Supplementary material for "Generic spin model for the honeycomb iridates beyond the Kitaev limit"

Jeffrey G. Rau, ${ }^{1}$ Eric Kin-Ho Lee, ${ }^{1}$ and Hae-Young Kee ${ }^{1,2, *}$
${ }^{1}$ Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
${ }^{2}$ Canadian Institute for Advanced Research/Quantum
Materials Program, Toronto, Ontario MSG 1Z8, Canada

I. TIGHT-BINDING MODEL FOR EDGE-SHARING OCTAHEDRA

Consider a single $x y(z)$ type bond, placing the Ir^{4+} ions at the origin and along $\hat{y}-\hat{x}$ as shown in Fig. 1. The remaining bonds can generated using lattice symmetries. We denote the corresponding $t_{2 g}$ electron operators as $d_{1}^{\dagger}=\left(d_{1, y z}^{\dagger} d_{1, z x}^{\dagger} d_{1, x y}^{\dagger}\right)$ and $d_{2}^{\dagger}=\left(d_{2, y z}^{\dagger} d_{2, z x}^{\dagger} d_{2, x y}^{\dagger}\right)$. The bond Hamiltonian can be seen to be

$$
\begin{equation*}
T+T^{\dagger}=d_{1}^{\dagger} T_{12} d_{2}+d_{2}^{\dagger} T_{21} d_{1} \tag{1}
\end{equation*}
$$

where $T_{21}=T_{12}^{\dagger}$. Due to inversion about the bond center and time-reversal, in the $t_{2 g}$ basis we have that $T_{12}=T_{12}^{\dagger}=T_{12}^{*}$ so T_{12} is real and symmetric.

FIG. 1: The $x y(z)$ bond on which we will compute the effective Hamiltonian

When only the two Ir^{4+} ions and the octahedra of O^{2-} ions are included the form of T_{12} is constrained by symmetry. These symmetries are inversion through the bond center, as well as C_{2} axes through the [110], [11 0] and [001] axes, giving the form

$$
T_{12}=\left(\begin{array}{ccc}
t_{1} & t_{2} & 0 \tag{2}\\
t_{2} & t_{1} & 0 \\
0 & 0 & t_{3}
\end{array}\right)
$$

with the three independent real parameters t_{1}, t_{2} and t_{3}. The actual bond symmetry in the crystal can be lower, for example due to trigonal distortion. Within the $t_{2 g}$ manifold this can introduce additional $x z-x y$ and $y z-x y$ hoppings such as

$$
T_{12}=\left(\begin{array}{lll}
t_{1} & t_{2} & t_{4} \tag{3}\\
t_{2} & t_{1} & t_{4} \\
t_{4} & t_{4} & t_{3}
\end{array}\right)
$$

[^0]

FIG. 2: Schematic visual representation of the types orbital overlap contributing to the hoppings t_{1}, t_{2} and t_{3} in Eq. 4a for the $x y(z)$ bond.

We will discuss two possibilities relevant for $\mathrm{Na}_{2} \mathrm{IrO}_{3}$ and $\mathrm{Li}_{2} \mathrm{IrO}_{3}$: direct overlap between the d orbitals and hopping mediated through the O^{2-} ions.

$$
\begin{align*}
& t_{1}=\frac{1}{2}\left(t_{d d \pi}+t_{d d \delta}\right) \tag{4a}\\
& t_{2}=\frac{1}{2}\left(t_{d d \pi}-t_{d d \delta}\right)+\frac{t_{p d \pi}^{2}}{\Delta_{p d}} \tag{4b}\\
& t_{3}=\frac{1}{4}\left(3 t_{d d \sigma}+t_{d d \delta}\right) \tag{4c}
\end{align*}
$$

The three parameters $t_{d d \sigma}, t_{d d \pi}$ and $t_{d d \delta}$ are the usual Slater-Koster parameters for direct d-orbital overlap, with one expecting $\left|t_{d d \sigma}\right|>\left|t_{d d \pi}\right|>\left|t_{d d \delta}\right|$. The oxygen mediated hopping is through the $t_{p d \pi}$ overlap with $\Delta_{p d}$ being the chemical potential difference between the Ir^{4+} and O^{2-} ions. A visual representation of these overlaps is shown in Fig. 2.

II. STRONG COUPLING EXPANSIONS

To derive the effective Hamiltonian for the $j_{\text {eff }}=1 / 2$ states we consider two forms of strong coupling expansion. The first is the conventional case, where we take $U, J_{H} \gg \lambda \gg t$. We consider the Kanamori Hamiltonian for the two atoms

$$
\begin{equation*}
H_{1}+H_{2}=\frac{U-3 J_{H}}{2}\left[\left(N_{1}-5\right)^{2}+\left(N_{2}-5\right)^{2}\right]-2 J_{H}\left(S_{1}^{2}+S_{2}^{2}\right)-\frac{J_{H}}{2}\left(L_{1}^{2}+L_{2}^{2}\right) \tag{5}
\end{equation*}
$$

where U is the (screened) Coulomb interaction, J_{H} is Hund's coupling, N is the total density operator, L is the total (effective) angular momentum operator and S is the total spin operator.

Treating $T+T^{\dagger}$ as a perturbation to $H_{1}+H_{2}$, an effective Hamiltonian within the $j_{\text {eff }}=1 / 2$ subspace can be determined

$$
\begin{equation*}
H_{\mathrm{eff}} \sim-\sum_{\alpha \beta} \sum_{n \neq 0}\left[\frac{\langle\alpha| T^{\dagger}|n\rangle\langle n| T|\beta\rangle}{E_{n}-E_{0}}+\frac{\langle\alpha| T|n\rangle\langle n| T^{\dagger}|\beta\rangle}{E_{n}-E_{0}}\right]|\alpha\rangle\langle\beta| \tag{6}
\end{equation*}
$$

where α, β run over $j_{\text {eff }}=1 / 2$ states, $\left|+\frac{1}{2},+\frac{1}{2}\right\rangle,\left|+\frac{1}{2}-\frac{1}{2}\right\rangle,\left|-\frac{1}{2}+\frac{1}{2}\right\rangle$ and $\left|-\frac{1}{2},-\frac{1}{2}\right\rangle$. The excited states of $H_{1}+H_{2}$ are denoted by $|n\rangle$ with energies E_{n} greater than the ground state energy E_{0}. By symmetry, the resulting spin Hamiltonian takes the form

$$
\begin{equation*}
H_{\mathrm{eff}} \sim J \vec{S}_{1} \cdot \vec{S}_{2}+K S_{1}^{z} S_{2}^{z}+\Gamma\left(S_{1}^{x} S_{2}^{y}+S_{1}^{y} S_{2}^{x}\right)+\Gamma^{\prime}\left(S_{1}^{x} S_{2}^{z}+S_{1}^{z} S_{2}^{x}+S_{1}^{y} S_{2}^{z}+S_{1}^{z} S_{2}^{y}\right) \tag{7}
\end{equation*}
$$

Carrying out the expansion one arrives at the following expressions for the exchange constants

$$
\begin{align*}
J & =\frac{4}{27}\left[\frac{6 t_{1}\left(t_{1}+2 t_{3}\right)-9 t_{4}^{2}}{U-3 J_{H}}+\frac{9 t_{4}^{2}+2\left(t_{1}-t_{3}\right)^{2}}{U-J_{H}}+\frac{\left(2 t_{1}+t_{3}\right)^{2}}{U+2 J_{H}}\right] \tag{8a}\\
& \approx \frac{4}{9 U}\left[\left(2 t_{1}+t_{3}\right)^{2}+\frac{2 J_{H}}{U}\left[2 t_{1}\left(t_{1}+2 t_{3}\right)-3 t_{4}^{2}\right]\right]+O\left(\frac{J_{H}^{2}}{U^{2}}\right) \\
K & =\frac{8 J_{H}}{9}\left[\frac{\left(t_{1}-t_{3}\right)^{2}-3\left(t_{2}^{2}-t_{4}^{2}\right)}{\left(U-3 J_{H}\right)\left(U-J_{H}\right)}\right] \approx \frac{8}{9 U}\left(\frac{J_{H}}{U}\right)\left[\left(t_{1}-t_{3}\right)^{2}-3\left(t_{2}^{2}-t_{4}^{2}\right)\right]+O\left(\frac{J_{H}^{2}}{U^{2}}\right) \tag{8b}\\
\Gamma & =\frac{8 J_{H}}{9}\left[\frac{3 t_{4}^{2}+2 t_{2}\left(t_{1}-t_{3}\right)}{\left(U-3 J_{H}\right)\left(U-J_{H}\right)}\right] \approx \frac{8}{9 U}\left(\frac{J_{H}}{U}\right)\left[3 t_{4}^{2}+2 t_{2}\left(t_{1}-t_{3}\right)\right]+O\left(\frac{J_{H}^{2}}{U^{2}}\right) \tag{8c}\\
\Gamma^{\prime} & =-\frac{8 J_{H}}{9}\left[\frac{t_{4}\left(t_{1}-t_{3}-3 t_{2}\right)}{\left(U-3 J_{H}\right)\left(U-J_{H}\right)}\right] \approx-\frac{8}{9 U}\left(\frac{J_{H}}{U}\right)\left[t_{4}\left(t_{1}-t_{3}-3 t_{2}\right)\right]+O\left(\frac{J_{H}^{2}}{U^{2}}\right) \tag{8d}
\end{align*}
$$

The full nearest neighbour spin model can be obtained using lattice symmetries to generate the remaining bonds. The expressions given in Eqs. 3-5 of the main text can be obtained from Eq. 8 by setting $t_{4}=0$.

A similar calculation can be carried out taking the limit $U, \lambda \gg J_{H} \gg t$. Here the atomic Hamiltonian includes only the Coulomb interaction U and spin-orbit coupling λ. The contributions proportional to J_{H} can then be included in the eigenstates and energies using (degenerate)
perturbation theory, and $H_{\text {eff }}$ evaluated as above. This gives expressions

$$
\begin{align*}
J & =\frac{4}{27}\left[\frac{\left(2 t_{1}+t_{3}\right)^{2}\left(4 J_{H}+3 U\right)}{U^{2}}-\frac{8 J_{H}\left(9 t_{4}^{2}+2\left(t_{1}-t_{3}\right)^{2}\right)}{(2 U+3 \lambda)^{2}}\right] \tag{9a}\\
K & =\frac{32 J_{H}}{9}\left[\frac{\left(t_{1}-t_{3}\right)^{2}-3\left(t_{2}^{2}-t_{4}^{2}\right)}{(2 U+3 \lambda)^{2}}\right] \tag{9b}\\
\Gamma & =\frac{32 J_{H}}{9}\left[\frac{3 t_{4}^{2}+2 t_{2}\left(t_{1}-t_{3}\right)}{(2 U+3 \lambda)^{2}}\right] \tag{9c}\\
\Gamma^{\prime} & =-\frac{32 J_{H}}{9}\left[\frac{t_{4}\left(t_{1}-t_{3}-3 t_{2}\right)}{(2 U+3 \lambda)^{2}}\right] \tag{9d}
\end{align*}
$$

up to corrections of order $O\left(J_{H}^{2} / \lambda^{2}\right)$ and $O\left(J_{H}^{2} / U^{2}\right)$. Note that the dependence of these exchanges on the hoppings is nearly identical in both perturbation theories.

III. DERIVATION OF Γ TERM

To unambiguously show the existence of the Γ term in the strong-coupling Hamiltonian, we derive the expression for Γ explicitly. We will work in $U, J_{H} \gg \lambda \gg t$ limit to connect with the equations shown in the main text. The coefficient Γ can then be determined from the matrix element

$$
\begin{equation*}
\Gamma=2 i\left\langle-\frac{1}{2},-\frac{1}{2}\right| H_{\mathrm{eff}}\left|+\frac{1}{2}+\frac{1}{2}\right\rangle \tag{10}
\end{equation*}
$$

where $H_{\text {eff }}$ is the two-site effective Hamiltonian for a $x y(z)$ bond. To simplify notation we use the particle-hole mapping $d^{5} \rightarrow d^{1}$, mapping the Hamiltonian of Eq. 5 to

$$
\begin{equation*}
H_{0}=H_{1}+H_{2}=\frac{U-3 J_{H}}{2}\left[\left(N_{1}-1\right)^{2}+\left(N_{2}-1\right)^{2}\right]-2 J_{H}\left(S_{1}^{2}+S_{2}^{2}\right)-\frac{J_{H}}{2}\left(L_{1}^{2}+L_{2}^{2}\right) \tag{11}
\end{equation*}
$$

Since particle-hole conjugation effectively maps $\left|+\frac{1}{2}\right\rangle \leftrightarrow\left|-\frac{1}{2}\right\rangle$ we see that we are interested in $\left\langle+\frac{1}{2},+\frac{1}{2}\right| H_{\text {eff }}\left|-\frac{1}{2}-\frac{1}{2}\right\rangle=\left\langle-\frac{1}{2},-\frac{1}{2}\right| H_{\text {eff }}\left|+\frac{1}{2}+\frac{1}{2}\right\rangle^{*}$ in this new basis. The eigenstates of H_{1} or H_{2} are eigenstates of N, L^{2}, L_{z}, S^{2} and S_{z} at each site, which we will denote as sets using terms symbols ${ }^{2 S+1} L$. Each individual eigenstates will be denoted as $\left.\left.\right|^{2 S+1} L, M_{L}, M_{S}\right\rangle_{a}$ with the total number N understood from context and $a=1,2$ denoting the site index. The ground state is an $N=1$ six-fold degenerate ${ }^{2} P$ state with energy $-5 J_{H} / 2$. Since the perturbation T moves an electron from site 2 to site 1 we need then only consider $N_{1}=2$ and $N_{2}=0$ states. While the $N=0$ state is a trivial ${ }^{1} S$ state, anti-symmetric $N=2$ states can be formed by ${ }^{1} S,{ }^{3} P$ and ${ }^{1} D$ terms giving three relevant
excitation energies

$$
\begin{align*}
& E_{2}\left({ }^{1} S\right)+E_{0}\left({ }^{1} S\right)-2 E_{1}\left({ }^{2} P\right)=U+2 J_{H} \tag{12a}\\
& E_{2}\left({ }^{3} P\right)+E_{0}\left({ }^{1} S\right)-2 E_{1}\left({ }^{2} P\right)=U-3 J_{H} \tag{12b}\\
& E_{2}\left({ }^{1} D\right)+E_{0}\left({ }^{1} S\right)-2 E_{1}\left({ }^{2} P\right)=U-J_{H} \tag{12c}
\end{align*}
$$

where we have denoted the energy of the N-electron term ${ }^{2 S+1} L$ as $E_{N}\left({ }^{2 S+1} L\right)$. The most straightforward way to compute Γ is to first decompose $T\left|+\frac{1}{2}\right\rangle_{1}\left|+\frac{1}{2}\right\rangle_{2}$ into eigenstates of $H_{1}+H_{2}$. Break T into two parts $T=T_{1}+T_{2}$ with

$$
\begin{align*}
& T_{1}=\sum_{\sigma}\left[t_{1}\left(d_{1, x z, \sigma}^{\dagger} d_{2, x z, \sigma}+d_{1, y z, \sigma}^{\dagger} d_{2, y z, \sigma}\right)+t_{3} \sum_{\sigma} d_{1, x y, \sigma}^{\dagger} d_{2, x y, \sigma}\right] \tag{13a}\\
& T_{2}=t_{2} \sum_{\sigma}\left(d_{1, x z, \sigma}^{\dagger} d_{2, y z, \sigma}+d_{1, y z, \sigma}^{\dagger} d_{2, x z, \sigma}\right) \tag{13b}
\end{align*}
$$

Recall the definition of the $j_{\text {eff }}=1 / 2$ states as

$$
\begin{align*}
\left|+\frac{1}{2}\right\rangle_{a} & =\sqrt{\frac{1}{3}}\left(d_{a, y z, \downarrow}^{\dagger}+i d_{a, x z, \downarrow}^{\dagger}+d_{a, x y, \uparrow}^{\dagger}\right)|0\rangle_{a}=\left[\sqrt{\frac{2}{3}} d_{a,+, \downarrow}^{\dagger}-i \sqrt{\frac{1}{3}} d_{a, 0, \uparrow}^{\dagger}\right]|0\rangle_{a} \tag{14a}\\
\left|-\frac{1}{2}\right\rangle_{a} & =\sqrt{\frac{1}{3}}\left(d_{a, y z, \uparrow}^{\dagger}-i d_{a, x z, \uparrow}^{\dagger}-d_{a, x y, \downarrow}^{\dagger}\right)|0\rangle_{a}=\left[\sqrt{\frac{2}{3}} d_{a,-, \uparrow}^{\dagger}+i \sqrt{\frac{1}{3}} d_{a, 0, \downarrow}^{\dagger}\right]|0\rangle_{a} \tag{14b}
\end{align*}
$$

where $a=1,2$ and we have defined the $l_{\text {eff }}=1$ operators

$$
\begin{align*}
d_{a,+, \sigma}^{\dagger} & =\sqrt{\frac{1}{2}}\left(d_{a, y z, \sigma}^{\dagger}+i d_{a, x z, \sigma}^{\dagger}\right) \tag{15a}\\
d_{a, 0, \sigma}^{\dagger} & =i d_{a, x y, \sigma}^{\dagger} \tag{15b}\\
d_{a,-, \sigma}^{\dagger} & =\sqrt{\frac{1}{2}}\left(d_{a, y z, \sigma}^{\dagger}-i d_{a, x z, \sigma}^{\dagger}\right) \tag{15c}
\end{align*}
$$

In this form we can now act each part of T, decomposing into the excited states as we go

$$
\begin{align*}
T_{1}\left|+\frac{1}{2}\right\rangle_{1}\left|+\frac{1}{2}\right\rangle_{2} & =\left(\frac{t_{1}-t_{3}}{3}\right)\left(d_{1, y z, \downarrow}^{\dagger}+i d_{1, x z, \downarrow}^{\dagger}\right) d_{1, x y, \uparrow}^{\dagger}|0\rangle_{1}|0\rangle_{2} \\
& \left.=-i\left(\frac{t_{1}-t_{3}}{3}\right)[1+\downarrow, 0 \uparrow\rangle_{1}-|0 \uparrow,+\downarrow\rangle_{1}\right]|0\rangle_{2} \\
& \left.\left.=-i\left(\frac{t_{1}-t_{3}}{3}\right)\left[\left.\right|^{3} P,+1,0\right\rangle_{1}-\left.\right|^{1} D,+1,0\right\rangle_{1}\right]|0\rangle_{2} \tag{16a}\\
T_{2}\left|+\frac{1}{2}\right\rangle_{1}\left|+\frac{1}{2}\right\rangle_{2} & =\frac{t_{2}}{3}\left[2 d_{1, x z, \downarrow}^{\dagger} d_{2, y z, \downarrow}^{\dagger}+i\left(d_{1, y z, \downarrow}^{\dagger}-i d_{1, x z, \downarrow}^{\dagger}\right) d_{1, x y, \uparrow}^{\dagger}\right]|0\rangle_{1}|0\rangle_{2} \\
& =\frac{t_{2}}{3}[-2 i(|+\downarrow,-\downarrow\rangle-|-\downarrow,+\downarrow\rangle)+(|-\downarrow, 0 \uparrow\rangle-|0, \uparrow,-\downarrow\rangle)]|0\rangle_{2} \\
& \left.\left.=\frac{t_{2}}{3}\left[-\left.2 \sqrt{2} i\right|^{3} P, 0,-1\right\rangle-{ }^{3} P,-1,0\right\rangle-\left|{ }^{1} D,-1,0\right\rangle\right]|0\rangle_{2} \tag{16b}
\end{align*}
$$

To compute the matrix element we also need $T\left|-\frac{1}{2}\right\rangle_{1}\left|-\frac{1}{2}\right\rangle_{2}$ related to the states shown in Eq. 16 by the action of time-reversal

$$
\begin{align*}
& \left.T_{1}\left|-\frac{1}{2}\right\rangle_{1}\left|-\frac{1}{2}\right\rangle_{2}=-i\left(\frac{t_{1}-t_{3}}{3}\right)\left[\left|{ }^{3} P,-1,0\right\rangle_{1}-\left.\right|^{1} D,-1,0\right\rangle_{1}\right]|0\rangle_{2} \tag{17a}\\
& \left.\left.T_{2}\left|-\frac{1}{2}\right\rangle_{1}\left|-\frac{1}{2}\right\rangle_{2}=\frac{t_{2}}{3}\left[-\left.2 \sqrt{2} i\right|^{3} P, 0,+1\right\rangle+\left.\right|^{3} P,+1,0\right\rangle+\left|{ }^{1} D,+1,0\right\rangle\right]|0\rangle_{2} \tag{17b}
\end{align*}
$$

where we have used that the $\left.{ }^{2 S+1} L, M_{L}, M_{S}\right\rangle$ states pick up an additional sign $(-1)^{L+S+M_{L}+M_{S}}$ under time-reversal. In this form we can simply read off the matrix elements

$$
\begin{align*}
\left\langle-\frac{1}{2},-\frac{1}{2}\right| H_{\mathrm{eff}}\left|+\frac{1}{2}+\frac{1}{2}\right\rangle & =4 i\left(\frac{t_{2}\left(t_{1}-t_{3}\right)}{9}\right)\left[\frac{1}{U-3 J_{H}}-\frac{1}{U-J_{H}}\right] \\
& =\frac{8 i J_{H}}{9}\left[\frac{t_{2}\left(t_{1}-t_{3}\right)}{\left(U-3 J_{H}\right)\left(U-J_{H}\right)}\right] \tag{18}
\end{align*}
$$

Thus

$$
\begin{equation*}
\Gamma=\frac{16 J_{H}}{9}\left[\frac{t_{2}\left(t_{1}-t_{3}\right)}{\left(U-3 J_{H}\right)\left(U-J_{H}\right)}\right] \tag{19}
\end{equation*}
$$

consistent with the expressions in the Eq. 5 of the main text and with Eq. 8 c when $t_{4}=0$.

[^0]: * Electronic Address: hykee@physics.utoronto.ca

