction, JH is Hund’s coupling, N is the total density

operator, L is the total (effective) angular momentum operator and S is the total spin operator.

Treating T + T † as a perturbation to H1 + H2, an effective Hamiltonian within the jeff = 1/2

subspace can be determined

Heff ∼ −
∑
αβ

∑
n,0

[〈
α|T †|n

〉
〈n |T | β〉

En − E0
+

〈
α|T |n

〉〈
n|T †|β

〉
En − E0

]
|α〉 〈β| (6)

where α, β run over jeff = 1/2 states,
∣∣∣+1

2 ,+
1
2

〉
,
∣∣∣+1

2 −
1
2

〉
,
∣∣∣−1

2 + 1
2

〉
and

∣∣∣−1
2 ,−

1
2

〉
. The excited

states of H1 + H2 are denoted by |n〉 with energies En greater than the ground state energy E0. By

symmetry, the resulting spin Hamiltonian takes the form

Heff ∼ J~S 1 · ~S 2 + KS z
1S z

2 + Γ
(
S x

1S y
2 + S y

1S x
2

)
+ Γ′

(
S x

1S z
2 + S z

1S x
2 + S y

1S z
2 + S z

1S y
2

)
(7)

Carrying out the expansion one arrives at the following expressions for the exchange constants

J =
4

27

[
6t1(t1 + 2t3) − 9t2

4

U − 3JH
+

9t2
4 + 2(t1 − t3)2

U − JH
+

(2t1 + t3)2

U + 2JH

]
(8a)

≈
4

9U

[
(2t1 + t3)2 +

2JH

U

[
2t1(t1 + 2t3) − 3t2

4

]]
+ O

(
J2

H

U2

)
K =

8JH

9

[
(t1 − t3)2 − 3(t2

2 − t2
4)

(U − 3JH)(U − JH)

]
≈

8
9U

( JH

U

) [
(t1 − t3)2 − 3(t2

2 − t2
4)
]

+ O
(

J2
H

U2

)
(8b)

Γ =
8JH

9

[
3t2

4 + 2t2(t1 − t3)
(U − 3JH)(U − JH)

]
≈

8
9U

( JH

U

) [
3t2

4 + 2t2(t1 − t3)
]

+ O
(

J2
H

U2

)
(8c)

Γ′ = −
8JH

9

[
t4(t1 − t3 − 3t2)

(U − 3JH)(U − JH)

]
≈ −

8
9U

( JH

U

)
[t4(t1 − t3 − 3t2)] + O

(
J2

H

U2

)
(8d)

The full nearest neighbour spin model can be obtained using lattice symmetries to generate the

remaining bonds. The expressions given in Eqs. 3-5 of the main text can be obtained from Eq. 8

by setting t4 = 0.

A similar calculation can be carried out taking the limit U, λ � JH � t. Here the atomic

Hamiltonian includes only the Coulomb interaction U and spin-orbit coupling λ. The contribu-

tions proportional to JH can then be included in the eigenstates and energies using (degenerate)
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perturbation theory, and Heff evaluated as above. This gives expressions

J =
4
27

 (2t1 + t3)2(4JH + 3U)
U2 −

8JH

(
9t2

4 + 2(t1 − t3)2
)

(2U + 3λ)2

 (9a)

K =
32JH

9

[
(t1 − t3)2 − 3(t2

2 − t2
4)

(2U + 3λ)2

]
(9b)

Γ =
32JH

9

[
3t2

4 + 2t2(t1 − t3)
(2U + 3λ)2

]
(9c)

Γ′ = −
32JH

9

[
t4(t1 − t3 − 3t2)

(2U + 3λ)2

]
(9d)

up to corrections of order O(J2
H/λ

2) and O(J2
H/U

2). Note that the dependence of these exchanges

on the hoppings is nearly identical in both perturbation theories.

III. DERIVATION OF Γ TERM

To unambiguously show the existence of the Γ term in the strong-coupling Hamiltonian, we

derive the expression for Γ explicitly. We will work in U, JH � λ � t limit to connect with

the equations shown in the main text. The coefficient Γ can then be determined from the matrix

element

Γ = 2i
〈
−1

2 ,−
1
2 |Heff | +

1
2 + 1

2

〉
(10)

where Heff is the two-site effective Hamiltonian for a xy(z) bond. To simplify notation we use the

particle-hole mapping d5 → d1, mapping the Hamiltonian of Eq. 5 to

H0 = H1 + H2 =
U − 3JH

2

[
(N1 − 1)2 + (N2 − 1)2

]
− 2JH

(
S 2

1 + S 2
2

)
−

JH

2

(
L2

1 + L2
2

)
(11)

Since particle-hole conjugation effectively maps
∣∣∣+1

2

〉
↔

∣∣∣−1
2

〉
we see that we are interested in〈

+1
2 ,+

1
2 |Heff | −

1
2 −

1
2

〉
=

〈
−1

2 ,−
1
2 |Heff | +

1
2 + 1

2

〉∗
in this new basis. The eigenstates of H1 or H2 are

eigenstates of N, L2, Lz, S 2 and S z at each site, which we will denote as sets using terms symbols
2S +1L. Each individual eigenstates will be denoted as

∣∣∣2S +1L,ML,MS

〉
a

with the total number N

understood from context and a = 1, 2 denoting the site index. The ground state is an N = 1 six-fold

degenerate 2P state with energy −5JH/2. Since the perturbation T moves an electron from site 2

to site 1 we need then only consider N1 = 2 and N2 = 0 states. While the N = 0 state is a trivial
1S state, anti-symmetric N = 2 states can be formed by 1S , 3P and 1D terms giving three relevant
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excitation energies

E2(1S ) + E0(1S ) − 2E1(2P) = U + 2JH (12a)

E2(3P) + E0(1S ) − 2E1(2P) = U − 3JH (12b)

E2(1D) + E0(1S ) − 2E1(2P) = U − JH (12c)

where we have denoted the energy of the N-electron term 2S +1L as EN(2S +1L). The most straight-

forward way to compute Γ is to first decompose T
∣∣∣+1

2

〉
1

∣∣∣+1
2

〉
2

into eigenstates of H1 + H2. Break

T into two parts T = T1 + T2 with

T1 =
∑
σ

t1

(
d†1,xz,σd2,xz,σ + d†1,yz,σd2,yz,σ

)
+ t3

∑
σ

d†1,xy,σd2,xy,σ

 (13a)

T2 = t2

∑
σ

(
d†1,xz,σd2,yz,σ + d†1,yz,σd2,xz,σ

)
(13b)

Recall the definition of the jeff = 1/2 states as

∣∣∣+1
2

〉
a

=

√
1
3

(
d†a,yz,↓ + id†a,xz,↓ + d†a,xy,↑

)
|0〉a =

√2
3

d†a,+,↓ − i

√
1
3

d†a,0,↑

 |0〉a (14a)

∣∣∣−1
2

〉
a

=

√
1
3

(
d†a,yz,↑ − id†a,xz,↑ − d†a,xy,↓

)
|0〉a =

√2
3

d†a,−,↑ + i

√
1
3

d†a,0,↓

 |0〉a (14b)

where a = 1, 2 and we have defined the leff = 1 operators

d†a,+,σ =

√
1
2

(
d†a,yz,σ + id†a,xz,σ

)
(15a)

d†a,0,σ = id†a,xy,σ (15b)

d†a,−,σ =

√
1
2

(
d†a,yz,σ − id†a,xz,σ

)
(15c)

In this form we can now act each part of T , decomposing into the excited states as we go

T1

∣∣∣+1
2

〉
1

∣∣∣+1
2

〉
2

=

( t1 − t3

3

) (
d†1,yz,↓ + id†1,xz,↓

)
d†1,xy,↑ |0〉1 |0〉2

= −i
( t1 − t3

3

) [
|+ ↓, 0 ↑

〉
1 − |0 ↑,+ ↓

〉
1

]
|0〉2

= −i
( t1 − t3

3

) [
|3P,+1, 0

〉
1 − |

1D,+1, 0
〉

1

]
|0〉2 (16a)

T2

∣∣∣+1
2

〉
1

∣∣∣+1
2

〉
2

=
t2

3

[
2d†1,xz,↓d

†

2,yz,↓ + i
(
d†1,yz,↓ − id†1,xz,↓

)
d†1,xy,↑

]
|0〉1 |0〉2

=
t2

3
[−2i (|+ ↓,− ↓〉 − |− ↓,+ ↓〉) + (|− ↓, 0 ↑〉 − |0, ↑,− ↓〉)] |0〉2

=
t2

3

[
−2
√

2i
∣∣∣3P, 0,−1

〉
−

∣∣∣3P,−1, 0
〉
−

∣∣∣1D,−1, 0
〉]
|0〉2 (16b)
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To compute the matrix element we also need T
∣∣∣−1

2

〉
1

∣∣∣−1
2

〉
2

related to the states shown in Eq. 16

by the action of time-reversal

T1

∣∣∣−1
2

〉
1

∣∣∣−1
2

〉
2

= −i
( t1 − t3

3

) [
|3P,−1, 0

〉
1 − |

1D,−1, 0
〉

1

]
|0〉2 (17a)

T2

∣∣∣−1
2

〉
1

∣∣∣−1
2

〉
2

=
t2

3

[
−2
√

2i
∣∣∣3P, 0,+1

〉
+

∣∣∣3P,+1, 0
〉

+
∣∣∣1D,+1, 0

〉]
|0〉2 (17b)

where we have used that the
∣∣∣2S +1L,ML,MS

〉
states pick up an additional sign (−1)L+S +ML+MS under

time-reversal. In this form we can simply read off the matrix elements〈
−1

2 ,−
1
2 |Heff | +

1
2 + 1

2

〉
= 4i

(
t2(t1 − t3)

9

) [
1

U − 3JH
−

1
U − JH

]
=

8iJH

9

[
t2(t1 − t3)

(U − 3JH)(U − JH)

]
(18)

Thus

Γ =
16JH

9

[
t2(t1 − t3)

(U − 3JH)(U − JH)

]
(19)

consistent with the expressions in the Eq. 5 of the main text and with Eq. 8c when t4 = 0.
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