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We formulate a Landau theory for altermagnets, a class of colinear compensated magnets with spin-split
bands. Starting from the non-relativistic limit, this Landau theory goes beyond a conventional analysis by
including spin-space symmetries, providing a simple framework for understanding the key features of this family
of materials. We find a set of multipolar secondary order parameters connecting existing ideas about the spin
symmetries of these systems, their order parameters and the effect of non-zero spin-orbit coupling. We account for
several features of canonical altermagnets such as RuO2, MnTe and CuF2 that go beyond symmetry alone, relating
the order parameter to key observables such as magnetization, anomalous Hall conductivity and magneto-elastic
and magneto-optical probes. Finally, we comment on generalizations of our framework to a wider family of
exotic magnetic systems deriving from the zero spin-orbit coupled limit.

Introduction – Magnetism has long been a source of novel
phases and phenomena of both fundamental and technological
interest. Many thousands of magnetic materials are known
with a wide variety structures including simple colinear ferro-
magnets, ferrimagnets and antiferromagnets as well as more
complex arrangements characterized by multiple incommensu-
rate wavevectors [1].

The importance of spin-orbit coupling in magnetism is
widely appreciated, through exotic transport phenomena such
as the anomalous and spin Hall effects [2, 3] as well as new
physics arising from the interplay of topology and magnetism
such as skyrmion physics [4, 5], non-trivial magnon band topol-
ogy [6] or Berry phases induced by spin chirality in the elec-
tronic band structures of itinerant magnets [2]. However, the
zero spin-orbit coupled limit still holds surprises.

One phenomenon in this setting that has captured the at-
tention of a broad cross-section of the community [7–44] is
altermagnetism. Following the unexpected discovery of a d-
wave spin splitting of the Fermi surface in RuO2 based on
ab initio calculations [8], it was realized that this is one in-
stance of a large new class of magnets defined by spin sym-
metries [25]. This spin-split band structure combines aspects
of simple metallic ferromagnets and antiferromagnets with
its core features borne out by experiment [27–30]. Although
spin-orbit coupling (SOC) is not negligible in this material,
the altermagnetic spin splitting arising in the zero SOC limit
greatly exceeds any SOC induced band gaps. Despite having
zero net moment, these bands can support spin currents with
polarization depending on the orientation of the applied volt-
age. Further, an anomalous Hall response has been measured
in altermagnetic materials such as RuO2 [27] and MnTe [45].
While research into these magnets is at an early stage, there is
hope that they may complete the program of antiferromagnetic
spintronics [46–48]: realizing THz switching devices with no
stray fields and with low damping spin currents.

Despite their significant potential value in applications, there
remain fundamental questions in situating these new phases
of matter within the broader context of magnetism. From a
practical standpoint, one can characterize most of the altermag-
netic properties as originating from band structures with an
anisotropic pattern of spin splitting in momentum space due

to time-reversal symmetry breaking [25, 26]. This is in con-
trast to simple Stoner ferromagnets with double sheeted Fermi
surfaces for the different populations of up and down spins
and those of simple antiferromagnets where the Fermi surfaces
are perfectly spin compensated [1, 49], as well as from frus-
trated isotropic antiferromagnets which can have complicated
Fermi surfaces with electron and hole pockets albeit with equal
spin populations [2, 50]. While appealing, this phenomenol-
ogy does not delineate which properties of altermagnets are
robust to small symmetry allowed perturbations, and which
may depend on material specific details.

In this paper, we argue that Landau theory adapted to the
zero SOC limit captures the unique features of altermagnets.
Starting from the definition of Šmejkal et al. [25], this Landau
theory links spin symmetries to altermagnetic phenomenology
including their band structures, thermodynamics and response
functions, and reveals a deep connection to multipolar sec-
ondary order parameters [31]. The symmetries of these multi-
poles relate directly to the symmetries of the spin-split bands,
with the anisotropy of the electronic kinetic terms manifesting
the same quadrupolar or hexadecapolar spatial structure found
in the secondary order parameters, reminiscent of electronic
nematic or spin-nematic phases [51]. In addition, this Lan-
dau theory allows one to systematically address the effects
of switching on SOC, identifying the leading coupling to the
primary order parameter and how they relate to any multipolar
secondary order parameters. As many of the features of alter-
magnets, such as the anomalous Hall conductivity only appear
when SOC is non-zero, by approaching from this limit, we can
analyze in detail how the phenomenology of altermagnets is
distinguished from generic spin-orbit coupled magnets. The
zero SOC limit thus acts as “parent” phase from which many
of their principal features – features that are obscured within
the standard symmetry analysis – can be understood in real
materials.

Landau Theory – We adopt the essential definition put forth
in Šmejkal et al. [25]: an “ideal” altermagnet is a spin-orbit
free magnet with colinear antiferromagnetic order where the
two sublattices are symmetry related by something other than
translation or inversion symmetry. Since without SOC spatial
and spin operations can act separately, we can frame this as
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a statement about the spatial transformation properties of the
Néel order parameter N. To rephrase in this new language: in
an altermagnet, N transforms as an inversion even non-trivial
one-dimensional irreducible representation (irrep) under the
action of the crystal point group [25, 26].

To be concrete, we assume that we have a system in which
we can define a uniform magnetization, M, and staggered
magnetization, N (both inversion even). In the absence of SOC
the uniform magnetization transforms as Γ1 ⊗ Γ

S
A where Γ1 is

the trivial irrep of the point group and ΓS
A is the (axial) vector

irrep of the spin rotation group. We assume that N instead
transforms as ΓN⊗Γ

S
A where ΓN is a non-trivial one-dimensional

irrep of the point group. The condition that ΓN , Γ1 encodes
the assumption of altermagnetism [25, 26].

An immediate consequence is that a net magnetization is not
necessarily induced in the Néel phase. To see this, we consider
direct linear couplings between N and M that transform as the
product (Γ1 ⊗ Γ

S
A) ⊗ (ΓN ⊗ Γ

S
A) = ΓN ⊗ (ΓS

1 ⊕ Γ
S
A ⊕ Γ

S
Q) where

ΓS
1 and ΓS

Q are the scalar (ℓ = 0) and quadrupolar (ℓ = 2) irreps
of the spin rotation group. Since ΓN is a non-trivial irrep, these
couplings are forbidden in the absence of SOC.

We now connect this to higher multipoles. [52] Going be-
yond N or M, we can define a time-odd, inversion even oc-
tupole, transforming like an axial vector in spin space, but a
quadrupole spatially. Tracking spin and spatial indices sepa-
rately, we can define [31]

Oµν =
∫

d3r rµrνm(r), (1)

where m(r) is the microscopic magnetization density. Note
that Oµν transforms under spin-space symmetries as Oαµν →∑
ρτβ S αβRµρRντO

β
ρτ where S is a rotation in spin space and R

a rotation in real space. Other multipoles can be constructed
analogously. This octupole transforms as Oµν ∼ ΓQ ⊗ Γ

S
A,

where ΓQ is the (generally reducible) representation of a spa-
tial quadrupole. A linear coupling between N and Oµν then
transforms as

(ΓN ⊗ Γ
S
A) ⊗ (ΓQ ⊗ Γ

S
A) = (ΓN ⊗ ΓQ) ⊗ (ΓS

1 ⊕ Γ
S
A ⊕ Γ

S
Q).

Thus if ΓQ contains ΓN then N and Oµν can couple linearly
in the absence of SOC, and the octupole will appear as a
secondary order parameter in the Néel phase. In the language
of Šmejkal et al. [25], this would define a d-wave altermagnet.

We expect these multipolar secondary order parameters to
be generic; for a given symmetry there should exist a high
enough rank multipole such that its spatial part contains ΓN .
How do these secondary order parameters relate to the alter-
magnetic phenomenology? We first consider implications for
bulk thermodynamic and transport probes, but as we will see
in our discussion of the rutiles, these multipoles also connect
to the symmetry of the spin-split bands.

Consider whether N can couple linearly to M once SOC is
included. As the Landau theory now admits magnetocrystalline
anisotropy, spin and spatial transformations are coupled and
the spin rotation group irreps reduce to ΓS

1 → Γ1, ΓS
A → ΓA and

ΓS
Q → ΓQ. A linear coupling between N and M thus transforms

as

(Γ1 ⊗ ΓA) ⊗ (ΓN ⊗ ΓA) = ΓN ⊗ (ΓA ⊗ ΓA).

Using that ΓA ⊗ ΓA = Γ1 ⊕ ΓA ⊕ ΓQ, whether this coupling is
allowed is determined by whether ΓN appears in the decom-
position of ΓA or ΓQ. An identical condition applies for the
generation of an anomalous Hall conductivity [2], correspond-
ing to a current transverse to an applied voltage in the absence
of an applied magnetic field, Jµ =

∑
µν σ

µν
H Eν, as it transforms

in the same way as M. We also note that the Hall conduc-
tivity and magnetic circular dichroism, transform identically
under symmetry so these conclusions also carry over to this
magneto-optical probe.

We can now connect the appearance of a multipolar sec-
ondary order parameter to d-wave altermagnetic phenomenol-
ogy: if N couples linearly to an octupole in the absence of
SOC (and thus ΓN ⊂ ΓQ), then it will necessarily have a linear
coupling to M and σµνH in the presence of SOC. The definition
of Šmejkal et al. [25] does not require inducing an octupole,
but instead can involve only higher rank multipoles, corre-
sponding to g-wave or i-wave altermagetism. In those cases,
the generation of weak ferromagnetism or an anomalous Hall
effect can still generically persist. It may still be generated
linearly if ΓN ⊂ ΓA, but will necessarily appear non-linearly
otherwise.

With these core ideas outlined, we apply this framework
to understand a few common examples of altermagnetic sys-
tems, including rutiles such as RuO2 and hexagonal MnTe.
We will see that by adopting this phenomenological Landau
theory we can clarify the role played by multipolar secondary
order parameters, and delineate different mechanisms for the
generation of characteristic responses when SOC is included.

Rutile Altermagnetism – We begin with the canonical exam-
ple of altermagnetism in rutiles with chemical formula MX2
where M is the magnetic ion and X = O, F. The most prominent
example is currently RuO2 which is a metallic antiferromagnet
with a simple Néel order below the magnetic ordering temper-
ature TN > 300K [27–30, 36, 53–56]. The crystal structure
belongs to tetragonal space group P42/mnm (#136) with the
Ru at Wyckoff position 2a and the oxygen at Wyckoff posi-
tion 4 f . The magnetic sublattice is therefore body-centred
tetragonal, as shown in Fig. 1(a). The space group has a gener-
ator C4z combined with translation through ( 1

2 ,
1
2 ,

1
2 ) that maps

one magnetic sublattice to the other. The inversion centre,
while present, preserves the magnetic sublattices. Below the
magnetic ordering temperature, colinear anti-parallel moments
appear on the two magnetic sublattices.

Before delving into a phenomenological Landau descrip-
tion, to set the stage we consider a simple model that captures
the principal features of rutile altermagnetism. This model,
introduced in Ref. [57], consists of non-interacting fermions
coupled to classical localized moments on the 2a sites through
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(a) (b)

kx
ky

kz

FIG. 1. Illustration of the (a) crystal structure of RuO2 with magnetic
Ru (orange) and oxygens (blue). (b) Fermi surface with d-wave spin
splitting (up and down spins in blue and red, respectively) in the
model of Eq. (2).

a Hund’s like interaction. In real space the Hamiltonian is

H =
∑
n=1,3

∑
a

ta
n

∑
⟨i, j⟩n,a

c†iσc jσ − J
∑

i

c†iα
(
Si · σαβ

)
ciβ, (2)

where Si are the local moment directions. One important ob-
servation is that truncating the model at nearest-neighbor t1 or
second-neighbor t2 hoppings accidentally realizes the larger
symmetry group of the underlying body-centred tetragonal
lattice. The (lower) symmetry of the true space group #136
manifests first through the presence of two inequivalent third
neighbor hoppings, which generically have different ampli-
tudes absent fine-tuning. The resulting band structure is such
that the lowest two bands are split over most of momentum
space with degeneracies along (k, 0, 0) that arise from the spin-
space symmetry of the system [25, 57] and with maximal split-
ting along (k, k, 0). As spin is a good quantum number, and the
two bands correspond to electrons with polarization along Si in
spin space, the resulting splitting is the d-wave pattern shown
in Fig. 1(b), characteristic of a d-wave altermagnet [25].

Let us formulate an explicit Landau theory for this class of
materials. In this system, N transforms as the non-trivial B2g
irrep of the point group 4/mmm (D4h), satisfying the definition
of an altermagnet [25, 26]. Direct coupling between M and N
is thus forbidden. More precisely the order parameter trans-
forms under the spin point group b∞ ⊗1 4/1m1m1m [57, 58]
where the superscripts refer to spin-space operations coinciding
with real space generators [59].

The Landau theory for the Néel order parameter takes the
usual form

Φ = a2N · N + a4 (N · N)2 , (3)

enforced by spin-rotation and time-reversal symmetry. This
conventional Landau theory becomes less standard when cou-
plings to other observables are included. For the D4h point
group ΓQ = A1g ⊕ B1g ⊕ B2g ⊕ Eg and so the only compo-
nent that transforms like N ∼ B2g is the xy spatial quadrupole
coupled with the magnetization vector. We thus have a linear
coupling ∝ N · Oxy, as defined in Eq. (1). It follows that Oxy is

a secondary order parameter generated when the primary order
parameter N becomes finite.

The presence of this magnetic octupole can be directly tied
to the structure of the corresponding altermagnetic band spin
splitting. When N , 0, hoppings and on-site terms are allowed
that couple linearly to N and thus transform spatially as the
same non-trivial one dimensional irrep as N. As the physics
is independent of spin orientation, without loss of generality,
we may consider one orientation of N whereupon the spin
components decouple, and the spatial dependence of the new
spin-dependent terms follows the spatial part of the multipolar
secondary order parameter. The spin-splitting of the bands thus
has a form factor that mirrors the multipole induced locally.
In the case of the rutiles, this gives a spin-splitting ∼ kxky
implying that the spin of the Fermi surface, in itinerant alter-
magnets, reverses in π/4 rotations about the c axis, as has been
established on the basis of ab initio calculations [8].

The non-trivial transformation of properties of the Néel order
parameter has implications for coupling to other observables
even in the zero SOC limit. For example, magneto-elastic
couplings and piezomagnetism can be readily understood from
this Landau perspective. In the absence of SOC, |N|2 and |M|2
couple trivially to the strains ϵxx + ϵyy and ϵzz, as dictated by the
underlying tetragonal cell. Remaining in this non-relativistic
setting, the rutile crystal exhibits non-trivial piezomagnetic
couplings, even in absence of SOC. To see this, note that
N · M transforms like B2g ⊗ Γ

S
1 , identical to the strain ϵxy. In

an applied field, H, the Landau theory thus admits a term of
the form ∝ ϵxyN · H (see also Steward et al. [43]). A finite
staggered magnetization in the altermagnetic phase then results
in a shear distortion under an applied magnetic field. As noted
by Dzyaloshinskii [60], the introduction of SOC leads to an
additional coupling ∝ (ϵxzHy + ϵyzHx)Nz.

We can relate the appearance of piezomagnetism to the
underlying altermagnetism more generally. Considering the
field transforms as H ∼ Γ1 ⊗ Γ

S
A and strain as ϵµν ∼ ΓQ ⊗ Γ

S
1

(ignoring the uniform strain component) trilinear couplings
with N transform as

(ΓN ⊗ Γ
S
A) ⊗ (Γ1 ⊗ Γ

S
A) ⊗ (ΓQ ⊗ Γ

S
1 ).

For the spin part we must take the ΓS
1 component of ΓS

A ⊗ Γ
S
A,

corresponding to N · H, and then we are left with a spatial
part Γ1 ⊗ ΓQ. Thus we can conclude: if N couples linearly
to an octupole in the absence of SOC, then it will necessarily
exhibit piezomagnetism in the absence of SOC, with a trilinear
coupling between ϵµν, H and N, as is the case for a d-wave
altermagnet. Note that if an octupole is not generated, for
example for g- or i-wave altermagnetism, the piezomagnetism
may still be generated linearly (if ΓN ⊂ ΓA) or non-linearly (if
Γ 1 ΓA) as for the magnetization.

Since ΓN ⊂ ΓQ here, requiring a octupolar secondary order
parameter, we immediately see both weak ferromagnetism and
a finite anomalous Hall response linear in N should be expected.
More explicitly, when spin and space rotations are coupled
Mx x̂ + Myŷ and Nx x̂ + Nyŷ both transform like Eg allowing a
linear coupling MxNy + MyNx, arising microscopically from
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Dzyaloshinskii-Moriya exchange. We note that a staggered
magnetization along the ẑ direction alone does not have a
linear coupling to the ferromagnetic moment. For the rutile,
σ

xy
H transforms as A2g and the other two components σyzH and
σzx

H like Eg. Thus, with SOC we see σxy
H only couples to Mz

and σyzH , σzx
H only to the transverse components of both the

Néel vector and the magnetization. While the anomalous Hall
effect detected in RuO2 is a conventional symmetry-allowed
(not fundamentally altermagnetic) response, we see that it is
intimately connected to the presence of a octupolar secondary
order parameter and the underlying spin group symmetries.

We have seen that the multipolar secondary order param-
eter in the rutile case required by ΓN ⊂ ΓQ fixed many of
the phenomenological altermagnetic responses expected both
with and without SOC. We will next consider MnTe where
the quadrupole ΓQ does not contain ΓN and the generation
of higher multipoles must be considered. We also show that
the magnetization, anomalous Hall conductivity as well as
piezomagnetism all arise non-linearly in N.

Hexagonal MnTe – This material [35, 37, 61] has magnetic
manganese ions on an AA stacked triangular lattice. The Mn
ions live on the 2a Wyckoff positions of space group P63/mmc
(#194) and the Te ions on the 2c Wyckoff positions. The
magnetic structure is one with in-plane moments that are anti-
aligned between neighboring triangular layers [see Fig. 2(a)]
[62]. The primary order parameter is the Néel vector N as
in the case of the rutile altermagnet and the Landau theory
is therefore identical to Eq. (3). The point group is 6/mmm
(D6h) and N transforms as B1g and M as A1g. [63] For MnTe,
one has that ΓN 1 ΓQ and thus a magnetic octupole is not
induced. In the language of Šmejkal et al. [25], this is g-wave
altermagnetism. However, it is straightforward to see there is a
higher order rank-5 magnetic multipole

O4
3 ≡

∫
d3r (Y4

3 (r̂) − Y4
−3(r̂))m(r), (4)

where Y l
m is a spherical harmonic, that transforms as B1g –

identically to N. A linear coupling ∝ N · O4
3 is thus allowed

in the Landau theory. This magnetic multipole is therefore
a secondary order parameter with a g-wave symmetry. The
higher rank of this multipole is reflected in the nature of the
band spin splitting [see Fig. 2(c)] which contains lines where
the spin splitting vanishes. For this case a toy model can be
formulated along the same lines as the rutile example but with
the essential inequivalent bonds lying at relatively long range
[see illustration in Fig. 2(b)]. This case highlights the potential
for sufficiently long-range symmetry inequivalent hoppings to
be important for altermagnetism in materials.

In contrast to the rutile case, symmetry does not permit a
direct coupling between the magnetization and the staggered
magnetization even in the presence of SOC as ΓN 1 ΓQ or ΓA.
Therefore altermagnetism does not coincide in general with
weak ferromagnetism or with an anomalous Hall conductivity
appearing linearly in N. Explicit symmetry analysis reveals
that coupling between N and M or σµνH appears first at third
order in N. Restricting to an in-plane N = Nx x̂ + Nyŷ, as

(a) (b)

(c)

kx

ky

kz

a

b

FIG. 2. Illustration of the key features of altermagnetic MnTe includ-
ing (a) the crystal structure with magnetic Mn ions on an AA stacked
triangular lattice, (b) the inequivalent bonds connecting neighboring
magnetic layers along the c direction that enter into the model of
Eq. (2) and (c) and the g-wave spin split Fermi surface expected in
weakly doped MnTe.

is relevant experimentally for MnTe [62], one finds a single
allowed coupling

σ
xy
H = a3Ny

(
3N2

x − N2
y

)
+ . . . , (5)

between N and σµνH with an identical relation holding for the
weak ferromagnetic moment, Mz. From the perspective of this
Landau theory the generation of higher multipolar secondary
order parameters thus leads to cubic (or higher) couplings
between the Néel vector and the magnetization or Hall conduc-
tivity. We note that experimentally, the observed temperature
dependence of the Hall signal, σxy

H , in MnTe appears con-
vex near TN, perhaps consistent with a non-linear dependence
[Eq. (5)] on the order parameter [45]. Similarly, unlike for the
rutile case, for MnTe piezomagnetism, reported in Aoyama and
Ohgushi [61], appears only in the presence of SOC or involves
non-linear couplings to N or H.

Discussion – The ideas of the previous sections can be used
straightforwardly to formulate Landau theories for other candi-
date altermagnetic materials, d-, g- and i-wave, with or without
SOC, as well as predict how they will couple to new physical
observables.

For example, CuF2 has Néel vector transforming as the Bg
irrep of C2h (2/m). Since ΓQ contains two copies of Bg [64],
its Néel vector N can couple separately to the O21 and Os

21
time odd multipoles (l = 2, m = 1 Stevens’ operators for the
spatial quadrupole), with two sets of inequivalent bonds in the
xz and yz planes. We can thus infer that CuF2 should exhibit
weak ferromagnetism and an anomalous Hall effect linear in
the Néel order parameter as well as piezomagnetism in the
absence of SOC.

Other observables can also be treated within this frame-
work. For example, one can consider the generation of spin
currents [46], characterized by a spin conductivity tensor de-
fined through JS

µ =
∑
µν σ

µν
S Eν where E is the electric field and

the vector index encodes the spin direction. This transforms as
σµνS ∼ (ΓV ⊗ ΓV )⊗ ΓS

A = (Γ1 ⊕ ΓA ⊕ ΓQ)⊗ ΓS
A. Thus if ΓN ⊂ ΓQ
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or ΓA then N can appear linearly in σµνS in the absence of SOC.
For the rutile case, we would thus expect a spin conductivity
σxy

S ∝ N. For cases where ΓN 1 ΓQ or ΓA, like in MnTe,
this would necessarily involve a higher polynomial in the Néel
vector, N.

While we have considered multipolar secondary order pa-
rameters that are even in their spatial components, when the
magnetic structure lacks inversion we may find odd spatial mul-
tipoles as well. For example, point group C6v (6mm), admits
colinear antiferromagnetic spin groups, and has irreps B1 and
B2 that allow linear couplings between certain time odd, space
odd multipolar order parameters and the appropriate Néel order
parameter. We leave the exploration of these multipoles for
future work.

These ideas can also be generalized to non-colinear magnets.
For example, the kagomé lattice with Q = 0, 120◦ order [65,
66] has a two component order parameter that can be encoded
in a complex vector

Ψ = e+2πi/3S1 + e−2πi/3S2 + S3,

leading to quadratic invariant ∝ Ψ∗ ·Ψ. In the Landau theory
this can couple linearly to a d-wave multipole in irrep E2g of
D6h (6/mmm) with components k2

x − k2
y and kxky that itself is

reflected in the spin expectation value within each band.
Conclusion – In this paper, we have explored the applica-

tion of Landau theory to altermagnets. This framework ties
together several key ideas that have arisen in this burgeoning
field including spin-split bands, spin symmetries, multipolar
order parameters and the phenomenology of these materials
both with and without SOC. We have given examples of spin
symmetric time odd multipolar order parameters that charac-
terise these magnets as well as outlining their generalization
to noncolinear altermagnetic behavior. These techniques are
straightforwardly generalizable to the many candidate alter-
magnetic materials [25, 26] and we hope they will prove useful
in sharpening predictions of altermagnetic phenomenology.

More broadly, the considerations underpinning our Landau
theory, and altermagnets viewed widely, flow from the need
to generalize magnetic symmetries from the magnetic space
groups to spin symmetry groups when SOC is weak [57, 58, 67–
77]. The induction of multipolar secondary order parameters
would likely also need to be revisited in this broader context,
especially as SOC is reintroduced [11, 12, 78, 79]. Altermag-
nets provide a striking demonstration that there is much to be
gained by thinking about novel phases, band structures and
response functions in the context of these higher symmetries.
Landau theories built from order parameters with given spin
symmetries are the natural language to explore the resulting
new physics and reveal how these symmetries control the alter-
magnetic phenomenology when SOC is introduced.
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[26] L. Šmejkal, J. Sinova, and T. Jungwirth, Emerging Research
Landscape of Altermagnetism, Phys. Rev. X 12, 040501 (2022).

[27] Z. Feng, X. Zhou, L. Šmejkal, L. Wu, Z. Zhu, H. Guo,
R. González-Hernández, X. Wang, H. Yan, P. Qin, X. Zhang,
H. Wu, H. Chen, Z. Meng, L. Liu, Z. Xia, J. Sinova, T. Jung-
wirth, and Z. Liu, An anomalous Hall effect in altermagnetic
ruthenium dioxide, Nature Electronics 5, 735 (2022).

[28] A. Bose, N. J. Schreiber, R. Jain, D.-F. Shao, H. P. Nair, J. Sun,
X. S. Zhang, D. A. Muller, E. Y. Tsymbal, D. G. Schlom, and
D. C. Ralph, Tilted spin current generated by the collinear antifer-
romagnet ruthenium dioxide, Nature Electronics 5, 267 (2022).

[29] S. Karube, T. Tanaka, D. Sugawara, N. Kadoguchi, M. Kohda,
and J. Nitta, Observation of Spin-Splitter Torque in Collinear
Antiferromagnetic RuO2, Phys. Rev. Lett. 129, 137201 (2022).

[30] H. Bai, L. Han, X. Y. Feng, Y. J. Zhou, R. X. Su, Q. Wang,
L. Y. Liao, W. X. Zhu, X. Z. Chen, F. Pan, X. L. Fan, and
C. Song, Observation of Spin Splitting Torque in a Collinear
Antiferromagnet RuO2, Phys. Rev. Lett. 128, 197202 (2022).

[31] S. Bhowal and N. A. Spaldin, Magnetic octupoles as the or-
der parameter for unconventional antiferromagnetism (2022),
arXiv:2212.03756 [cond-mat.str-el].

[32] I. I. Mazin, Notes on altermagnetism and superconductivity
(2023), arXiv:2203.05000 [cond-mat.supr-con].

[33] Y. Liu, H. Bai, Y. Song, Z. Ji, S. Lou, Z. Zhang, C. Song, and
Q. Jin, Inverse Altermagnetic Spin Splitting Effect-Induced Tera-
hertz Emission in RuO2, Advanced Optical Materials , 2300177
(2023).

[34] M. Wang, K. Tanaka, S. Sakai, Z. Wang, K. Deng, Y. Lyu,
C. Li, D. Tian, S. Shen, N. Ogawa, N. Kanazawa, P. Yu,
R. Arita, and F. Kagawa, Emergent zero-field anomalous Hall
effect in a reconstructed rutile antiferromagnetic metal (2023),
arXiv:2307.05990 [cond-mat.mtrl-sci].

[35] I. I. Mazin, Altermagnetism in MnTe: Origin, predicted mani-
festations, and routes to detwinning, Phys. Rev. B 107, L100418
(2023).

[36] O. Fedchenko, J. Minar, A. Akashdeep, S. W. D’Souza, D. Vasi-
lyev, O. Tkach, L. Odenbreit, Q. L. Nguyen, D. Kutnyakhov,

N. Wind, L. Wenthaus, M. Scholz, K. Rossnagel, M. Hoesch,
M. Aeschlimann, B. Stadtmueller, M. Klaeui, G. Schoenhense,
G. Jakob, T. Jungwirth, L. Smejkal, J. Sinova, and H. J. Elmers,
Observation of time-reversal symmetry breaking in the band
structure of altermagnetic RuO2 (2023), arXiv:2306.02170
[cond-mat.mtrl-sci].

[37] A. Hariki, T. Yamaguchi, D. Kriegner, K. W. Edmonds,
P. Wadley, S. S. Dhesi, G. Springholz, L. Šmejkal, K. Výborný,
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