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Magnetoelectric generation of a Majorana-Fermi surface in Kitaev’s honeycomb model
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We study the effects of static magnetic and electric fields on Kitaev’s honeycomb model. Using the electric
polarization operator appropriate for Kitaev materials, we derive the effective Hamiltonian for the emergent
Majorana fermions to second order in both the electric and magnetic fields. We find that while individually each
perturbation does not qualitatively alter Kitaev spin liquid, the cross term induces a finite chemical potential
at each Dirac node, giving rise to a Majorana-Fermi surface. We argue this gapless phase is stable and exhibits
typical metallic phenomenology, such as linear in temperature heat capacity and finite, but nonquantized, thermal
Hall response. Finally, we speculate on the potential for realization of this physics in Kitaev materials.
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I. INTRODUCTION

Topological states of matter have attracted broad interest
due to their fundamental importance in our understanding of
many-body systems [1], as well as their potential practical
importance in storing and manipulating quantum information
[2]. A key role in our understanding has been played by
exactly solvable models, such as the toric code [3], where
the nature of the ground state and fractionalized excitations
is indisputable. However, finding and exploring the physics
of topological phases of matter, such as spin liquids, in more
realistic models is difficult, with fewer tractable systems to
study [4].

Kitaev’s honeycomb model [5] represents a rare example
of a class of exactly solvable models of spin liquids that may,
to a reasonable approximation, be realized in solid-state mag-
netic systems [6–8]. Specifically, in transition metal magnets
with strong spin-orbit coupling, a microscopic superexchange
mechanism has been identified for an edge-shared bonding
geometry [9] that yields Kitaev’s anisotropic exchange in-
teraction at leading order [10–12]. As such, Kitaev’s model
has been the subject of intense study [13] to determine its
response to a variety of perturbations and probes, including
mapping the nearby phase diagram [10–12,14–16] with an eye
towards materials, understanding thermal properties [17–20],
computing its dynamical responses [21–26], generalizing it to
three-dimensional lattices [27–33], as well as understanding
the effects of disorder [34–39].
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More recently, the effect of a magnetic field has been
explored in great detail [40–51], motivated by intriguing ex-
periments on the leading Kitaev material candidate α-RuCl3

[52,53]. One finds that in a strong predominantly in-plane
magnetic field the thermal Hall response κxy/T appears to
be half-quantized, suggesting a propagating chiral edge mode
with central charge c = 1

2 [54]. This is consistent with expec-
tations from the pure Kitaev model, where a small magnetic
field produces a non-Abelian chiral spin-liquid phase [5], with
a single chiral Majorana edge mode (see Refs. [55,56] for
some subtleties).

The effect of an electric field on the Kitaev spin liquid
is much less well understood. Its response is encoded in the

FIG. 1. Illustration of the spectrum of the Kitaev model in the
presence of both electric (E) and magnetic (B) fields. An effec-
tive chemical potential is generated by the combination n̂ · (E × B)
where n̂ is the direction perpendicular to the honeycomb plane. Near
the Dirac points this chemical potential induces Majorana-Fermi
surfaces (see inset).
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(effective) electric polarization operator [57] appropriate for
Kitaev materials, as was worked out in detail in Refs. [58–60].
Using these polarization operators, the dielectric response
can be computed [59], providing a natural route to subgap
response in the optical conductivity. However, only the dy-
namic (linear) response has been considered, leaving open the
question: How does the Kitaev spin liquid respond to a static
electric field?

In this paper, we address this question, considering the
effect of combined magnetic and electric fields on Kitaev’s
honeycomb model. Using a generic, symmetry-constrained
polarization operator [58,60], we apply degenerate perturba-
tion theory to compute the effective Hamiltonian to second
order in both the magnetic and electric fields. We find that
while the pure electric and magnetic contributions do not
fundamentally alter the Kitaev spin liquid at this order, the
leading magnetoelectric effect induces a chemical potential at
the Dirac touching points and give rise to a Majorana-Fermi
surface1 (as illustrated in Fig. 1). This gapless spin-liquid
phase has no instabilities with respect to arbitrary perturba-
tions and manifests in signatures in thermodynamic quantities.
We further explore the interplay of this second-order cross
term with third-order contribution from the magnetic field,
which stabilizes the gapped chiral spin-liquid phase. We find
that at low temperature it gives rise to a finite, but nonquan-
tized [64], thermal Hall response limT →0 κxy/T in the gapless
phase.

Magnetoelectric effects [65,66] in ferromagnets have long
attracted intense interest due to the potential for electrical
control of magnetism (and vice versa) and for a variety of
applications in spintronics. Applications in frustrated mag-
nets (and antiferromagnets more broadly [67]) are not as
well explored [1]. However, several results have established
the potential utility of electrical probes, from subgap optical
response in gapless spin liquids [59,68,69] to allowing elec-
tric control of fractionalized excitations in spin-ice materials
[70,71]. Here, we offer magnetoelectric route to generating a
Majorana-Fermi surface. Since this is due to application of
external fields, this has several advantages over more drastic
perturbations, avoiding, for example, some of the compli-
cations of the quantum chemistry involved with doping or
application of pressure.

The appearance of such Majorana-Fermi surfaces in
Kitaev-type models has been discussed in several contexts,
however, each case carries some fundamental difficulty. These
include instability towards nodal phases [29,31] (with nodal
lines or points), sensitivity to symmetry-allowed perturba-
tions [72] (fine tuning), or realization through models with
very unconventional lattices or interaction terms [73–77] or
with site-dependent (staggered) applied magnetic fields [78].
In contrast, our result offers a natural avenue towards a
Majorana-Fermi surface in a model that is directly related
to realistic models of Kitaev materials. With this in mind,
we discuss what kind of electric field strengths would be
necessary to observe this physics in an idealized realization
of Kitaev’s honeycomb model; we find that, while large,

1Also known as Bogoliubov-Fermi surfaces in the context of super-
conductors [61–63].

FIG. 2. Definition of the nearest-neighbor bond types, sublat-
tices, and the numbering convention for a hexagonal plaquette p.

the required electric fields are not far outside experimental
reach.

The paper is structured as follows: In Sec. II we define
the Kitaev model and outline the derivation of the symmetry-
allowed polarization operator. In Sec. III we review the exact
solution of the pure Kitaev model and its symmetries to estab-
lish our notation and conventions. Section IV describes our
main results, covering the derivation of the effective Hamilto-
nian to second order in the magnetic field alone (Sec. IV A),
in the electric and magnetic fields (Sec. IV B), and in the
electric field alone (Sec. IV C). This effective Hamiltonian
is then solved in Sec. V using the Majorana representation,
and its spectrum, including the appearance of the Majorana-
Fermi surface, is discussed in Sec. VI. In Sec. VII we explore
the dependence on the direction of the electric and magnetic
fields, focusing on the competition between the gap-opening
term at third order in the magnetic field and the Majorana-
Fermi surface inducing second-order contribution. Finally,
in Sec. VIII we discuss relation to some recent works on
perturbed Kitaev models, the effects of Majorana interac-
tions, and provide some rough estimates of electric field
strengths required to realize this physics, before concluding
in Sec. IX with an outlook and some perspective on future
directions.

II. ELECTRIC POLARIZATION IN KITAEV MATERIALS

To begin, we define an effective j = 1
2 pseudospin Kitaev

model on a honeycomb lattice, as might appear in an ideal
Kitaev material [5]

K
∑
〈i j〉γ

Sγ
i Sγ

j , (1)

where 〈i j〉γ are the (labeled) nearest-neighbor bonds (see
Fig. 2). Generically, in the presence of both an electric and
magnetic field we expect this Hamiltonian to acquire two new
terms, taking the form

K
∑
〈i j〉γ

Sγ
i Sγ

j − B · M − E · P, (2)

where Si ≡ σ i/2 are the pseudospins, B is the magnetic field,
M ≡ gμB

∑
i Si is the magnetization operator, E is the elec-

tric field, and P is the electric polarization operator. Fig. 2.
To proceed, we need to express the electric polarization

operator P in terms of the pseudospins appropriate for the
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Mott insulating regime. This can be done perturbatively from
the atomic limit, as discussed in Ref. [57]. For Kitaev mate-
rials specifically, the structure of these polarization operators
was worked out from similar microscopic considerations in
Refs. [58–60], taking into account the details of the physics of
4d or 5d transition metal oxides. Rather than embark on such
a microscopic approach, we will follow the discussion in Ref.
[60], and parametrize the polarization operator using a generic
form only constrained by lattice symmetries.

First, let us quickly review the derivation of the form of the
polarization operators allowed by symmetry. Since the electric
polarization operator is time-reversal even, inversion odd, and
translational invariant, we can immediately see that it must
take the form

Pμ ≡
∑
〈i j〉γ

pμ
γ · (Si × S j ) + · · · , (3)

where (by convention) we order each bond 〈i j〉 so that i
belongs to sublattice A and j to sublattice B. We have trun-
cated the expansion of this operator to nearest neighbors and
only two-spin terms due to the structure of the perturbative
expansion [57], with other contributions appearing at higher
order in t/U .

To go further, we need to know the details of the lattice
symmetries. We use the conventional basis for the pseu-
dospins defined such that, in the idealized limit, the octahedral
cage of ligands are located along the ±x̂,±ŷ,±ẑ directions.
For simplicity, both the electric and magnetic fields are also
defined with respect to this basis. Trigonal distortion of the
ligand cage generally lowers the local site symmetry of the
transition metal ion to D3d (ignoring any small monoclinic
distortions). The remaining symmetries of the crystal are the
C3 symmetry along the direction perpendicular to the honey-
comb plane, and the C2 symmetries along the nearest-neighbor
bonds.

The threefold symmetry links the three components of P,
so we can simply focus on Pz, recovering Px and Py by
applying C3 rotations. This leaves nine parameters in pz

γ .
Under the action of the bond-aligned C2 symmetries one has
that Pz → −Pz for the z bond. To proceed, define the bond
directions ûγ as

ûx ≡ ŷ − ẑ√
2

, ûy ≡ ẑ − x̂√
2

, ûz ≡ x̂ − ŷ√
2

. (4)

We further define an orthonormal frame for each bond
(ûγ , v̂γ , ŵγ ) where ŵγ = γ̂ and v̂γ ≡ ŵγ × ûγ . Under its re-
spective bond C2 symmetry one has that ûγ is invariant while
v̂γ and ŵγ change sign. The bond symmetry then implies that
ûz · pz

z = 0 and

ûz · pz
x = −ûz · pz

y, v̂z · pz
x = +v̂z · pz

y, ŵz · pz
x = +ŵz · pz

y.

These four relations then leave us with five parameters, which
we denote as m1, . . . , m5. After some rearrangement we can
write the terms in the polarization operator [Eq. (3)] as [60]

pμ
γ ≡ m1ûμ

γ ûγ + v̂μ
γ (m2v̂γ + m4ŵγ ) + ŵμ

γ (m3ŵγ + m5v̂γ ).
(5)

The large number of free parameters allowed in the po-
larization operator echoes the same freedom in the generic

exchange Hamiltonian (four parameters) due to the relatively
low bond symmetry [11].

Before moving on to the effects of the electric field on the
physics of the Kitaev model, let us quickly note that one might
consider including contributions to the magnetization operator
at next to leading order (three-spin terms), or so-called orbital
contributions [79]. However, since these both appear at higher
order than the two-spin terms that appear in the polarization
operator, we will neglect them here.

III. REVIEW OF THE EXACT SOLUTION

We present here the structure of the exact solution which
was originally proposed by Kitaev, as discussed in Ref. [5],
to review the general ideas needed to discuss the effects of
polarization and to establish our notation and conventions.

Consider the pure (isotropic) Kitaev model defined by the
Hamiltonian

−J
∑
〈i j〉γ

σ
γ

i σ
γ

j , (6)

where we have transitioned to using the Pauli operators σ i,
rather the spin- 1

2 spins Si, with J ≡ −K/4 to simplify some of
the later algebra. For simplicity we will assume K < 0 so that
J > 0, without any loss of generality [5]. This model can be
exactly solved, (partly) due to the large number of conserved
“flux” operators that commute with both the Hamiltonian and
with each other. We can define these flux operators for each
honeycomb plaquette as a product of the spin operators going
around the plaquette, with the spin component being that of
the outward-pointing bond type. Explicitly,

Wp = σ z
p1

σ x
p2

σ y
p3

σ z
p4

σ x
p5

σ y
p6

(7)

for a plaquette p where the indices start from the leftmost site
and run clockwise (see Fig. 2). It is easy to verify that when
defined this way each flux operator commutes with every
other flux operator and with the Hamiltonian, so that

[Wp,Wp′] = 0, [H,Wp] = 0, (8)

for any plaquettes p and p′. Since W 2
p = 1, each flux operator

has eigenvalues given by wp = ±1 and is a Z2 degree of free-
dom. Consequently, along with the Hamiltonian, they can be
simultaneously diagonalized and the full Hilbert space can be
decomposed into different flux sectors, each corresponding to
the choice of the Wp eigenvalues {w1,w2, . . . ,wn}. If there are
N sites, then there are N/2 plaquettes, and so fixing the flux
sector halves the dimension of the Hilbert space, leaving 2N/2

degrees of freedom. The remaining “half” degree of freedom
per site immediately suggests that these could be Majorana
fermions.

To make this observation manifest, we follow Kitaev [5]
and write the Hamiltonian directly in terms of a Majorana
representation

σ i ≡ ibici, (9)

where bi ≡ (bx
i , by

i , bz
i ) and ci are each Majorana fermions.

To project back into the physical Hilbert space of the spins
we must impose the constraint that Di ≡ bx

i by
i b

z
i ci = 1. Practi-

cally, this allows for multiple representations of the spins, e.g.,
σ i ≡ Diσ i = −ibi × bi. Since this constraint commutes with
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the Hamiltonian, the physical eigenstates of the spin model
can be obtained from the eigenstates in the extended Hilbert
space by projection.

Using these Majorana fermions, the Kitaev model in the
extended Hilbert space can be written as

iJ
∑
〈i j〉γ

(
ibγ

i bγ

j

)
cic j ≡ iJ

∑
〈i j〉γ

Ui jcic j, (10)

where we have defined the Z2 gauge field operators Ui j ≡
ibγ

i bγ
j on each link. Similar to the Z2 flux operators, these

gauge field operators all commute with each other and with
the Hamiltonian and thus can be simultaneously diagonalized
in the extended Hilbert space. Since U 2

i j = 1 their eigenval-
ues are simply ui j = ±1. In terms of the ui j gauge field the
eigenvalues of the flux operators can be interpreted as the
corresponding Z2 gauge flux

wp = up1 p2 up2 p3 up3 p4 up4 p5 up5 p6 up6 p1 . (11)

The extended Hilbert space then decomposes into spaces
where the ui j are fixed and the effective Hamiltonian is a free
Majorana problem given by

H[u] ≡ J
∑
〈i j〉γ

iui jcic j . (12)

One can show [5,80] that the ground-state sector is such that
the Z2 gauge fluxes are equal to one and thus the ui j can be
chosen to be uniform with ui j = +1 when going from the
A sublattice to the B sublattice (up to gauge redundancy).
This describes free Majoranas on a honeycomb lattice with
only nearest-neighbor hopping; the spectrum is thus identical
to that of graphene [81], with the dispersion having linear
touching points at the corners of the Brillouin zone.

This can be made precise by defining the Fourier-
transformed operators on each sublattice

cr,α = 1√
N

∑
k

eik·rck,α, (13)

where we have defined each site i by a unit cell r and a
sublattice α = A or B and we note that c†

k,α
= c−k,α . The free

Majorana Hamiltonian for the ground-state sector is then

1

2

∑
k>0

(c−k,A c−k,B)

(
0 f (k)

f (k)∗ 0

)(
ck,A

ck,B

)
, (14)

where the sum runs over half the Brillouin zone and we have
defined

f (k) ≡ 2iJ (1 + e−ik·a1 + e−ik·a2 ), (15)

where a1 ≡ (3x̂ + √
3ŷ)/2, a2 ≡ (3x̂ − √

3ŷ)/2 are the basis
vectors of the honeycomb lattice. By diagonalizing this matrix
we obtain the spectrum ε(k) ≡ ±| f (k)|. As in graphene, we
can expand f (k) about k = ±K, where K = 2π/3(x̂ + ŷ/

√
3)

is a corner of the Brillouin zone, to obtain

f (±K + q) ≈ −3J (qx ± iqy) + O(q2). (16)

One thus has a linear spectrum ε(K + q) ≈ ±v|q|, with Dirac
velocity v ≡ 3J .

A. Projective symmetries

Before moving on to the effects of perturbations on the
Kitaev liquid, we first review how symmetries of the spin
model act in this Majorana basis. We focus our attention on
the constraints imposed by inversion symmetry (broken by
an electric field) and time-reversal symmetry (broken by a
magnetic field) within the ground-state flux sector. The key
property of both the symmetries is that they are implemented
projectively [5,32,82], that is the application of the symmetry
operation must be followed by a Z2 gauge transformation.

Consider first time reversal: note that time reversal T is
antiunitary and maps σ i → −σ i. In the Majorana representa-
tion a perfectly valid time-reversal operation is simply bi → bi

and ci → ci with the imaginary prefactor giving the change in
sign. However, this changes the link variables, as ui j → −ui j

due to their imaginary prefactor. Since we would like to work
within the fixed gauge sector with uniform ui j = +1 we can
undo this via a gauge transformation with a staggered sublat-
tice sign. Our final (effective) time-reversal operator is then

ci
T−→ (−1)ici, (17)

where (−1)i is +1 on the A sublattice and −1 on the B sub-
lattice. The treatment of inversion symmetry I is essentially
the same: instead of being antiunitary, it interchanges the two
sublattices, changing the sign of ui j in the same way. The
effective action of inversion is then

ci
I−→ (−1)icI(i), (18)

where I(i) is the site to which i is mapped to under inversion.
These symmetry operations constrain the terms that can be

generated by the electric and magnetic fields. For example,
since B is odd under time reversal any free Majorana terms
like icic j that are generated must respect that symmetry. This
means, e.g., that any O(B2) terms must connect different
sublattices, while any O(B3) terms must only connect the
same sublattice. Similarly, all of the pure electric field terms
must connect different sublattices, as they are all time-reversal
even.

Inversion symmetry is less restrictive; though it does not
necessarily preserve the pair of sites in question (unlike time
reversal), one can still make some (more limited) statements.
For example, since the first- and third-nearest-neighbor bonds
are preserved by inversion they cannot be generated at odd
order in E. For second-nearest-neighbor bonds, inversion only
relates the hopping on one bond to the distinct inverted bond.
Finally, let us mention the cross term, at O(EB), the main
focus of our work, which is odd under both time reversal and
inversion and thus appears first in the second-neighbor bonds,
but is distinct from the usual O(B3) contribution.

IV. PERTURBATION THEORY IN ELECTRIC
AND MAGNETIC FIELDS

We now review the usual perturbative approach to obtain-
ing effective Hamiltonians for the ground-state flux sector
when small perturbations are added. To set the stage, we will
first recap known results [5] for the effects of a magnetic
field at O(B2) in Sec. IV A. We then proceed to derive the
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O(EB) contributions in Sec. IV B and the O(E2) contributions
in Sec. IV C. Relevant aspects of the O(B3) contributions are
reviewed [5] in the Appendix.

A. Magnetic field

The effect of magnetic field is encapsulated in the piece of
the Hamiltonian

−B · M ≡ −
∑

i

h · σ i, (19)

where we define the (reduced) magnetic field h ≡ gμBB/2.
The form of perturbation theory to be used is motivated by the
observation that the action of a single-spin operator always
changes the flux sector. To see this consider the effect of the
single spin σ z

i acting on the system: one small piece of the
magnetization Mz. Using the commutation relations of the
spins, we can see that when acting on state from the ground-
state flux sector

Wx(σ z
i |�〉) = −σ z

i Wx |�〉 = −σ z
i |�〉 , (20a)

Wy(σ z
i |�〉) = −σ z

i Wy |�〉 = −σ z
i |�〉 , (20b)

Wz(σ z
i |�〉) = +σ z

i Wz |�〉 = +σ z
i |�〉 , (20c)

where Wμ is the plaquette operator opposite to the μ-bond
connected to site i. We thus see that we have added fluxes
on a pair of hexagons that are connected to the site where
we acted the spin operator. When considering the effect of
this perturbation, the virtual states generated will thus not
be within the ground-state flux sector, but will necessarily
mix in the two- or higher-flux sectors. Graphically, the flux
configurations generated by the three spin components can be
illustrated as

(21a)

(21b)

(21c)

where a filled hexagon indicates that wp = −1 on that plaque-
tte and an empty hexagon indicates wp = +1.

We thus consider a form of quasidegenerate perturbation
theory, where we derive an effective Hamiltonian within the
ground-state flux sector. Given the dimension of this Hilbert
space, it also naturally admits a description in terms of a
single Majorana per site, i.e., the ci fermions. Formulating this
perturbation theory strictly requires consideration of the full

multiparticle spectra of the virtual flux states, which is a much
more challenging task. We will instead follow the approach
of Kitaev [5] and assume that most of the weight in the
virtual processes comes from the single-particle excitations,
an assumption that has been made plausible by more recent
numerical studies [43,83]. Practically, this means that we will
replace any resolvents in our perturbation theory with a single
energy scale, the relevant flux gap.

To see how this is carried out, define the projection operator
P0 that projects into the ground-state flux sector. In a magnetic
field the effective Hamiltonian would then be (at second order)

P0H0P0 − h ·
∑

i

P0σ iP0 −
∑
μν

∑
i j

hμhν



P0σ

μ
i (1 − P0)σ ν

j P0,

where H0 is the Kitaev model and we have used that the
resolvent R is approximately given by R = (1 − P0)/
, with

 being the gap to creating two neighboring flux pairs.
From Ref. [5], one can estimate this to be 
 ≈ 0.2672|J| =
0.067|K|. Since P0MP0 = 0 due to the change in flux, we see
the effective Hamiltonian is then

Heff = P0H0P0 −
∑
μν

∑
i j

hμhν



P0σ

μ
i σ ν

j P0 + · · · . (22)

At this order, from the above considerations of flux generation
[Eq. (20)], we can further see that

P0σ
μ
i σ ν

j P0 = δμν

[
δi jP0 + δ〈i j〉μP0σ

μ
i σ

μ
j P0

]
. (23)

The first term describes adding two fluxes by applying a spin
σ

μ
i at one site, and removing them using the same operator

yielding an unimportant constant. The second term describes
removing the added fluxes by applying the nearest-neighbor
σ

μ
i+μ and yields something nontrivial. We thus obtain

Heff = −
∑
〈i j〉γ

(
J + 2h2

γ




)
P0σ

γ

i σ
γ

j P0 + const + O(h3). (24)

The leading effects of the field are thus to renormalize the
Kitaev couplings to render them (potentially) anisotropic, de-
pending on the field direction. The presence of these O(h2)
contributions also implies a finite magnetic susceptibility [34]
at zero temperature. Note that the factor of 2 arises as the
operators adding and removing the flux are different, and thus
can be applied in two different orders.

B. Electric and magnetic field

We now consider the effects of the electric polarization
operator, following the same perturbative scheme that we
used for the magnetic field (Sec. IV A). The leading, and
most interesting, term will be the combination of the electric
and magnetic field at O(EB). The first contribution from the
electric field alone appears at O(E2) and is somewhat more
complicated, without changing the essential physics of the
leading term; we will cover it in detail in Sec. IV C. To make
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the bookkeeping simpler, we introduce the notation

P · E =
∑
〈i j〉γ

(∑
μ

Eμ pμ
γ

)
· (Si × S j ) ≡

∑
〈i j〉γ

εγ · (σ i × σ j ),

(25)

where we have defined εγ ≡ ∑
μ Eμ pμ

γ /4. Explicitly, in terms
of the parameters of the polarization operator [Eq. (5)], we
have

εα
α = 1

4

[
m3Eα + m4√

2
(Eβ + Eγ )

]
, (26a)

εβ
α = 1

4

[
m5√

2
Eα + 1

2
{(m1 + m2)Eβ + (m1 − m2)Eγ }

]
, (26b)

where α, β, γ are a permutation of x, y, z.
We first need to confirm that key property of the mag-

netic field perturbation that motivated our quasidegenerate
perturbation theory: that the action of the polarization operator
changes the flux sector. To see how this works, consider the
contribution of a single z bond 〈i j〉z to E · P, which takes the
form

εx
z

(
σ

y
i σ z

j − σ z
i σ

y
j

) + εy
z

(
σ z

i σ x
j − σ x

i σ z
j

) + εz
z

(
σ x

i σ
y
j − σ

y
i σ x

j

)
.

From the structure of this term we can see that while two
spin operators are involved in each (in contrast to the single
spin for the magnetic field), they are always different spin
components due to the antisymmetry imposed by inversion
symmetry. This means that the fluxes generated by one spin
operator are not removed by the other; if one enumerates all
the possible combinations, one can see that the two pairs of
fluxes must only share at most a single plaquette, and therefore
we are left with a pair of fluxes, just like in the magnetic
field case. This then immediately implies the first-order term
is zero, with P0PP0 = 0.

The specific combinations of fluxes can be directly inferred
from Eq. (20), but are most clearly illustrated graphically. We
delineate two types of flux configurations: those that give rise
to a pair of nearest-neighbor fluxes (type I) and those that give
second-neighbor fluxes (type II). For the z bond discussed
above, four of the operators give type-I flux configurations,
as illustrated below:

(27a)

(27b)

(27c)

(27d)

Note that these type-I configurations are only generated by the
m1, m2, and m5 parts of the polarization operator.

The remaining two operators, coming from ẑ · (σ i × σ j ),
and generated by the m3 and m4 polarization operators, give
the type-II flux configurations

(28a)

(28b)

Note that we have not explicitly written the signs or pre-
factors in these expressions, we are simply illustrating the
flux content of the generated states. The related patterns for
the other types of bonds can be inferred using the threefold
symmetry; for a μ bond, then the operators corresponding
to ν̂ · (σ i × σ j ) where ν 
= μ give the type-I configurations,
while the operators from μ̂ · (σ i × σ j ) give the type-II config-
urations.

To make this more explicit, write the O(EB) correction as

−gμB

∑
μν

BμEν

[
P0Mμ

(
1 − P0




)
PνP0 + H.c.

]
, (29)

where again we have used that the resolvent reduces to R =
(1 − P0)/
 for the type-I intermediate states of Eq. (27).
Since P0MP0 = 0 we can see that this reduces to

−
∑
μν

∑
〈i j〉γ

∑
k

hμεν
γ




[
P0σ

μ

k (σ i × σ j )
νP0 + H.c.

]
. (30)

We can use our knowledge of the intermediate (type-I) flux
states to simplify this further; we will work out one case
explicitly, deriving the rest using symmetry.

Focus on the contributions to a set of three sites (i, j, k) that
define a second-nearest-neighbor z-bond type bond, as shown
in Fig. 3. There are two processes that involve these three
sites and both give a nontrivial contribution to the effective
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FIG. 3. Illustration of the two contributions to the O(EB) part
of the effective Hamiltonian for the x-type second-nearest-neighbor
bond from i to k (via j) shown in red. The piece of the electric
polarization operator is indicated by a thick bond with filled circles,
while the piece from the magnetic field is indicated by an open circle.
The hexagons that carry flux excitations in the corresponding virtual
state are indicated.

Hamiltonian. Together they give

= − 2



P0

[
hyε

y
z σ

y
k

( + σ z
i σ x

j

) + hzε
z
yσ

z
i

( − σ
y
k σ x

j

)]
P0,

= − 2




(
hyε

y
z − hzε

z
y

)
P0σ

z
i σ x

j σ
y
k P0,

where the overall factor of 2 accounts for the Hermitian con-
jugate processes where the magnetic field is applied first.

This can be generalized and other bond types can be ob-
tained by cyclically permuting the components of all vectors;
one finds the final O(EB) Hamiltonian to be

− 2




∑
2〈i j〉α(β )γ

(−1)i
(
hγ εγ

α − hαεα
γ

)
εαβγ P0σ

α
i σ

β
i+ασ

γ

j P0, (31)

where 2 〈i j〉α(β )γ indicates a second-nearest-neighbor bond of
type β from i to j, i.e., we get from i to j by traversing an α

bond to an intermediate site, then on to j via a γ bond (see
Fig. 6).

C. Electric field

We now move to the processes that arise at second order
due to the electric field alone. We identify three types of dis-
tinct processes: one that generates only two-spin interactions,
renormalizing the nearest-neighbor couplings and two further
processes that generate four-spin interactions that link third-
and fourth-nearest neighbors. These four-spin interactions are
closely related to those introduced phenomenologically in
Ref. [72] (see Sec. VIII for a more detailed discussion).

1. Two-spin process (type II-type II)

The first process of interest is generated by the type-II flux
configurations that did not contribute at O(EB), as shown in
Eq. (28). Due to their geometrical arrangement, we see that
only the operators that generate these further neighbor flux
pairs [Eq. (28)] are the same ones that can remove them.
For example, for a 〈i j〉z bond the two options are σ x

i σ
y
j and

σ
y
i σ x

j . Since using the identical operator simply results in a
constant, only the cross terms give nontrivial contributions to

FIG. 4. Illustration of two contributions to the O(E 2) part of the
effective Hamiltonian for a four-spin coupling along a z-type third-
nearest-neighbor bond from i to l shown in red. The pieces of the
electric polarization operator are indicated by thick bonds with filled
circles. The hexagons that carry flux excitations in the corresponding
virtual state are indicated.

the effective Hamiltonian; we write

=− (εz
z )2


′ P0
[( − σ

y
i σ x

j

)( + σ x
i σ

y
j

)+( + σ x
i σ

y
j

)( − σ
y
i σ x

j

)]
P0,

=+2(εz
z )2


′ P0σ
z
i σ z

j P0, (32)

where 
′ ≈ 0.2372|J| ≈ 0.0593|K| is the gap for creating
two further neighbor pairs [5]. This can be done for each bond
type, leading to the total effective Hamiltonian contribution

+
∑
〈i j〉γ

2
(
ε

γ
γ

)2


′ P0σ
γ
i σ

γ
j P0. (33)

Similar to the case of the O(B2) contributions, this simply
renormalizes the bare Kitaev couplings, and (potentially) ren-
ders them anisotropic.

Note that such processes do not exist for the type-I flux
configurations: the flux pair generated by each operator (on
the same bond) is unique, and so the only way to remove them
is by applying the original operator again. As in the type-II
case, this simply gives an unimportant constant.

2. Four-spin process (third neighbor)

We now consider processes that involve the type-I flux
configurations, but with operators on different bonds. We first
consider the process where the two pieces of the polariza-
tion operator are separated by a nearest-neighbor bond and
are nonparallel. Concretely, we can consider the processes
illustrated in Fig. 4 that can be associated with a z-type third-
neighbor bond (see Fig. 6). The first such process contributes
(taking into account the reversed, or Hermitian conjugate,
process as well)

−2εz
yε

z
y



P0

( + σ x
j σ

y
i

)( + σ x
l σ

y
k

)
P0 = −2εz

yε
z
y



P0σ

y
i σ x

j σ
y
k σ x

l P0,

where i, j, k, l are the four sites going clockwise along the top
of the hexagon (see Fig. 4). A similar process can be written
for the sites running along the bottom of the hexagon, labeled
i, r, s, l going counterclockwise, giving the final contribution

= −2εz
xε

z
y




(
P0σ

y
i σ x

j σ
y
k σ x

l P0 + P0σ
x
i σ y

r σ x
s σ

y
l P0

)
.
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FIG. 5. Illustration of a contribution to the O(E 2) part of the
effective Hamiltonian for a four-spin coupling along a zy-type fourth-
nearest-neighbor bond from i to l shown in red. The pieces of the
electric polarization operator are indicated by thick bonds with filled
circles. The hexagons that carry flux excitations in the corresponding
virtual state are indicated.

Identical contributions exist for each third-nearest-neighbor
bond. We can then write

−2




∑
3〈i j〉αβ(γ )

εγ
α ε

γ

β

(
P0σ

β
i σα

i+βσ
β
j+ασ α

j P0 + P0σ
α
i σ

β
i+ασα

j+βσ
β
j P0

)
,

where 3 〈i j〉αβ(γ ) is a third-neighbor bond of type γ (as-
sociated with the corresponding nearest-neighbor bond, see
Fig. 6).

3. Four-spin process (fourth neighbor)

Finally, we consider the process where the two pieces of
the polarization operator are separated by a nearest-neighbor
bond and are parallel. Explicitly, we can consider the pro-
cesses illustrated in Fig. 5 that can be associated with a zy-type
fourth-neighbor bond (labeled using the composing nearest-
neighbor bonds, see Fig. 6). This contribution gives

−2
(
ε

y
z
)2



P0

( + σ z
i σ x

j

)( − σ x
k σ z

l

)
P0 = +2

(
ε

y
z
)2



P0σ

z
i σ x

j σ
x
k σ z

l P0,

where the path i, j, k, l is shown in Fig. 5. Unlike the previous
type of process (Sec. IV C 2), this is the only contribution that
involves these two end points. We thus can write the full set

FIG. 6. Illustration of notation for the second- (left), third-, and
fourth-nearest-neighbor bonds (right) of the honeycomb lattice, as
defined in Secs. IV B and IV C.

of contributions as

+ 2




∑
4〈il〉αβ(γ )

(
εβ
α

)2
P0σ

α
i σ

γ
i+ασ

γ
j+ασ α

j P0, (34)

where 4 〈i j〉αβ(γ ) is an αβ-type fourth-neighbor bond.

V. SOLUTION OF EFFECTIVE HAMILTONIAN

With the effective Hamiltonian in the zero-flux sector
worked out to second order in both the electric and magnetic
fields, we now move on to the solution of this Hamiltonian
using the Majorana representation.

The simplest terms are simply those that renormalize the
nearest-neighbor couplings. It is useful to define the (induced)
anisotropic Kitaev exchanges Jγ for each bond as

Jγ = J + 2

(
h2

γ



− (εγ

γ )2


′

)
, (35)

which includes contributions from the O(B2) and O(E2)
processes (see Secs. IV A and IV C 1). This modifies the func-
tion f (k) that we encountered in the unperturbed solution
[Eq. (15)] to

f1(k) ≡ 2i(Jz + Jye−ik·a1 + Jxe−ik·a2 ) = 2i
∑

γ

Jγ eik·(dγ −dz ).

(36)

with dα being the three (outward) nearest-neighbor bond
directions of the honeycomb lattice, starting from the A sub-
lattice.

Next, we consider the O(EB) contributions: the three-spin
term generated at this order [Eq. (31)] is a close analog to the
three-spin interaction that was obtained by Kitaev [5] when
going to third order in the magnetic field. However, a key
difference is in the staggered sublattice sign which is required
for the operator to be odd under inversion, and thus appear
at O(EB). These additional signs qualitatively change the
effects of the interaction on the Majorana spectrum. Instead
of opening a gap, as the O(B3) term does, this O(EB) term
will instead yield a one-dimensional manifold of zero-energy
states: a Majorana Fermi surface.

To see this, start by writing the O(EB) terms defined in
Sec. IV B [Eq. (31)] using the Majorana fermions as

P0σ
α
i σ

β
j σ

γ

k P0 = i3P0bα
i cib

β
j c jb

γ

k ckP0,

= −εαβγ P0
(
ibα

i bα
j

)(
ibγ

j bγ

k

)(
icick

)
P0,

= −εαβγ P0Ui jUjk
(
icick

)
P0, (37)

where we have made use of the constraint through the replace-
ment

bβ
j c j ≡ (

εαβγ bα
j b

β
j bγ

j c j

)
bβ

j c j = εαβγ bα
j b

γ
j . (38)

Now since ui ju jk = −1 in the zero-flux sector (due to bond
orientations), the O(EB) contribution to the effective Hamil-
tonian for the Majorana fermions is given by

− 2




∑
2〈i j〉α(β )γ

(−1)i
(
hγ εγ

α − hαεα
γ

)
icic j . (39)
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This is simply a second-neighbor hopping, anisotropic in
space and opposite in sign between the two sublattices. In
Fourier space this can be written

1

2

∑
k>0

g(k)(c−k,Ack,A + c−k,Bck,B), (40)

where we have defined

g(k) = −8i




∑
α 
=γ

(
hγ εγ

α − hαεα
γ

)
eik·(dα−dγ )

= +16




∑
α<γ

(
hγ εγ

α − hαεα
γ

)
sin[k · (dα − dγ )]. (41)

We have used that, in general, the antisymmetry of the Majo-
rana operators imposes that g(k) = −g(−k), which is indeed
satisfied by the above definition. Note that all of the other
second-order terms connect different sublattices, and so (at
this order) this is the only contribution to g(k). This is true
generally for the terms generated by the electric field alone,
given they are time-reversal even, they cannot provide any
contributions to g(k).

Finally, we consider the two types of four-spin interactions
that are generated at O(E2). Start first with the third-neighbor
type (Sec. IV C 2), looking at the contributions to a z-type
bond (as illustrated in Fig. 4)

= −2εz
xε

z
y



P0σ

y
i σ x

j σ
y
k σ x

l P0,

= −2εz
xε

z
y



P0

(
iby

i ci
)( − iby

jb
z
j

)( − ibz
kbx

k

)(
ibx

l cl
)
P0,

= +2εz
xε

z
y



ui ju jkukl P0(icicl )P0 = +2εz

xε
z
y



P0(icicl )P0.

The same manipulations on the second process yield identical
results. Generalizing to the full set of these four-spin terms,
we therefore have the contribution

− 4




∑
3〈i j〉αβ(γ )

εγ
α ε

γ

β (icic j ), (42)

where we have reversed the sign, by ordering the bonds so that
i ∈ A and j ∈ B. In Fourier space this gives a contribution to
f (k) of

f3(k) ≡ −8i




∑
γ

εγ
α ε

γ

β e−ik·(2dγ +dz ), (43)

where the remaining indices are such that α, β 
= γ . A sim-
ilar procedure can followed for the fourth-neighbor bonds
(Sec. IV C 3); we simply quote the final result

− 2




∑
4〈i j〉αβ(γ )

(
εβ
α

)2
(icic j ). (44)

Again, similarly, in Fourier space this gives a contribution to
f (k) that goes as

f4(k) ≡ −4i




∑
α 
=β

(
εβ
α

)2
eik·(2dα−dβ−dz ). (45)

The final result for f (k) ≡ f1(k) + f3(k) + f4(k) can be sum-
marized as

f (k) ≡ 2i

[∑
γ

Jγ eik·dγ − 4




∑
γ

εγ
α ε

γ

β e−2ik·dγ

− 2




∑
α 
=β

(
εβ
α

)2
eik·(2dα−dβ )

]
e−ik·dz , (46)

where the Jγ depend on the fields Eq. (35) and the sums in
the final two terms have the same meaning as in Eqs. (43) and
(45).

The free Majorana Hamiltonian for the ground-state sector,
including the O(B2), O(E2), and O(EB) contributions, is then
given by

1

2

∑
k>0

(c−k,A c−k,B)

(
g(k) f (k)
f (k)∗ g(k)

)(
ck,A

ck,B

)
. (47)

The spectrum is then shifted from the case without the electric
field

ε±(k) ≡ g(k) ± | f (k)|. (48)

It will be useful to include some aspects of the O(B3)
contributions to the effective Hamiltonian into our analysis,
so that we can explore the competition with the gap-opening
terms. To this end, we add the O(B3) second-neighbor hop-
ping [5]

−6hxhyhz


2

∑
2〈i j〉α(β )γ

εαβγ icic j . (49)

For details of the derivation of this term, see the AppendixA
or Ref. [5]. Note that we have not included the additional four-
Majorana interaction term that is also generated at O(B3) [5].
In Fourier space this yields

1

2

∑
k>0

(c−k,A c−k,B)

(
g(k) + h(k) f (k)

f (k)∗ g(k) − h(k)

)(
ck,A

ck,B

)
,

where we have defined the new dispersion function

h(k) ≡ +48hxhyhz


2

∑
α(β )γ

sin [k · (dα − dγ )], (50)

where
∑

α(β )γ is defined as a sum over β with εαβγ =
+1. With this term included, the spectrum of the Majorana
fermions then takes the form

ε±(k) = g(k) ±
√

h(k)2 + | f (k)|2. (51)

With E = 0, and thus g(k) = 0, this is the usual gapped spec-
trum expected for the Kitaev model in a small magnetic field
[5]. Expanding near the Dirac points, one has

h(K ) = −h(−K ) = −72
√

3hxhyhz


2
. (52)

The energy gap is then given by 2|h(K )| for E = 0; it will
be useful to define a mass of the Majorana fermions as m ≡
|h(K )|.
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VI. MAJORANA FERMI SURFACE

How does the electric field perturbation affect the spectrum
of the Majorana fermions, in particular the Dirac point? First,
we should note that the O(B2) and O(E2) corrections preserve
the Dirac touching, but shift them from ±K. Generically, this
shift is also accompanied by the introduction of anisotropy
and renormalization to the Dirac velocity as well. Consider
the Dirac point near K, schematically one has

f (K + δK + q) = −(v1[Rθq]x + iv2[Rθq]y) + O(q2), (53)

where δK is the shift of the Dirac point, Rθ is the rotation
of the principal axes of the (anisotropic) Dirac cone, and v1,
v2 are the two independent Dirac velocities. The shift δK and
the rotation angle θ are both second order in the fields, while
vn = v + O(E2), O(B2). In principle, the leading corrections
can be worked out explicitly from an expansion of Eq. (46),
though we will leave this implicit for the sake of brevity.

For the g(k) part things are somewhat simpler; since δK ∼
O(B2), O(E2) and and g(k) is already O(EB), we only need to
evaluate it at K, with any corrections from δK being O(EB3)
or O(E3B). Evaluating this in terms of the physical electric
and magnetic fields E and B, one thus has g(K ) being

g(K ) = 3gμB

2

(m1 − m2 +

√
2m5)[n̂ · (E × B)], (54)

where n̂ = (x̂ + ŷ + ẑ)/
√

3 is the direction perpendicular to
the honeycomb plane. We thus see that the cross term in-
troduces a finite chemical potential at the Dirac points: we
define μ ≡ −g(K ). A similar argument applies for h(k) since
it is O(B3), any shifts due to the second-order terms only
have higher-order effects, and thus we can take |h(K )| ∼
72

√
3hxhyhz/


2.
From the structure of E and B dependence we see that

this chemical potential vanishes in several high-symmetry
configurations, including parallel electric and magnetic fields,
as well as with either field being perpendicular to the hon-
eycomb plane. This term is maximal when the electric and
magnetic fields are crossed, i.e., E · B = 0, and both are in
the honeycomb plane. We also see that the dependence field
is distinct from other field-induced terms, i.e., this term can
remain finite when the gap-inducing O(B3) term vanishes. We
also see that not all of the contributions to the polarization
operator are effective in generating this chemical potential;
both m3 and m4 do not contribute as they only generate type-II
flux configurations.

The spectrum near the Dirac point is then given by

ε±(K + δK + q) ≈ −μ ±
√

v2|q|2 + m2, (55)

where we have ignored the renormalization of the Dirac ve-
locity due to the O(B2) and O(E2) terms, setting v = 3J for
simplicity. Note that this mass does not necessarily render the
system gapped; if small relative to the chemical potential it
only opens a gap between the two Majorana bands. The low-
energy excitations are now not at the Dirac touching point,
but appear, to a first approximation, along a circular Majorana
Fermi surface centered about the shifted Dirac points, with
Fermi wave vector

qF ≡ |μ|
v

= 2|g(K )|
3J

∼ O(EB). (56)

The Fermi velocity at this Majorana-Fermi surface is inherited
from the Dirac cone, with vF ∼ v, due to the linearity of the
dispersion. Note that we have ignored the O(B3) mass terms
here, as they are parametrically smaller than the second-order
terms that generate the chemical potential.

Just as for a more conventional Fermi surface, the ad-
ditional low-energy excitations present qualitatively change
the thermodynamic properties of this state at sufficiently low
temperatures. For example, for temperatures well below the
induced O(EB) terms, the specific heat of the perturbed
Kitaev model is O(T ), rather than the O(T 2) in the origi-
nal model, leading to a finite linear specific-heat coefficient
C/T ∼ γ 
= 0 as T → 0.

In the next section, we will confirm this simple picture
using a more complete calculation of the spectrum, as well as
explore what happens when some of these terms vanish due to
geometrical effects.

VII. RESULTS

For concreteness, we consider a configuration of the elec-
tric and magnetic fields that allows us to use the different
geometrical dependencies of the contributions to the effec-
tive Hamiltonian to isolate different aspects of the physics.
We consider a configuration that can tune smoothly between
regimes where the O(B3) contributions vanish, and those
where the O(EB) contributions vanish.

For each case, we present the Majorana spectrum, and a
few key physical observables, calculated (numerically) using
the complete spectrum [Eq. (51)]. For practical purposes we
need to make some choices in our free parameters. First,
we fix the polarization constants [Eq. (5)] to all be equal
m1 = m2 = m3 = m4 = m5 ≡ m0. This is a completely arbi-
trary choice, and is made simply to control the complexity
of presentation; we expect that the qualitative features of our
results will not depend strongly on different, but still generic,
choices of the mn. Next, we renormalize the energy scales and
the electric and magnetic fields to correspond closely to the
reduced variables (h and ε) that appear naturally in Sec. IV.
To this end, we set J = 1, and take gμB/2 ≡ 1, absorbing the
g factor and Bohr magneton into the definition of B. For the
electric field, we take m0 ≡ 4, absorbing their units into E,
and choosing the prefactor to compensate for the correspond-
ing factor in the definition of ε. More explicitly, the electric
and magnetic fields are taken to be

E ≡ E (cos ψX̂ + sin ψ n̂), (57a)

B ≡ B(cos ψŶ + sin ψ n̂), (57b)

where X̂ = (2ẑ − x̂ − ŷ)/
√

6 and Ŷ = (x̂ − ŷ)/
√

2. The
Majorana-Fermi surfaces for ψ = 0, where the electric and
magnetic fields are both in the honeycomb plane are shown in
Fig. 7. The orientation of these fields for general ψ relative to
the honeycomb plane is shown in Fig. 8. These choices yield
a chemical potential

μ =
(

12
√

2




)
EB cos2 ψ, (58)
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FIG. 7. Illustration of the Majorana-Fermi surface for crossed
electric and magnetic fields E = E X̂ and B = BŶ [Eq. (57)], with
E = B = 0.1. See Sec. VII for the choice of electric polarization
parameters and magnetic g factors.

which vanishes for ψ = π/2 and is maximal for ψ = 0. Nu-
merically, we expect then the radius of the Majorana-Fermi
surface to be qF ≈ |μ|/v ≈ 31.76EB cos2 ψ .

The effective mass that splits the two Majorana bands then
takes the form

m =
(

24


2

)
B3|3 sin ψ − 5 sin (3ψ )|, (59)

which vanishes for ψ = 0 but is maximal for ψ = π/2.
Note that this function also vanishes for ψ1 ≈ 0.282 047π ,
in-between these two limits.

We characterize the behavior of the Majorana spectrum as
a function of the angle ψ by looking at two quantities: the
spectral gap, which we define as the energy of the lowest-
lying excitation (zero in the presence of a Majorana-Fermi
surface or Dirac point) and the band gap, which we define
as minimum energy between the two Majorana bands [which
is induced by the O(B3) from the magnetic field]. Explic-

FIG. 8. Illustration of the electric (E) and magnetic field config-
urations (B) considered in Sec. VII, relative to the honeycomb plane.
These fields are parametrized by an angle ψ , as given in Eq. (57).

FIG. 9. Illustration of the band gap [mink |ε+(k) − ε−(k)|], spec-
tral gap [mink,± |ε±(k)|], and thermal Hall conductivity [Eq. (60)] as
a function of the angle ψ [Eq. (57)] for E = B = 0.1. We identify
three regions: region I where the band gap is finite and the spec-
tral gap is zero, region II where the thermal Hall conductivity has
changed sign, and region III where the spectral gap has become
finite. The boundary between regions I and II is denoted as ψ1 ≈
0.282 047π , and that between II and III is denoted as ψ2 ≈ 0.3487π .
See Sec. VII for the choice of electric polarization parameters and
magnetic g factors.

itly, we define the band gap as mink |ε+(k) − ε−(k)| and the
spectral gap as mink,± |ε±(k)|. These quantities are shown in
Fig. 9 as a function of the angle ψ , with the Majorana-Fermi
surface and spectrum near the band gap shown in Fig. 10
for a handful of representative angles. Starting from ψ = 0
where the chemical potential is maximal and the O(B3) term
vanishes, both the spectral and band gaps are zero. For small
ψ , the band gap becomes finite, while the spectral gap re-
mains zero (labeled as region I). The band gap reaches a
maximum as a function of ψ before going to zero at the
special value ψ1 where the O(B3) term vanishes (the spectral
gap is zero throughout). Increasing ψ1 past this point, the
Majorana-Fermi surface shrinks (region II) and then disap-
pears near ψ2 ≈ 0.3487π , and the spectral gap then becomes
finite (region III). A gapped spectrum, similar to what is found
with only the magnetic field, is recovered as ψ approaches
π/2.

These qualitative features can be diagnosed by looking at
the behavior of the thermal Hall conductivity of the Majorana
fermions as T → 0 (Fig. 9), computed via [64]

lim
T →0

κxy

T
= π2

3

(
k2

B

h̄

){
1

V

∑
εn(k)<0

F (n)
xy (k)

}
≡ κ0

∑
n

�(n),

(60)

where F (n)
xy = ∂xA(n)

y − ∂yA(n)
x is the Berry curvature of the

nth band, V is the volume of the system, and A(n)
μ (k) =

−i〈n(k)|∂μ|n(k)〉 is the associated Berry potential. This can
be naturally expressed in units of κ0 = πk2

B/(6h̄) and the total
(occupied) Berry curvatures �(n) ≡ 2πV −1 ∑

εn(k)<0 F (n)
xy (k)
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FIG. 10. (a)–(f) (Top) Illustration of the spectrum of the Majorana fermions as a function of E and B (parametrized by ψ [Eq. (57)]) near
the location of the (minimal) band gap at K∗. Gapless phases with Majorana-Fermi surfaces (a)–(d) and gapped phases (e), (f) are shown.
(a)–(f) (Bottom) Illustration of the Majorana-Fermi surfaces as a function of E and B (parametrized by ψ [Eq. (57)]). The location of the band
gap (K∗) is indicated. For ψ > ψ2 ≈ 0.3487π (e), (f) the system is gapped and there is no Majorana-Fermi surface. Throughout we choose
field strengths E = B = 0.1. See Sec. VII for the choice of electric polarization parameters and magnetic g factors.

for each band.2 When the spectrum is gapped, the �(n) are
the Chern numbers of each band and thus the thermal Hall
response is quantized in units of κ0.

In region I, with ψ 
= 0, the finite O(B3) contribution to the
spectrum induces finite Berry curvature at the bottom of the
two Majorana bands, near the location of the band gap. This
Berry curvature gives a nonzero contribution to the thermal
Hall conductivity, following Eq. (60). However, due the pres-
ence of the Majorana-Fermi surface the effectively “occupied”
states do not include the full Brillouin zone. Thus, in region
I κxy/T is not integer or rational valued when expressed in
units of κ0, varying continuously as a function of ψ . At the
special angle ψ1 the O(B3) term vanishes, changing sign; the
thermal Hall conductivity follows suit, remaining finite and
unquantized in region II, but with opposite sign relative to
region I. In region III, for ψ > ψ2, there is no Majorana-Fermi
surface, and the band gap is open and one thus recovers
the half-quantized thermal Hall conductivity expected from
Ref. [5].

VIII. DISCUSSION

We first discuss the relevance of these results to the body
of related theoretical works on the Kitaev model and address
the effects of interactions on the Majorana-Fermi surface
(Sec. VIII A). We then discuss some estimates for the electric
fields that may be required to observe this physics, as well

2For our numerical calculations, we compute the Berry curvature
on finite lattices using the formulation of Fukui emphet al. [84],
increasing the lattice size until convergence is reached for κxy/T .

as some experimental hurdles in reaching these field strengths
(Sec. VIII B).

A. Theoretical works

Let us begin with the relationship of the gapless states in
this work to some recent studies in the literature. A set of
four-spin interactions, similar to those derived in Sec. IV C at
O(E2), were studied in Refs. [72,85]. These are not identical
to those studied here; generically the four-spin interactions
generated at O(E2) are anisotropic and there is a fixed rela-
tionship between the coefficients of the two different types of
operators; however, given their similarity, some discussion is
in order. In Ref. [72] it is shown that for large couplings these
operators lead to a change in the ground-state flux sector of
the model, stabilizing a rich variety of “vison crystals” [72].
In our analysis, we have explicitly restricted ourselves to the
zero-flux sector, assuming that perturbations from the electric
and magnetic fields are sufficiently small to leave the flux
sector unaffected. The results of Ref. [72] can give a rough
idea of the range of validity of this approximation; using their
notation, the coefficients of the four-spin terms should satisfy
K3/K1 � 0.1 and K ′

3/K1 � 0.4. In our notation, ignoring the
(complicated) direction dependence of E, this implies the
loose criterion m2

0E2/
 � 0.1 (where E is the electric field
strength) to preserve the zero-flux sector. Alternatively, one
may take the view that applying a strong electric field may
be a route to stabilizing the “vison crystal” ground states
described in Ref. [72]. However, given this likely would push
our perturbation theory to the limit of its regime of validity
altogether, one must be cautious.

Some of these concerns could be addressed by more de-
tailed numerical studies. For example, a numerical search for

134444-12



MAGNETOELECTRIC GENERATION OF A … PHYSICAL REVIEW B 103, 134444 (2021)

the true ground-state flux sector [72] through quantum Monte
Carlo studies at finite temperature [17,18]. The degenerate
perturbation theory itself could be validated using numerical
techniques (such as density matrix renormalization group or
exact diagonalization) on the original model [Eq. (2)].

We also note the work of Ref. [78], which discusses the
presence of Majorana-Fermi surfaces in a Kitaev model in the
presence of site-dependent magnetic fields and off-diagonal
exchanges � and �′ [11]. In their proposal, these fields are
generated by zigzag magnetic ordering in adjacent honey-
comb layers, providing a source of both time reversal and
inversion symmetry breaking. While magnetic ordering in
some layers, with a Kitaev spin liquid in other layers may not
seem particularly natural, the simultaneous breaking of these
symmetries plays a similar role to the presence of E and B in
this work.

1. Stability

An important question that must be addressed for the
Majorana-Fermi surface we find in this work is stability to
interactions. Similar states with gapless surfaces in three-
dimensional Kitaev models [61–63], as “Bogoliubov-Fermi”
surfaces [86–90]. For these systems, the absence of this kind
of (effective) nesting symmetry precluded such an instability.

Generically, in the case of interest for the Kitaev model in
electric and magnetic fields, all of the rotational symmetries
of the system are broken, along with time-reversal symmetry.
Thus, similar to the case of time-reversal breaking noncen-
trosymmetric superconductors, the system should be stable to
the inclusion of weak short-range interactions. This can be
seen from the symmetries of the problem: with finite, generic
E and B the only remaining symmetries are discrete trans-
lations. Without any nesting vectors, interactions can only
link a finite number of patches of the Majorana-Fermi surface
and thus the enhancement that typically leads to instability
is absent [91,92]. Analogs of superconducting instabilities are
also avoided, given there is no U(1) symmetry of the fermions
left to spontaneously break [89].

The argument against a pairing instability is a bit sub-
tle for the Majorana-Fermi surface, given that k and −k
are mixed when performing the Bogoliubov transformation.
Strictly speaking, this should only be done within half of the
Brillouin zone as to not double count states, yielding two
bands: one with energy ε(k) and one with energy −ε(−k)
where, due to the lack of inversion symmetry, generally
ε(k) 
= ε(−k). If you fill out the other half of the Brillouin
zone with the associated reflected copies −ε(k) and +ε(−k),
as we have done in Fig. 2, then it appears that there might
be a k to −k type pairing channel that could be vulnerable
to an instability. However, while there are zero-energy states
at k and −k on the Majorana-Fermi surface, these are not
independent and represent the usual Bogoliubov redundancy
distributed in momentum space, and thus should not lead to an
instability. More technically, this redundancy should impose
conditions on the interaction matrix elements (as the square of
a Majorana fermion vanishes) that would affect the associated
divergences that would naively lead to a superconducting in-
stability. We leave the detailed exploration of these arguments
to future work.

This argument has a few further subtleties, given that
the perturbations that generate the Majorana-Fermi surfaces
also generate the interaction terms, just at higher order in
perturbation theory. To see why this could complicate the
analysis, note that in Sec. VII we showed that at second order
in E and B the Majorana-Fermi surfaces are ellipses, which
enjoy a kind of effective inversion symmetry through their
centers. At higher order, contributions would render these
surfaces nonelliptical (see Fig. 7), but would also include
Majorana-Majorana interactions on equal footing. We leave
the (potential) competition between these two effects, and thus
the ultimate fate of these Majorana-Fermi surfaces to future
studies.

We note that at the special angle ψ2 where the spectral
gap closes, the Majorana spectrum is that of a quadratic band
touching, with a spectrum ∝ |k|2. While the thermodynamic
signature C ∝ T , this is the same as the Majorana-Fermi
surface, (due to its finite density of states) the effects of inter-
actions may be different. A similar quadratic band-touching
point appears in AB stacked bilayer graphene [93]. This has
attracted attention due to its instability to weak short-range
interactions, which leads to the emergence of a variety of new
phases. We leave the discussion of the interaction effects on
this quadratic Majorana spectrum, and any potential instabili-
ties, to future work.

2. Correlations

Finally, we note that the gapless nature of the spectrum in
our model should lead to algebraic correlations in the spin-
spin correlation functions. However, these may be “hidden”
[94–96]; for example, as in the ideal Kitaev model the spin-
spin correlations are ultrashort range in spite of the gapless
Dirac spectrum of the Majorana fermions. Although the re-
sult of Ref. [94] is not directly applicable in our effective
Hamiltonian, it can be applied directly to the original model
(2), including the electric polarization operator. Explicitly,
using the criterion from Ref. [94] if we consider the electric
and magnetic field perturbations as V ≡ −E · P − B · M from
Eq. (2), then

[�μ,V ] 
= 0, (61)

where �μ is defined to be the product of flux variables over
strings of plaquettes [94], as shown in Fig. 11. We thus expect
that gaplessness of the Majorana-Fermi surface to manifest
in power-law spin-spin correlations. Alternatively, this can be
seen by computing the associated canonical transformation of
the spin operators when carrying out the degenerate perturba-
tion theory of Sec. IV, as discussed in Ref. [96] in a related
context.

B. Experimental work

We now address the potential applicability of these results
to the growing family of “Kitaev materials” [6,7,13] that
are believed to have dominant Kitaev exchange. Ideally, one
would like to apply electric and magnetic fields of magnitude
that are realistically attainable and generate a Majorana-Fermi
surface that could be observable in thermodynamic, transport,
or spectroscopic probes.
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FIG. 11. Illustration of z-type coverings. A product of Wp over
either the shaded plaquettes (or the unshaded plaquettes) yields the
operator �z used in Eq. (61). The �x and �y operators are defined
similarly, with the plaquettes in the product sharing x-type or y-type
bonds.

To do so, we must determine a reasonable range of es-
timates for the coefficients mi that appear in the (effective)
electric polarization operator, as well as take a typical value
for the Kitaev exchange K . The latter is straightforward: in
transition metal Kitaev materials one typically expects K ∼
5 meV [7,97]. We thus expect J = K/4 ∼ 1.25 meV and thus
the relevant flux gaps are 
 ∼ 
′ ∼ 0.35 meV. Estimating the
mi is more complex, with several distinct microscopic mech-
anisms potentially contributing at the same order [59,60]. In
Bolens et al. [60] these are estimated as the sum of two con-
tributions: mn ≡ aAn + Bn where a is the nearest-neighbor
distance (we will take it to be as in α-RuCl3, a ∼ 3.5 Å
[98]). The first contribution depends on the detailed choice
of atomic and hopping parameters, but is estimated to be as
large as A ∼ 10−2 ea [60] where e is the electron charge.
The contribution Bn is not estimated in Ref. [60], so we
will simply neglect it in this discussion. We thus have the
estimate of m0 ∼ 3.5 × 10−2 eÅ = 3.5 × 10−9 meV/(V/m).
This estimate is very rough and errors as large as an order of
magnitude would not be surprising, given the uncertainty in
the microscopic physics.

Given this value for m0, we can now estimate the electric
field strengths required to give a Majorana-Fermi surface of
a given size. This size is set by the chemical potential which
for crossed fields (see Sec. VII) is μ ∼ 3

√
2gm0μBEB/(2
)

[restoring some constants in Eq. (54)]. Taking g ∼ 2 and B ∼
10 T we arrive at

μ ∼ {
2.4 × 10−8 meV/(V/m)

}
E .

Since we are estimating J ∼ 1.25 meV the Dirac velocity is
v ∼ 3.75 meV and so the radius of the Fermi surface is given
by [Eq. (56)]

qF a ∼ |μ|
v

≈ 6.4 × 10−9

(
V

m

)−1

E .

To get a qF that is large, say qF a ∼ 0.1, we would thus need
that E ∼ 107 V/m ≡ E0. This is a very large field;3 though we
note that static electric fields of of magnitude ∼106–107 V/m
have been used in studies of magnetic systems [99–103].

3We also note that this is an optimistic estimate; a significantly
larger E0, for example of size ∼108–109 V/m almost surely possible,

We note that thermodynamic signatures of the Majorana-
Fermi surface would only appear for temperatures that are
well below the flux gap and the associated Fermi energy of
the Majorana-Fermi surface ≈ |μ|. For electric fields of order
E0, this would occur at temperatures below ∼1 K or so.

This naive analysis must be supplemented with a number
of caveats. First, it must be self-consistent: we have that at
these large fields m0E0 ∼ 0.1 meV which is not significantly
smaller than the flux gap 
 ∼ 0.35 meV, so our perturbation
theory may be approaching the edges of its validity. Further,
we have the requirement that we must remain in the zero-flux
sector [72]. For this large electric field m2

0E2
0 /(J
) ∼ 0.02,

reasonably far from where one might expect a transition to a
new flux sector (see discussion in Sec. VIII).4 Similar con-
siderations must be applied to the magnetic field as well,
concerning the validity of its perturbation theory and its effect
on the phase boundary of the zero-flux phase. One route to
lowering the required electric field would be via larger mag-
netic fields along a direction where the O(B3) terms vanish.
Alternatively, one could search for Kitaev materials where K
or 
 are smaller; rare-earth Kitaev materials [104,105] may
be promising alternatives, if the size of electric field coupling
is not dramatically changed. Kitaev materials based on metal-
organic frameworks [106], which have longer bond lengths,
may also change the balance of the exchange and electric field
interactions.

More practically, at large static fields such as these one
must also be aware of effects on the physical system that are
not included with our minimal model [Eq. (2)]. This includes
potential structural distortions of the lattice along the field, the
introduction of charge carriers through electrostatic doping,
as well as the modification of the microscopic exchange pro-
cesses due to the field. More dramatically, the material itself
could experience dielectric breakdown; for Mott insulators
breakdown electric fields of order ∼108–109 V/m are not
atypical, given the expected relationship to the onsite repul-
sion [107]. One potential route to avoid some of these issues
is to consider large electric field pulses, perhaps through the
application of laser light, that can reach these field strengths
over short time windows. Realizing this physics only within a
short time window (long with respect to the spin dynamics)
would, however, limit the experimental probes available to
characterize the system.

An alternative route to large static electric fields could be
through the engineering of heterostructures of Kitaev materi-
als. Recently, heterostructures of graphene (single and bilayer)
and (bulk and monolayer) α-RuCl3 have been reported in the
literature [108–111]. In each case, the associated potential
difference (large effective electric field) results in significant
doping of both the graphene and the α-RuCl3. While the effect
of these fields appears to be too strong for our purposes, the
possibility of van der Waals heterostructures of Kitaev materi-
als as a platform to explore the electric field physics discussed

depending on the precise estimates of the microscopic parameters A,
B, the magnetic field strength B, and the Kitaev exchange K .

4We note that the size of the zero-flux sector may be quite different
when we account for the anisotropy of our four-spin interactions
(larger or smaller).
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in this work remains an intriguing possibility. We note that
several recent theoretical works have explored the (related)
effect of tunneling in such heterostructures [112–115] through
the effect of localized electric fields.

While each of these complications to achieving the large
electric fields needed here are important, these need not
be insurmountable. From the properties of the Majorana
Hamiltonian these surfaces can appear whenever we break
time-reversal and inversion symmetry simultaneously; com-
bined electric and magnetic fields are simply the minimal
perturbation that does so. Thus, while we have derived our
results within a well-defined framework for the pure Kitaev
model with a specific (though generic) electric polarization
operator, we expect that generation of a Majorana-Fermi sur-
face not to be strictly dependent on these implementation
details. For example, physics similar to that introduced here
may be introduced by disorder that breaks inversion sym-
metry. Explicitly, something akin to charged defects could
introduce in-plane electric fields and, in regions where these
fields are sufficiently uniform, our results would apply. In-
troducing a magnetic field would then generate a Majorana
chemical potential in concert with these defect fields. We
leave the exploration of these possibilities for future work.

Finally, let us make a connection to more conventional
magnetoelectric effects that have been extensively discussed
in multiferroic materials. A first step to gauge the importance
of these kinds of magnetoelectric interactions, before embark-
ing on a detailed search for a Majorana-Fermi surface, will be
to look at the bulk magnetization as a function of electric field
strength. As in conventional magnetoelectric materials, due to
the presence of the O(EB) terms in the effective Hamiltonian,
one expects that at leading order (fixing directions and cou-
pling coefficients)

M ∼ χB + αE2B,

where χ is the susceptibility and α a magnetoelectric cou-
pling. A similar term, with E and B switched, would appear
in the electric polarization. This effect could be measurable,
even if making a sufficiently large enough Majorana-Fermi
surface is not feasible, and could provide some guidance on
the size of the unknown couplings mn that appear with the
polarization.

IX. CONCLUSION

In summary, we have analyzed the effects of combined
static electric and magnetic fields on Kitaev’s honeycomb
model. Starting from the symmetry-allowed effective polar-
ization operator [59,60], we used degenerate perturbation
theory to derive an effective Hamiltonian to second order in
both the magnetic and electric fields. This effective Hamil-
tonian is solvable and describes a set of (free) Majorana
fermions with a Majorana-Fermi surface over a wide range
of parameters, including the neighborhood of the Kitaev spin
liquid. We explored the effects of the O(B3) gap-opening
perturbation, showing how it competes with the generation
of the Majorana-Fermi surface depending on the relative ori-
entations of Ê and B̂. The spectrum of this spin liquid with

Majorana-Fermi surface was characterized in the weak-field
limit, where we derived the low-energy form of the dispersion,
and determined the thermodynamic properties and thermal
Hall coefficient. Finally, we discussed some related work,
speculated on the effects of interactions, and provided rough
estimates of the magnitude of electric and magnetic fields that
are required to render the size of the Majorana-Fermi surface
significant.

We hope that our results further motivate the use of electric
fields as potentially useful perturbations in Kitaev materi-
als, such as α-RuCl3. Not only in linear response (as in
Refs. [59,60]), but as a tuning parameter that could shed light
on whether a Kitaev spin liquid is present and potentially
generate a new spin liquid with a Majorana-Fermi surface.
Many questions remain, such as addressing the dynamics of
this gapless liquid, the effect of temperature, and the role of
dilution and bond disorder on this state. The answers to these
questions have proven a rich source of insight in Kitaev’s
model. We hope that future work on liquids with Majorana-
Fermi surfaces, as in the models presented in this work, can
be similarly fruitful.
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APPENDIX: O(B3) CONTRIBUTIONS TO THE
EFFECTIVE HAMILTONIAN

The most general term we can write at O(B3) in our pertur-
bation theory is given by

−(gμB)3
∑
μ,ν,λ

∑
i, j,k

BμBνBλ

[
P0σ

μ
i

(
1−P0




)
σ ν

j

(
1−P0




)
σλ

k P0

]
,

where, as in the main text, we have used that the resolvent
reduces to R = (1 − P0)/
. From the flux patterns generated
by each piece (see Fig. 12), we see that to obtain a combi-
nation of operators that leads us back to the zero-state flux
sector, one needs μ, ν, λ to be a permutation of x, y, z. All

FIG. 12. Illustration of a contribution to the O(B3) part of the
effective Hamiltonian, for i ∈ A. The relevant pieces of the magneti-
zation operator are indicated by thick bonds.
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of these permutations yield the same operator, and thus can
be accounted for with an overall factor of 3! = 6. Noting that
P0MP0 = 0 we can see that the only nonzero terms are

− 6hxhyhz


2

∑
i, j,k

[
P0σ

x
i σ

y
j σ

z
k P0

]
.

There are two choices for {i, j, k} which will give us nonzero
contributions. One is given by i = j = k ∈ {A, B},

− 6hxhyhz


2

∑
i

[P0σ
x
i σ

y
i σ z

i P0] = −6hxhyhz


2
(iN ),

which just gives an unimportant constant. The second nonzero
contribution is generated by a configuration such as the one
shown in Fig. 12.

To make this more explicit, write the O(B3) correction
(illustrated in Fig. 12) as

− 6hxhyhz


2

{∑
i∈A

[
P0σ

x
i+xσ

y
i+yσ

z
i+zP0

]+∑
i∈B

[
P0σ

x
i−xσ

y
i−yσ

z
i−zP0

]}
.

Finally, writing these operators in terms of the Majorana
fermions we arrive at

−6hxhyhz


2

∑
2〈i j〉α(β )γ

εαβγ icic j, (A1)

as stated in Sec. V [Eq. (49)].

[1] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502 (2016).
[2] J. K. Pachos, Introduction to Topological Quantum Computa-

tion (Cambridge University Press, Cambridge, 2012).
[3] A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
[4] J. Knolle and R. Moessner, Annu. Rev. Condens. Matter Phys.

10, 451 (2019).
[5] A. Kitaev, Ann. Phys. 321, 2 (2006).
[6] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Annu. Rev. Condens.

Matter Phys. 7, 195 (2016).
[7] S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink, Y.

Singh, P. Gegenwart, and R. Valenti, J. Phys.: Condens. Matter
29, 493002 (2017).

[8] H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E.
Nagler, Nat. Rev. Phys. 1, 264 (2019).

[9] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009).

[10] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.
105, 027204 (2010).

[11] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Phys. Rev. Lett. 112,
077204 (2014).

[12] V. M. Katukuri, S. Nishimoto, V. Yushankhai, A. Stoyanova,
H. Kandpal, S. Choi, R. Coldea, I. Rousochatzakis, L. Hozoi,
and J. Van Den Brink, New J. Phys. 16, 013056 (2014).

[13] M. Hermanns, I. Kimchi, and J. Knolle, Annu. Rev. Condens.
Matter Phys. 9, 17 (2018).

[14] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.
110, 097204 (2013).

[15] J. G. Rau and H.-Y. Kee, arXiv:1408.4811(2014).
[16] J. Chaloupka and G. Khaliullin, Phys. Rev. B 92, 024413

(2015).
[17] J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. Lett. 113,

197205 (2014).
[18] J. Nasu, M. Udagawa, and Y. Motome, Phys. Rev. B 92,

115122 (2015).
[19] J. Nasu, J. Yoshitake, and Y. Motome, Phys. Rev. Lett. 119,

127204 (2017).
[20] J. Yoshitake, J. Nasu, and Y. Motome, Phys. Rev. Lett. 117,

157203 (2016).
[21] J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner,

Phys. Rev. Lett. 112, 207203 (2014).

[22] J. Knolle, G.-W. Chern, D. L. Kovrizhin, R. Moessner, and
N. B. Perkins, Phys. Rev. Lett. 113, 187201 (2014).

[23] J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner,
Phys. Rev. B 92, 115127 (2015).

[24] A. Smith, J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R.
Moessner, Phys. Rev. B 92, 180408(R) (2015).

[25] B. Perreault, J. Knolle, N. B. Perkins, and F. J. Burnell, Phys.
Rev. B 92, 094439 (2015).

[26] G. B. Halász, N. B. Perkins, and J. van den Brink, Phys. Rev.
Lett. 117, 127203 (2016).

[27] S. Mandal and N. Surendran, Phys. Rev. B 79, 024426 (2009).
[28] J. Nasu, T. Kaji, K. Matsuura, M. Udagawa, and Y. Motome,

Phys. Rev. B 89, 115125 (2014).
[29] M. Hermanns and S. Trebst, Phys. Rev. B 89, 235102 (2014).
[30] M. Hermanns, K. O’Brien, and S. Trebst, Phys. Rev. Lett. 114,

157202 (2015).
[31] M. Hermanns, S. Trebst, and A. Rosch, Phys. Rev. Lett. 115,

177205 (2015).
[32] K. O’Brien, M. Hermanns, and S. Trebst, Phys. Rev. B 93,

085101 (2016).
[33] P. A. Mishchenko, Y. Kato, and Y. Motome, Phys. Rev. B 96,

125124 (2017).
[34] A. Willans, Disorder in an exactly solvable quantum spin

liquid, Ph.D. thesis, Oxford University, UK, 2010.
[35] A. J. Willans, J. T. Chalker, and R. Moessner, Phys. Rev. B 84,

115146 (2011).
[36] F. Zschocke and M. Vojta, Phys. Rev. B 92, 014403 (2015).
[37] M. Udagawa, Phys. Rev. B 98, 220404(R) (2018).
[38] D. Otten, A. Roy, and F. Hassler, Phys. Rev. B 99, 035137

(2019).
[39] J. Knolle, R. Moessner, and N. B. Perkins, Phys. Rev. Lett.

122, 047202 (2019).
[40] H.-C. Jiang, Z.-C. Gu, X.-L. Qi, and S. Trebst, Phys. Rev. B

83, 245104 (2011).
[41] L. Janssen, E. C. Andrade, and M. Vojta, Phys. Rev. Lett. 117,

277202 (2016).
[42] R. Yadav, N. A. Bogdanov, V. M. Katukuri, S. Nishimoto, J.

Van Den Brink, and L. Hozoi, Sci. Rep. 6, 37925 (2016).
[43] M. Gohlke, R. Moessner, and F. Pollmann, Phys. Rev. B 98,

014418 (2018).

134444-16

https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1146/annurev-conmatphys-031115-011319
https://doi.org/10.1088/1361-648X/aa8cf5
https://doi.org/10.1038/s42254-019-0038-2
https://doi.org/10.1103/PhysRevLett.102.017205
https://doi.org/10.1103/PhysRevLett.105.027204
https://doi.org/10.1103/PhysRevLett.112.077204
https://doi.org/10.1088/1367-2630/16/1/013056
https://doi.org/10.1146/annurev-conmatphys-033117-053934
https://doi.org/10.1103/PhysRevLett.110.097204
http://arxiv.org/abs/arXiv:1408.4811
https://doi.org/10.1103/PhysRevB.92.024413
https://doi.org/10.1103/PhysRevLett.113.197205
https://doi.org/10.1103/PhysRevB.92.115122
https://doi.org/10.1103/PhysRevLett.119.127204
https://doi.org/10.1103/PhysRevLett.117.157203
https://doi.org/10.1103/PhysRevLett.112.207203
https://doi.org/10.1103/PhysRevLett.113.187201
https://doi.org/10.1103/PhysRevB.92.115127
https://doi.org/10.1103/PhysRevB.92.180408
https://doi.org/10.1103/PhysRevB.92.094439
https://doi.org/10.1103/PhysRevLett.117.127203
https://doi.org/10.1103/PhysRevB.79.024426
https://doi.org/10.1103/PhysRevB.89.115125
https://doi.org/10.1103/PhysRevB.89.235102
https://doi.org/10.1103/PhysRevLett.114.157202
https://doi.org/10.1103/PhysRevLett.115.177205
https://doi.org/10.1103/PhysRevB.93.085101
https://doi.org/10.1103/PhysRevB.96.125124
https://doi.org/10.1103/PhysRevB.84.115146
https://doi.org/10.1103/PhysRevB.92.014403
https://doi.org/10.1103/PhysRevB.98.220404
https://doi.org/10.1103/PhysRevB.99.035137
https://doi.org/10.1103/PhysRevLett.122.047202
https://doi.org/10.1103/PhysRevB.83.245104
https://doi.org/10.1103/PhysRevLett.117.277202
https://doi.org/10.1038/srep37925
https://doi.org/10.1103/PhysRevB.98.014418


MAGNETOELECTRIC GENERATION OF A … PHYSICAL REVIEW B 103, 134444 (2021)

[44] Z. Zhu, I. Kimchi, D. N. Sheng, and L. Fu, Phys. Rev. B 97,
241110(R) (2018).

[45] C. Hickey and S. Trebst, Nat. Commun. 10, 530 (2019).
[46] J. Nasu, Y. Kato, Y. Kamiya, and Y. Motome, Phys. Rev. B 98,

060416(R) (2018).
[47] S. Liang, M.-H. Jiang, W. Chen, J.-X. Li, and Q.-H. Wang,

Phys. Rev. B 98, 054433 (2018).
[48] H.-C. Jiang, C.-Y. Wang, B. Huang, and Y.-M. Lu,

arXiv:1809.08247.
[49] J. Yoshitake, J. Nasu, Y. Kato, and Y. Motome, Phys. Rev. B

101, 100408(R) (2020).
[50] J. S. Gordon, A. Catuneanu, E. S. Sørensen, and H.-Y. Kee,

Nat. Commun. 10, 2470 (2019).
[51] O. Tanaka, Y. Mizukami, R. Harasawa, K. Hashimoto, N.

Kurita, H. Tanaka, S. Fujimoto, Y. Matsuda, E.-G. Moon, and
T. Shibauchi, arXiv:2007.06757.

[52] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, S. Ma, K.
Sugii, N. Kurita, H. Tanaka, J. Nasu, Y. Motome et al., Nature
(London) 559, 227 (2018).

[53] T. Yokoi, S. Ma, Y. Kasahara, S. Kasahara, T. Shibauchi, N.
Kurita, H. Tanaka, J. Nasu, Y. Motome, C. Hickey et al.,
arXiv:2001.01899.

[54] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[55] M. Ye, G. B. Halász, L. Savary, and L. Balents, Phys. Rev.

Lett. 121, 147201 (2018).
[56] Y. Vinkler-Aviv and A. Rosch, Phys. Rev. X 8, 031032 (2018).
[57] L. N. Bulaevskii, C. D. Batista, M. V. Mostovoy, and D. I.

Khomskii, Phys. Rev. B 78, 024402 (2008).
[58] S. Miyahara and N. Furukawa, Phys. Rev. B 93, 014445

(2016).
[59] A. Bolens, Phys. Rev. B 98, 125135 (2018).
[60] A. Bolens, H. Katsura, M. Ogata, and S. Miyashita, Phys. Rev.

B 97, 161108(R) (2018).
[61] D. F. Agterberg, P. M. R. Brydon, and C. Timm, Phys. Rev.

Lett. 118, 127001 (2017).
[62] P. M. R. Brydon, D. F. Agterberg, H. Menke, and C. Timm,

Phys. Rev. B 98, 224509 (2018).
[63] H. Menke, C. Timm, and P. M. R. Brydon, Phys. Rev. B 100,

224505 (2019).
[64] T. Qin, Q. Niu, and J. Shi, Phys. Rev. Lett. 107, 236601 (2011).
[65] N. A. Spaldin and M. Fiebig, Science 309, 391 (2005).
[66] N. A. Spaldin and R. Ramesh, Nat. Mater. 18, 203 (2019).
[67] Y. Tokura, S. Seki, and N. Nagaosa, Rep. Prog. Phys. 77,

076501 (2014).
[68] A. C. Potter, T. Senthil, and P. A. Lee, Phys. Rev. B 87, 245106

(2013).
[69] P. Rao and I. Sodemann, Phys. Rev. B 100, 155150 (2019).
[70] D. Khomskii, Nat. Commun. 3, 1 (2012).
[71] E. Lantagne-Hurtubise, S. Bhattacharjee, and R. Moessner,

Phys. Rev. B 96, 125145 (2017).
[72] S.-S. Zhang, Z. Wang, G. B. Halász, and C. D. Batista, Phys.

Rev. Lett. 123, 057201 (2019).
[73] H. Yao, S.-C. Zhang, and S. A. Kivelson, Phys. Rev. Lett. 102,

217202 (2009).
[74] G. Baskaran, G. Santhosh, and R. Shankar, arXiv:0908.1614.
[75] K. S. Tikhonov and M. V. Feigel’man, Phys. Rev. Lett. 105,

067207 (2010).
[76] V. Chua, H. Yao, and G. A. Fiete, Phys. Rev. B 83, 180412(R)

(2011).

[77] H.-H. Lai and O. I. Motrunich, Phys. Rev. B 83, 155104
(2011).

[78] D. Takikawa and S. Fujimoto, Phys. Rev. B 99, 224409 (2019).
[79] W. M. H. Natori, R. Moessner, and J. Knolle, Phys. Rev. B

100, 144403 (2019).
[80] E. H. Lieb, Phys. Rev. Lett. 73, 2158 (1994).
[81] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,

and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
[82] F. J. Burnell and C. Nayak, Phys. Rev. B 84, 125125 (2011).
[83] J. Knolle, Dynamics of a Quantum Spin Liquid (Springer,

Berlin, 2016).
[84] T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn. 74,

1674 (2005).
[85] S.-S. Zhang, C. D. Batista, and G. B. Halász, Phys. Rev.

Research 2, 023334 (2020).
[86] C. J. Lapp, G. Börner, and C. Timm, Phys. Rev. B 101, 024505

(2020).
[87] G. B. Sim, A. Mishra, M. J. Park, Y. B. Kim, G. Y. Cho, and

S. B. Lee, Phys. Rev. Research 2, 023416 (2020).
[88] H. Oh and E.-G. Moon, Phys. Rev. B 102, 020501(R)

(2020).
[89] J. M. Link and I. F. Herbut, Phys. Rev. Lett. 125, 237004

(2020).
[90] Y.-F. Jiang, H. Yao, and F. Yang, arXiv:2003.02850.
[91] R. Shankar, Rev. Mod. Phys. 66, 129 (1994).
[92] S. Sur and S.-S. Lee, Phys. Rev. B 90, 045121 (2014).
[93] E. McCann and M. Koshino, Rep. Prog. Phys. 76, 056503

(2013).
[94] S. Mandal, S. Bhattacharjee, K. Sengupta, R. Shankar, and G.

Baskaran, Phys. Rev. B 84, 155121 (2011).
[95] K. S. Tikhonov, M. V. Feigel’man, and A. Y. Kitaev, Phys.

Rev. Lett. 106, 067203 (2011).
[96] X.-Y. Song, Y.-Z. You, and L. Balents, Phys. Rev. Lett. 117,

037209 (2016).
[97] S. M. Winter, Y. Li, H. O. Jeschke, and R. Valentí, Phys. Rev.

B 93, 214431 (2016).
[98] R. D. Johnson, S. C. Williams, A. A. Haghighirad, J.

Singleton, V. Zapf, P. Manuel, I. I. Mazin, Y. Li, H. O.
Jeschke, R. Valentí, and R. Coldea, Phys. Rev. B 92, 235119
(2015).

[99] Y. Taguchi, T. Matsumoto, and Y. Tokura, Phys. Rev. B 62,
7015 (2000).
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