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Motivated by possible spintronics applications in antiferromagnets, it was re-

cently observed that symmetry admits magnets that combine attractive features

of both ferromagnets and antiferromagnets. These systems, dubbed altermagnets,

have been the subject of intense study with direct spectroscopic evidence, from

ARPES and RIXS, techniques reported in a handful of materials in the last year.

Inelastic neutron scattering (INS) is one of the most powerful direct probes of

magnetism and has recently been used to witness a splitting of magnon bands in

MnTe that is compatible with altermagnetism although the nature and origin of

the splitting remain to be fully characterized. However, the full power of neutron

scattering for such systems comes from using polarized neutrons to measure the

chirality of the magnon bands. Such a measurement provides a direct character-

ization of altermagnetism directly from the spin wave excitations. In this article,
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we present results on MnF2 once thought to be an archetypal antiferromagnet.

We present a polarized INS data that demonstrate the material is, in fact, alter-

magnetic. It had long been realized that the magnon bands in this material should

have a weak splitting coming from the long-range dipolar coupling. Our data is the

first to visualize this splitting directly. While the dipolar splitting on its own is not

altermagnetic, using a domain biased sample, the data reveals a nonzero chirality

in the neutron scattering cross section that reverses sign between the two magnon

modes. It is this feature that clearly demonstrates altermagnetism in MnF2. This

finding highlights the potential for polarized INS to characterize altermagnets not

least through its exquisite sensitivity to fine-structure in the magnon spectrum.

As condensed matter physics progresses, it has become possible to discern ever more subtle

ways in which matter can organize itself. Whereas records of the magnetic properties of magnetite,

an uncompensated magnet, appeared thousands of years ago, antiferromagnets are, to an untrained

eye, magnetically inert. Their existence was irrefutably demonstrated only after the invention of

neutron scattering techniques in the 1950’s. Indeed, many states of matter that are the staple of

modern quantum condensed matter research such as superconductivity, topological matter and

fractionalization were beyond the reach of experimental science only a few decades ago. Altermag-

netism, too, is subtle (1–5). How else could it have escaped the attention of physicists until just a

few years ago? Altermagnets have an underlying antiferromagnetic order parameter − and all of

the materials currently studied in this context had long been identified as mere antiferromagnets.

But their distinctive feature, that sets them apart from their more conventional cousins, is a set of

so-called spin symmetries (3, 4) that are tied to the antiferromagnetism, particular local multipolar

order parameters (6, 7) and, crucially, to a characteristic spin splitting of the band structure (3, 4).

The first spectroscopic evidence for altermagnetism appeared only last year (8–19) and consider-

able effort is being invested in finding new altermagnets and better ways to identify them. These

efforts are being driven both to advance our fundamental understanding of magnetism and because

altermagnets are promising candidate systems for future spintronics applications.

To date, the most well-established altermagnetic materials are MnTe (8–14) and CrSb (15–21).

In both, there is evidence of an altermagnetic spin splitting of the band structures from angle resolved

photo-emission spectroscopy data including direct evidence in MnTe coming from a spin-resolved
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study (10). In other words, the altermagnetism has been visualized through the electronic degrees of

freedom. However, altermagnetism is tied to the underlying magnetocrystalline symmetries and, as

such, should appear in all degrees of freedom coupled to the magnetism. This includes the magnetic

structure itself and the spin wave excitations. Altermagnetism is most cleanly defined in the limit of

zero spin-orbit coupling where the collinear magnetism in invariant under spin symmetries (22–29)

including a residual 𝑈 (1) spin rotation symmetry. In this limit, the magnons exhibit a pattern

of chirality splitting analogous to the spin splitting of the electronic band structure first noted in

Ref. (30) and explored further in (31–33). Although departures from the ideal limit break strict

spin or chirality conservation, the energy splittings associated with altermagnetism imply that the

phenomenon has a robustness that extends to real materials. Thus, a splitting of the magnon bands

consistent with altermagnetism has been observed in MnTe using inelastic neutron scattering (9).

However, in order to make a definitive identification of altermagnetism from the magnons it is

important to visualize the remnant chirality itself. Just such a measurement has been carried out

using resonant inelastic X-ray scattering through the circular dichroism in CrSb (21). However,

the energy resolution of RIXS is on the order of 10 meV and insufficient to resolve any magnon

splitting in this case.

In order to resolve both small splittings and the chirality, inelastic neutron scattering with

polarization analysis is the method of choice (34). The method is perfectly tailored to probe

magnetism on typical magnetic energy scales. As discussed in Ref. (34), when unpolarized neutrons

scatter from magnons in an altermagnet, they acquire a polarization along the scattering wavevector

with a sign that directly reflects the chirality of the magnon mode. Then, through both the dispersion

relations and polarization analysis, one may explore departures, originating from various possible

magnetic anisotropies, from the limit where the magnon chirality is conserved.

In this paper, we report inelastic neutron scattering data on a candidate altermagnetic material

MnF2. The magneto-crystalline symmetries are compatible with altermagnetism in this material

and the magnetic manganese has an essentially pure spin 5/2 magnetic moment so spin-orbital

effects are very weak, placing it among the more likely systems where magnons may carry a

(weakly broken) chirality. MnF2 is well-known in the field of magnetism. Indeed, it was among

the first materials in which an antiferromagnetic order parameter was identified in the early days

of neutron scattering and it has been used in neutron training courses to teach students about
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canonical antiferromagnetism (35–42) − a small irony that is indicative of the difficulty of detecting

altermagnetism in this material.

Previous inelastic neutron scattering data revealed a single magnon branch with a gap at the

zone centre that was attributed to the long-range magnetostatic dipolar coupling (35–42). While

it was recognized that this coupling too should induce a small splitting between the two magnon

modes (35–37), this was below the resolution of the instruments in all previous experiments. In

this work, our experimental data reveal the presence of a well-resolved magnon splitting with a

maximum located at the zone boundary of about 0.2 meV, compared to a 7 meV total bandwidth.

This originates primarily from the long-range dipolar coupling.

The goal of the present study was to probe the magnon chirality. Whereas magnon chirality has

previously been observed in uncompensated magnets (43,44), its detection in compensated magnets

carries additional challenges. Indeed, for this purpose, it was necessary to have a sample that is

magnetically ordered with a bias towards a single antiferromagnetic domain. From the diffraction

data, we show that the two domains appear spontaneously upon cooling in a roughly 4:1 ratio,

making the sample suitable for inelastic study with polarization analysis. A difference map of the

intensities of opposed incident polarizations exhibits a clear sign reversal between the two magnon

branches consistent with the presence of altermagnetism in this material. This study demonstrates

that polarized neutron scattering can completely characterize altermagnetism directly from the

magnetic degrees of freedom even in instances where the energy scale producing the altermagnetic

splitting is significantly below that of perturbations that produce non-altermagnetic magnon band

splittings.

Before describing the details of the experiment on MnF2 we briefly summarize the results

expected from a polarized inelastic neutron scattering experiment on an idealized altermagnet −

that, as mentioned above, we take to mean an altermagnet with an exact 𝑈 (1) spin rotational

symmetry in the magnetically ordered state. We further assume, for simplicity, that there are two

magnetic sublattices. Then, the Néel vector N is the difference of the magnetizations on the two

oppositely aligned sublattices. In order to be altermagnetic, N must transform as a non-trivial one

dimensional irrep of the point group of the crystal. For the case of MnF2, the two sublattices are

related by a four-fold rotation about the tetragonal 𝑐 axis and a translation by half a unit in each

direction. In the ideal altermagnet, the magnon bands are split over most of the Brillouin zone
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Figure 1: Plot depicting the origin and detection of altermagnetism in the spin waves of MnF2. (a)

The crystal and magnetic structure of MnF2 with magnetic Mn2+ ions on the sites of a body-centered

tetragonal lattice and decorating fluoride ions that are crucial for the altermagnetism by breaking the

symmetry connecting the magnetic sublattices down to a𝐶4 along the c axis, a 𝑸 = (1/2, 1/2, 1/2)

translation and time reversal. This symmetry allows a magnon band splitting (b) in models with

zero spin-orbit coupling. The pattern of magnon chiralities ± is shown in (b) through colors red (+)

and blue (−) that is enforced by symmetry. Polarized neutron scattering is sensitive to this chirality.

The maximal splitting is along [𝐻𝐻0] in the middle of the zone (c, solid lines). Dipolar couplings,

in the absence of an altermagnetic splitting, do not lead to a net chiral term but they do split the

bands even at the zone boundary (c, dashed lines). Panel (d) depicts the scattering geometry for

the polarized inelastic neutron scattering experiment. The MnF2 crystal is oriented in the (𝐻𝐻𝐿)

plane, with its magnetic moments aligned along the Néel vector N. An incident neutron beam,

characterized by wavevector ki and polarization Pin, arrives at the sample under the condition

Pin ∥ 𝑸 ∥ 𝑿, where 𝑿 defines the (𝑿,𝒀 , 𝒁) Blume–Maleev coordinate system for polarized

neutrons. The neutrons are then scattered into a final wavevector kf and detected by position-

sensitive detectors. Identification of altermagnetism means detecting a non-vanishing chiral term

in the neutron scattering that reverses sign between the two magnon branches. To investigate this:

the scattering intensity is measured at constant momentum with ingoing polarization Pin (e) and

−Pin (f). The usual unpolarized neutron cross section is the sum of these contributions (g) and the

chiral contribution is isolated from their difference (h).
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and the bands may be assigned chiralities ±1 that reverse under the same four-fold symmetry that

connects the two sublattices. Now suppose we prepare the sample in a single magnetic domain and

carry out an inelastic neutron scattering experiment in a half-polarized setting where we control

the in-going neutron polarization Pin and measure the overall scattered intensity. The result within

linear spin wave theory is

𝐼 (k, 𝜔) ∝
∑︁
𝑛

[
1
2

(
1 +

(
k̂ · N̂

)2
)
+ (−)𝑛

(
Pin · k̂

) (
k̂ · N̂

)]
𝐶k𝛿

(
𝜔 − 𝜖 (𝑛)k

)
. (1)

with k̂ the wave vector and𝐶k the one magnon band intensity (34). The first term in square brackets

is the usual unpolarized neutron scattering intensity which is the same in the two split modes. The

second (chiral) term in square brackets has a polarization dependence and a sign that depends on the

mode index 𝑛. This term is present whenever the scattering wavevector has a component along the

in-going neutron polarization and along the staggered magnetization. It is this term that provides

a direct measurement of the altermagnetic features. In practice one may make a measurement of

the intensity for +Pin and for −Pin, subtract the two in order to isolate the chiral term in the cross

section.

Now we are in a position to describe the experimental details. The work was carried out

on a single crystal of MnF2 which has tetragonal space group P42/mnm (# 136) with pure spin

𝑆 = 5/2 manganese ions on 2𝑎 sites and nominally non-magnetic fluoride ions on 4 𝑓 sites. The

material magnetically orders below 𝑇𝑁 ≈ 67 K into a simple collinear antiferromagnetic structure

with moments oriented parallel and antiparallel to the 𝑐 axis [Fig. 1(a)]. As mentioned above, the

altermagnetic features of MnF2 originate from the four-fold rotation (combined with time-reversal

and a half-translation) connecting the two magnetic sublattices. This directly leads to the prediction

of d-wave altermagnetism with a pattern of chirality splitting indicated in Fig. 1(c). We expect to

witness the chirality through polarized inelastic neutron scattering provided the sample orders into

a majority single domain configuration.

In order to assess the magnetic domain population in the sample, we make use of the fact

that the elastic neutron cross section at reflection G takes the form 𝐼Pin (G) ∝ |𝐹nuc |2 + |𝐹mag |2 +(
P⊥

in · N̂
)

Re
[
𝐹nuc𝐹

∗
mag

]
where 𝐹nuc and 𝐹mag are, respectively, the nuclear and magnetic structure

factors and P⊥
in is the component of the in-going neutron polarization perpendicular to the scattering

wavevector (45). The time-reversal odd nuclear-magnetic interference term has non-vanishing
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amplitude at (𝐻, 𝐾, 𝐿) reflections for 𝐻 + 𝐾 + 𝐿 odd. To isolate this term, the flipping ratio at the

(210) Bragg position, 𝐼Pin/𝐼−Pin was determined with Pin parallel to the 𝑐 axis. The single crystal

was found to have an overall mosaicity of ≈ 3◦, arising from three distinct grains. From flipping

ratio measurements, the domain population of each grain was determined (45) at 2 K after cooling

slowly through the magnetic transition. The result is that this protocol was sufficient on our samples

to obtain a magnetic configuration with 85 ± 5% of the volume in a single domain.

We now turn to the inelastic neutron scattering results obtained on the HYSPEC spectrometer

at SNS (ORNL) with measurements made in the (𝐻𝐻𝐿) scattering plane. Panel (a) in Fig. 2 shows

unpolarized scattering intensity along various high symmetry line segments in momentum space

(the paths indicated in the inset). The main feature visible in this plot is a dispersive branch of

excitations with modulated intensity extending from about 1 meV at the zone center up to about

7 meV at the zone corners, consistent with previous measurements. The HYSPEC spectrometer

at 9 meV incident energy provides an energy resolution of about 100𝜇eV at an energy transfer of

6meV. Close inspection of Fig. 2(a) shows that the main dispersive branch actually consists of two

weakly split modes. The splitting is most clearly visible at (1/2, 1/2, 1). Panels (c) and (e) show

the experimental dispersion relations passing through this point, respectively along (𝐻, 𝐻, 1) and

(1/2, 1/2, 𝐿) showing clearly two modes with a maximum splitting of about 178(3)𝜇eV.

As MnF2 has two magnetic sublattices, two spin wave modes are expected. Moreover, the

magneto-crystalline symmetries do not protect their degeneracy. However, as the manganese ions

carry pure spin 5/2 any exchange anisotropies should be very weak. Even so, the gap Δ at the zone

center points to departures from the pure Heisenberg limit. Previous work recognized that this gap

originates mainly from the long-range magnetostatic dipolar coupling (35–37). The magnitude of

the dipolar coupling, 𝐷nn, between nearest neighbor moments is fixed by the moment size and is of

the order of a few tens of 𝜇eV. The magnitude of Δ is compatible with the small dipolar coupling

as Δ ∼
√
𝐽𝐷nn. However, the maximum splitting between the magnon branches induced by the

dipolar coupling is roughly on the scale of 𝐷nn which is therefore fine-structure compared to the

magnon bandwidth. Indeed a calculation reveals that the dipolar splitting is maximum on the zone

boundary with magnitude 178(3) 𝜇eV compatible with the HYSPEC data.

We extracted dispersion points from the data by fitting cuts at constant energy (for steep

dispersions) and constant momentum (otherwise). Fig. 2(a) shows a selection of these points
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Figure 2: Unpolarized inelastic neutron spectra of MnF2. (a) inelastic neutron spectra along high-

symmetry directions within the Brillouin zone (inset) obtained with an incident energy of 𝐸𝑖 =

9 meV. Blue circles shows energies of the magnetic modes obtained from fits of the data using a sum

of Gaussians. (b) Calculated spin-wave spectra obtained from parameters (within the text) obtained

from global fits of the data. (c,e) Zoom onto the spin wave spectrum of MnF2 along 𝑸 = (𝐻, 𝐻, 1)

and 𝑸 = (1/2, 1/2, 𝐿) where the dipolar splitting is revealed. (d,f) Corresponding calculated spin-

wave spectra. All data are integrated over 0.04 meV steps along energy and 0.03 r.l.u. steps in 𝑸

along the plotted axis. The transverse-𝑸 averaging window is 0.1 r.l.u. in all cases. Calculations

were based on a Heisenberg exchange model with long-range dipolar couplings. The exchange

couplings obtained by fitting the experimental data are: 𝐽1 = −0.075(2) meV, 𝐽2 = 0.287(3)

meV, 𝐽3 = −0.012(1) meV, 𝐽4 = −0.001(1) meV, 𝐽5 = 0.008(2) meV, 𝐽6 = 0.001(2) meV,

𝐽7𝑎 = −0.006(3) meV, 𝐽7𝑏 = −0.002(3) meV.
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Figure 3: Chirality of magnon bands in MnF2 revealed by polarized neutrons. (a) Sum of spin

wave spectra measured along 𝑸 = (𝐻, 𝐻, 1) with polarized neutrons +Pin and −Pin. The sum

is only relative to the unpolarized cross section. (b) Corresponding calculated spin-wave spectra

obtained from fitted parameter of unpolarized neutrons spectra. (c) The difference of spectra,

relative only to the chiral part of the cross section. Dashed vertical purple lines represent constant-

𝑸 energy slices shown in (e-f). (d) Calculated chiralities of the magnon bands obtained from fitted

parameters. The pronounced broadening of the magnon bands observed experimentally, compared

to the calculations—particularly in regions of steep dispersion (0–0.3 r.l.u. and 0.7–1 r.l.u.) is likely

due to a combination of data integration along perpendicular directions and the mosaic spread of

the sample (≃ 3◦). (e-f) Constant-𝑸 energy scans obtained from experimental sum (black points)

and difference (purple points) at 𝑸 = (0.355, 0.355, 1) (e) and 𝑸 = (0.625, 0.625, 1) (f). Black

curves are guide to the eye. Purple curve are results from a double Gaussian fit. All data herein are

integrated over 0.05 meV steps along energy and 0.03 r.l.u. steps in 𝑸 along the plotted axis. The

transverse-𝑸 averaging window is 0.1 r.l.u. in both cases. The blue line in (e) denotes the energy

resolution Δ𝐸res which is calculated to be around 0.1 meV at 6 meV. This value approximately

corresponds to the full width at half maximum (FWHM) of each fitted Gaussian; in the fits, the

minimum allowed FWHM was constrained by Δ𝐸res.
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overlaid onto the scattering intensity plots showing that the extracted points faithfully capture the

measured intensities. We parameterized the data by carrying out a multiboson (or flavor wave)

calculation based on a Hamiltonian 𝐻 = 𝐻ex + 𝐻dip where 𝐻ex consists of Heisenberg exchange

couplings 𝐽𝑛 between neighboring Mn ions at shell 𝑛 for 𝑛 = 1, . . . , 7 1. The cutoff was fixed at 7

because for shorter range Heisenberg couplings the symmetry of the model is higher than that of

the lattice. Only when 𝐽7 is included do the interactions capture the correct space group symmetry

of MnF2. This feature of the model is crucial as altermagnetic splittings in the zero spin-orbit

coupled limit may arise only once the model has this symmetry. In fact, the symmetry lowering at

7th neighbor is correlated to the fact that at this range there are two distinct couplings denoted 𝐽7𝑎

and 𝐽7𝑏 indicated in Fig. 1(a). In order for altermagnetic splittings to appear, the four-fold symmetry

of the body-centred tetragonal sublattice occupied by Mn ions must be broken by setting 𝐽7𝑎 ≠ 𝐽7𝑏.

In addition to the exchange, we include also the long-range dipolar interaction 𝐻dip which has a

fixed coupling strength. As we have no a priori knowledge of the exchanges we carry out a least

squared fit to the data including 8 free parameters (corresponding to the Heisenberg couplings just

described) assuming spin-orbital anisotropies to be negligible. Further details of the data processing

and fitting procedure may be found in the supplementary section (45).

Fig. 2(b,d,f) show the results of calculations of the unpolarized neutron scattering intensity

based on parameters extracted from the fitting procedure. The dispersion relations including the

splitting of the modes are all very well captured by the fit and the calculation. The intensities are

broadly in agreement between the experiment and the calculation − for example the modulation

along (1/2, 1/2, 𝐿) and the strong and weak intensities at the zone centers at (0, 0, 1) and (1, 1, 0)

respectively. There is an apparent quantitative difference along the Γ𝑀 path where the calculation

has monotonically decreasing intensities away from the zone center whereas the experiment has in-

tensities that increase again towards (1/2, 1/2, 1). Additional comparisons between the experiment

and calculations are given in the supplementary section (45).

In order to parameterize the uncertainty in the exchange couplings, we carried out fits to the

experimental dispersion points together with Gaussian noise with variance on each point taken

from the experimental peak widths. We focus here on features of the fits to noisy data that relate

to altermagnetic couplings 𝐽7𝑎 and 𝐽7𝑏. We find that these couplings are constrained to be much
1This is equivalent to linear spin wave theory up to a scale depending on the spin length.
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smaller than the nearest neighbor exchange, 𝐽2, between the two magnetic sublattices as might be

expected especially in a magnetic insulator like MnF2. In the fits shown in the figures we take

𝐽2 = 0.287 meV while 𝐽7𝑎 = −0.006 meV and 𝐽7𝑎 = −0.002 meV. We find that 𝐽7𝑎 and 𝐽7𝑏 are

strongly anti-correlated. Therefore the data are fully compatible with 𝐽7𝑎 − 𝐽7𝑏 nonzero and also on

the order of roughly 10 𝜇eV (45).

Having achieved some further understanding of the magnetic couplings in MnF2 based on the

HYSPEC data, we present the results of the polarized inelastic neutron scattering experiment whose

goal was to find evidence of a nonzero chiral term in the cross section indicative of altermagnetism.

The experiment was carried by fixing Pin parallel to 𝑸 = (1/2, 1/2, 1) and measuring scattering

intensity (45). Then, a similar measurement was performed with fixed −Pin. The standard inelastic

neutron scattering intensity is proportional to the sum of these measurements and the chiral term is

isolated from the difference [Fig. 1(e-h)]. The sum and difference maps along (𝐻, 𝐻, 1) are shown

in Figs. 3(c) and (e) respectively with the former showing a pronounced splitting in the vicinity of

the zone boundary. Focussing on panel (e), we observe a clear signal correlated to the magnetic

excitations with a sign reversal between the upper and lower modes. Cuts at constant momentum (45)

reveal that the magnitude of the chiral term has a maximum at about 𝐻 = 0.35 (45) at that it goes to

zero, within errors, at the boundary 𝐻 = 1/2. Taken on its own with no further analysis, Figs. 3(e)

provides a compelling signature of altermagnetism in MnF2. The magnetocrystalline symmetries of

MnF2 guarantee that the sign of the chiral term reverses when passing from (𝐻, 𝐻, 1) to (𝐻,−𝐻, 1).

It is interesting to examine possible microscopic origins of the chiral neutron scattering intensity

in MnF2. Let us first consider a model where the exchange constants have the constraint that

𝐽7𝑎 = 𝐽7𝑏 so that 𝐻ex alone leaves the magnon bands degenerate. Introduction of the long-range

dipolar coupling lifts the degeneracy over most of the zone. The dipolar interaction in the model

couples point-like magnetic moments living on a body-centered tetragonal lattice. This model

has a fold-fold rotation symmetry leaving the magnetic sublattices invariant. This symmetry is

incompatible with altermagnetism. Indeed, the dipolar coupling maximally mixes chiralities so

that the chiral term in the neutron cross section vanishes. Starting from this model we may now

tune 𝛿𝐽7 ≡ |𝐽7𝑎 − 𝐽7𝑏 | to be nonzero. For infinitesimal 𝛿𝐽7, a finite chiral term is present although

the presence of the dipolar coupling means that the magnon chirality is not a good quantum

number. This result shows concretely how altermagnetism can persist even into regimes where the
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altermagnetic splitting is small compared to those caused by chirality breaking anisotropies.

We integrate the chiral contribution to the intensity finding that it is between 5% and 11%

of the total intensity depending on the wavevector. We confirm that this ratio is compatible with

the fact that the fits to the dispersion relations produce parameters with 𝛿𝐽7 < 5𝜇eV. In other

words, the polarization signal directly probes a significantly smaller energy scale than is directly

measured through the dispersion relations. Therefore one message of this work, that is potentially

important beyond the scope of altermagnetism, is that polarized neutron intensity may be sensitive

to fine-structure in chiral magnon spectra to which more standard probes may be insensitive. This

is analogous to magnetic circular dichroism, where a small Zeeman splittings due to an applied

magnetic field can be resolved due to their derivative like spectrum (46).

As we have established, polarized neutron scattering provides a powerful means of detecting

altermagnetism (i) by focussing directly on the magnetic degrees of freedom (ii) through its

sensitivity to perturbations away from the idealized altermagnetic limit on the sub-meV scale

through the dispersion relations (iii) through the fact that the cross section is known precisely in

terms of underlying magnetic correlators, and, crucially, (iv) through its ability to measure the

key feature of altermagnetism namely the chirality of the magnons. We have demonstrated these

features through measurements that establish altermagnetism in MnF2. These results provide a

concrete benchmark for understanding altermagnetic spin excitations and will guide the exploration

of altermagnetism and magnon chirality across a wide range of condensed matter systems.
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the MnF2 single crystals, and Fréderic Bourdarot and Oscar Fabelo for providing the samples. PM

acknowledges funding from the CNRS. AR acknowledges a PhD studentship from the CEA. VB,

DB, QF, AG, SP and PM acknowledge support from the French Federation of Neutron Scattering

(2FDN). JR acknowledges funding from the Natural Sciences and Engineering Research Council

of Canada (NSERC). VB acknowledges the MORPHEUS platform at the Laboratoire de Physique

des Solides for sample selection, characterization and alignment for the neutron experiment.

Author contributions: QF, DB, VB, AG, PM, JR designed the neutron scattering experiment.

VB aligned and prepared the samples. DB, QF, AG, VOG carried out the experiment. AR and PM

carried out the theoretical part with contributions to the spin wave calculations from QF and SP.

All authors contributed to the analysis of the data and the writing of the manuscript.

Competing interests: There are no competing interests to declare.

Data and materials availability: Data are available from the authors upon reasonable request.

Supplementary materials

Materials and Methods

Supplementary Text

Figs. S1 to S10

Tables S1 to S3

18



References (47-50)

19



Supplementary Materials for

Altermagnetism revealed by

polarized neutrons in MnF2

Quentin Faure, Dalila Bounoua, Victor Balédent, Arsen Gukasov, V. Ovidiu Garlea, Afonso

Ribeiro, Jeffrey G. Rau, Sylvain Petit, Paul McClarty

This PDF file includes material on:

Sample characterization

Experimental techniques

Domain population measurements

Unpolarized inelastic scattering measurements

Polarized inelastic scattering measurements

Minimal model

Spin wave theory and neutron cross section

Polarized neutron cross section

Parametrization of the dispersion relations

A priori constraints on the anisotropic couplings

Figures S1 to S8

Tables S1 to S3

S1



Materials and Methods

Sample characterization

The inelastic neutron scattering experiment was carried out on a MnF2 single crystal synthesized

using the Bridgman technique with a size of approximately 5 × 5 × 7 mm. MnF2 crystallizes in

the P42/mnm space group (space group #136) with lattice parameters of 𝑎 = 𝑏 = 4.87 Å and

𝑐 = 3.31 Å at 2 K. It undergoes a magnetic transition at 𝑇𝑁 ≃ 67 K to a long range ordered

antiferromagnetic state where Mn2+ (𝑆 = 5/2, 𝐿 = 0) spins align antiferromagnetically along the

c-axis with a propagation vector k = (0, 0, 0). This single crystal has been found to contain three

different grains with a mosaic spread of ≈ 3◦ (see Fig. S1).

Experimental Techniques

Neutron scattering measurements were performed using the HYSPEC time-of-flight spectrometer

at the Spallation Neutron Source, Oak Ridge National Laboratory (USA). The instrument was

operated in three primary configurations:

1. Polarized neutron diffraction mode using a polarized incident beam without polarization

analysis, was employed to determine the antiferromagnetic domain population in MnF2. The

neutron polarization was oriented along the z-axis, perpendicular to the scattering plane,

using a 3D Helmholtz-like coil to control the magnetic field at the sample position.

2. Unpolarized inelastic neutron scattering mode using a polarized incident beam without

polarization analysis of the scattered beam, was used to measure spin wave spectra.

3. Polarized inelastic neutron scattering was utilized to detect chiral correlations associated

with altermagnetism. In this setup, the neutron polarization was oriented within the scattering

plane, parallel to the scattering vector at the energy transfer of interest.

Domain population measurements

To evaluate the domain population the sample was oriented with the (𝐻𝐾0) horizontal plane and

mounted on an aluminum holder, placed inside an orange cryostat, and cooled to 2 K. The Bragg

diffraction pattern was recorded using a detector array that covers an angular range of 60◦ in the
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horizontal scattering plane and ±7◦ vertically. The entire bank can be rotated about the sample to

provide a 2𝜃 coverage from 2◦ to 135◦.

The first part of the experiment aimed to determine the magnetic domain population in the MnF2

single crystal. It was found that, at 2 K, approximately 85± 5% of the crystal volume consisted of a

single magnetic domain. Although the mosaic spread of the sample is large ≈ 3◦, the flipping ratios

determined on the three grains shown in Fig. S1 are found to contribute similarly to the overall

domain population. This was determined using the flipping ratio method, as described by Nathans

et al. (47).

The method involves Bragg diffraction of a monochromatic, polarized neutron beam on a single

crystal placed in a magnetic field. The experiment measures the intensity of Bragg peaks for

neutron spins aligned parallel (𝐼+) and antiparallel (𝐼−) to the magnetic field. The key experimental

observable is the flipping ratio, defined as:

𝑅 =
𝐼+

𝐼−
.

For centrosymmetric crystals, and when the magnetic moments are aligned parallel to the polariza-

tion direction, the intensities can be written as:

𝐼± = 𝐹2
𝑁 ± 2𝑃𝑖𝐹𝑁𝐹𝑀 + 𝐹2

𝑀

where 𝐹𝑁 and 𝐹𝑀 are the nuclear and magnetic structure factors, respectively, and 𝑃𝑖 is the incident

neutron polarization.

In the case of MnF2, the absolute values of the nuclear and magnetic structure factors for

the (210) reflection are nearly equal at low temperatures. Under this condition, the flipping ratio

simplifies to:

𝑅 =
1 + 𝑃𝑖 (2𝛼 − 1)
1 − 𝑃𝑖𝜖 (2𝛼 − 1) .

Here, 𝛼 represents the fraction of the crystal in one of the two domain states, and 𝜖 is the efficiency of

the spin flipper in reversing the neutron polarization. Both𝑃𝑖 and 𝜖 were calibrated using polarization

analysis with a supermirror analyzer and a standard Heusler crystal of known polarization efficiency.

Additionally, the polarization efficiency was verified using a pure nuclear reflection from the sample.

For these polarized diffraction measurements, the crystal was mounted with the crystallographic

𝑐-axis and the incident neutron polarization 𝑃𝑍
𝑖

aligned along the vertical (𝑍) direction.

S3



It is important to note that, unlike conventional flipping ratio measurements in paramagnetic

materials where the magnitude of the magnetic field plays a crucial role in altermagnets, only the

orientation of the neutron spin with respect to the magnetic moments is relevant. Consequently, a

standard XYZ coil system on HYSPEC was employed to generate a small, vertically oriented guide

field of approximately 20 Gauss to maintain the desired polarization direction.

Flipping ratios were then measured for the (2,1,0) and (2,−1,0) reflections. These measurements

enabled the determination of the domain population balance (see Table).

Table S1: Measured flipping ratios and calculated domain fractions for selected Bragg reflections.

Reflection Grain 1 Grain 2 Grain 3

𝑅(2,1,0) 4.54 ± 0.20 7.89 ± 0.65 7.75 ± 0.54

𝐶Domain1 ≈ 18 % ≈ 11 % ≈ 11 %

𝑅(2,−1,0) 0.22 ± 0.01 0.12 ± 0.01 0.1 ± 0.01

𝐶Domain2 ≈ 82 % ≈ 89 % ≈ 90 %

As expected, the table also confirms that reflections located in successive quadrants are related

by the symmetry relation

𝑅ℎ𝑘𝑙 =
1
𝑅ℎ𝑘̄𝑙

.

We emphasize that this measurement not only quantifies the extent to which the sample exhibits

a single antiferromagnetic domain, but also determines the sign of 𝛼. This, in turn, specifies the

direction of the spins on the magnetic sublattice centred on, M1(0, 0, 0), (i.e. those with fluoride

ions at ±(𝑥, 𝑥, 0)) for the (210)-type reflection. Consequently, the sign of the Néel vector

N = M1(0, 0, 0) = −M2

(
1
2
,

1
2
,

1
2

)
is also established.

Unpolarized Inelastic Scattering Measurements

Wide-angle time-of-flight (TOF) spectrometer HYSPEC features a detector bank that registers

neutrons with scattered wave vectors k 𝑓 filling a large volume of phase space, spanning a broad

range of directions and magnitudes. The sample was mounted with the [11̄0] axis vertically oriented,
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providing access to the (𝐻𝐻𝐿) scattering plane. Subsequently, the sample was rotated about the

vertical axis with a step of 1◦ over a scanning range of 140◦. Inelastic neutron scattering data were

collected using a PG(002) monochromator with an incident energy of 𝐸𝑖 = 9 meV, combined with

a Fermi chopper rotating at 360 Hz using a counting time of 3.6 min/point. Under this condition,

the HYSPEC provides an energy resolution better than 100𝜇eV at an energy transfer of 6 meV

(Fig. S2).

The collected data were then used to extract the scattered intensity as a function of momentum

q, and energy transfer 𝐸 . Then, intensity dispersion maps of the dynamical structure factor 𝑆(𝑸, 𝐸)

were obtained from slices of the four-dimensional data set using the SHIVER package of the

MANTID software (48). Dispersion maps were obtained using an integration window of 0.04 meV

and 0.03 r.l.u. along the perpendicular wavevector direction, corresponding to 0.038 and 0.056 Å−1

along the [𝐻𝐻0] and [00𝐿] directions, respectively. This corresponds to the estimated resolution of

the instrument. We thus obtain the dispersions along 𝐿 for 𝐻 = 𝐾 = 0.5, 0.8, 0.25, 0, and 1 r.l.u. and

along 𝐻, 𝐻 for 𝐿 = 0, 0.5, 0.6, 0.75, 0.8, and 1 r.l.u. as well as the dispersion along 𝑸 = [𝐻, 𝐻, 𝐻],

providing a large data set, as shown by some relevant dispersion maps in Fig. S3 obtained along

high-symmetry directions. For each of these dispersions, the data were fitted using a function

composed of one or two Gaussian peaks depending on the case for fixed 𝑸 scattering vector slices

and by up to four Gaussians for constant energy 𝐸 cuts. The uncertainties from the fit covariance

were negligible compared to the intrinsic mode widths in 𝑸 and 𝐸 , and were thus ignored. The

intrinsic widths, expressed as full width at half maximum (FWHM) with FWHM ≃ 2.355𝜎,

were used as uncertainties to weight each point in the least squares minimization used to extract

parameters of the Hamiltonian as described later. In total, over 1600 experimental data points were

extracted to constrain the theoretical model.

Polarized Inelastic Scattering Measurements

Polarized inelastic neutron scattering data were acquired in a half-polarized configuration, using a

Heusler crystal to polarize the incident beam, without polarization analysis of the scattered neutrons.

Measurements were performed with 𝐸𝑖 = 9 meV. As in the unpolarized neutron measurement, the

[11̄0] axis was oriented vertically, allowing measurements in the (𝐻𝐻𝐿) scattering plane. We

collected data spanning a rocking scan angle of 58◦, with 1◦ step and using a counting time of 7
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min/ point.

For an initially polarized neutron beam, the expression for the inelastic scattering intensity in

the limit where there is an exact𝑈 (1) symmetry in the magnon Hamiltonian can be written as (34):

𝐼𝑛 (Q,Pin) =
1
2

[
1 + (𝑸̂ · N̂)2 + 2(−)𝑛 (Pin · 𝑸̂) (𝑸̂ · N̂)

]
𝐶Q

for mode 𝑛. This expression shows that the polarization-dependent component of the cross-section

is maximized when the incident neutron polarization is aligned with both the Néel vector N and

the scattering vector 𝑸. However, the chiral splitting, which arises from altermagnetism, appears

only along specific symmetry directions. For our purposes, it is sufficient to probe along the [𝐻𝐻1]

direction where we expect maxima at the 𝑸 = [0.25, 0.25, 1] and 𝑸 = [0.75, 0.75, 1] points of the

Brillouin zone, located within the (𝐻𝐻𝐿) scattering plane.

To maximize the polarization-dependent component of the cross-section, the incident neutron

polarization Pin was optimized for 𝑸 = [0.5, 0.5, 1] and 6 meV energy transfer, which lies near

both the scattering vector 𝑸 and the Néel vector N. This orientation was achieved using the XYZ

coil set of the HYSPEC instrument. This configuration allowed to keep 90% of the polarization of

Pin within the [0, 0, 1] − [1.25, 1.25, 1] 𝑸 range and 1-7 meV energy transfer range as shown in

Figure S4.

Measurements were performed consecutively with+Pin and−Pin incident neutron polarizations.

The reversal between +Pin and −Pin was achieved either by inverting the corresponding component

of the magnetic field in the XYZ coil system or by flipping the neutron spin using the Mezei flipper.

Data reduction was performed using the Shiver software package (48). The 𝑆(𝑸, 𝜔) maps

shown in Figures 2 and 3 were generated with energy integration Δ𝐸 = 0.04 meV and reciprocal

space integration windows of Δ𝐻 = Δ𝐾 = Δ𝐿 = 0.03 r.l.u.

Evaluation of the chiral contribution to the total scattered intensity

Fig. S5 shows the 𝑸-dependence of the chiral contribution 𝐼Pin-𝐼P−in to the total cross section

𝐼Pin+𝐼P−in . The data show that the chiral response vanishes at the zone boundary (around H=0.5) as

expected from the chiral altermagnetic splitting of the magnon bands.

Fig. S6 shows the resulting Q-dependence of the ratio between the integrated intensities of the

chiral contribution and the total cross section. The chiral contribution is found to be maximal at
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H=0.35 and 0.65, where it amounts to ∼ 11 ± 1% of the total cross section.

Minimal Model

The magnetic manganese ions have spin 𝑆 = 5/2 with no orbital component so the natural model

to understand the magnetism in this material consists of Heisenberg exchange couplings and the

long range dipolar coupling. Thus we consider Hamiltonian:

𝐻 =
∑︁
⟨𝑖, 𝑗⟩𝑛

𝐽𝑛S𝑖 · S 𝑗 + 𝐷
∑︁
𝑖, 𝑗

1
|R𝑖, 𝑗 |3

{
S𝑖 · S 𝑗 − 3

(
S𝑖 · R̂𝑖, 𝑗

) (
S 𝑗 · R̂𝑖, 𝑗

)}
(S1)

acting between the local moments on the (0, 0, 0) and (1/2, 1/2, 1/2) positions of the tetragonal

primitive cell with 𝑐/𝑎 = 0.679. Figure S7 illustrates the symmetry inequivalent pairs coupled by

the nth parameters 𝐽𝑛.

The manganese ions carry spin 𝑆 = 5/2 and magnetic moment 𝑔𝑆𝑆𝜇B. The scale of the long-

range magneto-static dipolar coupling is

𝐷 = 𝜇0
𝜇2𝜇2

B

4𝜋𝑅3
nn

= 0.0518 meV (S2)

where we have used lattice parameters 𝑎 = 4.87Å and 𝑐 = 3.31Å such that the nearest neighbour

distance 𝑅nn is along the 𝑐 axis: 𝑐 = 3.31Å.

It is straightforward to see that each of the couplings 𝐽𝑛 for 𝑛 = 1, . . . , 6 has a higher symmetry

than the space group of MnF2. In particular, a model with any of these Heisenberg couplings

has a translation symmetry that connects the two magnetic sublattices implying that these are

simple antiferromagnets with no altermagnetic splitting. The seventh neighbor bonds are special

because they split into two classes that cannot be connected under the symmetries of the crystal.

We denote the two couplings at the seventh neighbor 𝐽7𝑎 and 𝐽7𝑏. When these couplings satisfy

𝐽7𝑎 ≠ 𝐽7𝑏 the model has the precisely the symmetries of the MnF2 crystal. This means that these

are the shortest range Heisenberg couplings that can lead to altermagnetism. This phenomenon

of symmetry enhancement and emergence of altermagnetism via Heisenberg couplings at a given

shell number is detailed in Ref. (31,49) for all crystal structures.

A similar argument shows that the long-range dipolar coupling alone cannot lead to alter-

magnetism. In particular, the dipolar coupling couples the Mn sites which lie on a body-centred

tetragonal lattice which, again, links the magnetic sublattices by a translation and time reversal.
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The “decoration” of the lattice with F ions breaks down this symmetry to 𝐶4𝑧, translation and time

reversal but the dipolar coupling in Eq. S1 has a higher symmetry. This dipolar coupling is an

approximation to reality as it acts between point-like moments (neglecting higher order magnetic

multipoles) when, in fact, the dipolar coupling depends on the local magnetization density. In order

to build the correct symmetries into the model we may consider anisotropic short-range couplings

− we consider these in the following section.

Spin Wave Theory and Neutron Cross Section

The calculations of the inelastic neutron scattering intensity were carried out using a multi-boson

(or flavour wave) method on the 𝑆 = 5/2 states of MnF2. We first carry out self-consistent local

mean field theory on the model in equation S1 to obtain the spectrum on each magnetically

distinct site |𝑖, 𝜇⟩. The minimal coupling that leads to a simple antiferromagnet is 𝐽2 > 0. This

antiferromagnetic interaction is entirely isotropic but, in reality, the magnetic structure of MnF2

has moments oriented parallel to the c axis and the spin wave spectrum is gapped. The long-range

dipolar coupling introduces precisely this kind of easy axis anisotropy.

We introduce boson operators that create the local states on top of the vacuum |𝑖, 𝜇⟩ ≡ 𝐴
†
𝑖,𝜇
|0⟩

where 𝑖 labels the site and 𝜇 the state running from 0 to 2𝑆. There is a constraint that the boson

number is equal to one per site
∑
𝜇 𝐴

†
𝑖𝜇
𝐴𝑖𝜇 = 1. For the purposes of formulating a spin wave

expansion we take ∑︁
𝜇

𝐴
†
𝑖𝜇
𝐴𝑖𝜇 = 𝑀 (S3)

for fixed 𝑀 . This plays the role of 𝑆 in usual spin wave theory. In addition, the ground state is to be

regarded as a condensate of bosons so that

𝐴𝑖0 = 𝐴
†
𝑖0 =

√√√
𝑀 −

2𝑆∑︁
𝜇=1

𝐴
†
𝑖𝜇
𝐴𝑖𝜇 . (S4)

We now write the operators in the Hamiltonian in the on-site basis

𝑆𝛼𝑖 =
∑︁
𝜇,𝜈

|𝑖𝜇⟩⟨𝑖𝜇 |𝑆𝛼𝑖 |𝑖𝜈⟩⟨𝑖𝜈 | →
∑︁
𝜇,𝜈

⟨𝑖𝜇 |𝑆𝛼𝑖 |𝑖𝜈⟩𝐴
†
𝑖𝜇
𝐴𝑖𝜈 . (S5)

Now we expand the Hamiltonian around the mean field ground state. We also redefine 𝐵𝛼
𝑖
= 𝑀𝐵̃𝛼

𝑖
.

We find

𝐻 = 𝑀2𝐻 (0) + 𝑀3/2𝐻 (1) + 𝑀𝐻 (2) + . . . (S6)
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where

𝐻 (0) =
1
2

∑︁
𝑖, 𝑗

𝐽
𝛼𝛽

𝑖 𝑗
[𝑆𝛼𝑖 ]00 [𝑆𝛽𝑗 ]00 −

∑︁
𝑖,𝛼

𝐵𝛼𝑖 [𝑆𝛼𝑖 ]00 (S7)

using notation ⟨𝑖𝜇 |𝑆𝛼
𝑖
|𝑖𝜈⟩ ≡ [𝑆𝛼

𝑖
]𝜇𝜈.

For the single boson terms we find

𝐻 (1) = 𝐴𝑖𝜈

[∑︁
𝑗

(
𝐽
𝛼𝛽

𝑖 𝑗
[𝑆𝛼𝑖 ]0𝜈 [𝑆𝛽𝑗 ]00

)
− 𝐵̃𝛼𝑖 [𝑆𝛼𝑖 ]0𝜈

]
+𝐴†

𝑖𝜇

[∑︁
𝑗

(
𝐽
𝛼𝛽

𝑖 𝑗
[𝑆𝛼𝑖 ]𝜇0 [𝑆𝛽𝑗 ]00

)
− 𝐵̃𝛼𝑖 [𝑆𝛼𝑖 ]𝜇0

]
(S8)

These should vanish in any local minimum solution of the self-consistent mean field equations.

Finally, for the quadratic Hamiltonian we use the notation

𝐻 (2) =
1
2

∑︁
k

𝚼†
k
©­«

𝑨(k) 𝑩(k)

𝑩★(−k) 𝑨∗(−k)
ª®¬𝚼k ≡ 1

2

∑︁
k

𝚼†
kMk𝚼k (S9)

with 𝚼k = (𝐴k𝑎1, . . . , 𝐴k𝑏2𝑆, 𝐴
†
−k𝑎1, . . . 𝐴

†
−k𝑏2𝑆)

𝑇 where 𝑎 and 𝑏 label the two magnetic sublattices.

Here,

𝐴
𝜇𝜈

𝑎𝑏
(k) =

∑︁
𝛼𝛽

𝐽
𝛼𝛽

𝑎𝑏
(k) [𝑆𝛼𝑎 ]𝜇0 [𝑆𝛽𝑏]0𝜈 + 𝛿𝑎𝑏

∑︁
𝑐

𝐽
𝛼𝛽
𝑎𝑐 (k = 0)

[
[𝑆𝛼𝑎 ]𝜇𝜈 [𝑆

𝛽
𝑐 ]00 − 𝛿𝜇𝜈 [𝑆𝛼𝑎 ]00 [𝑆𝛽𝑐 ]00

]
−

∑︁
𝛼

𝐵̃𝛼𝑎

(
[𝑆𝛼𝑎 ]𝜇𝜈 − 𝛿𝜇𝜈 [𝑆𝛼𝑎 ]00

)
(S10)

and

𝐵
𝜇𝜈

𝑎𝑏
(k) =

∑︁
𝛼𝛽

𝐽
𝛼𝛽

𝑎𝑏
(k) [𝑆𝛼𝑎 ]𝜇0 [𝑆𝛽𝑏]𝜈0 (S11)

The contribution of the long-ranged dipolar coupling to 𝐽
𝛼𝛽

𝑎𝑏
(k) is computed via an Ewald

summation.

The above formulation is general enough to be applicable to more general Hamiltonians − for

example those involving Stevens operators as single ion terms.

To find the spectrum we diagonalize the 8𝑆×8𝑆 quadratic Hamiltonian via a bosonic Bogoliubov

transformation. Introducing 𝜼 = diag(1, . . . , 1,−1, . . . ,−1) consisting of 4𝑆 ones then 4𝑆 minus

ones along the diagonal, we find a Tk such that

Tk𝜼MkT−1
k =

©­«
𝝐k 0

0 −𝝐k

ª®¬ (S12)
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where the 10 mode energies are organized as 𝝐k = diag(𝜖1k, . . . , 𝜖4𝑆k). In order to preserve the

bosonic commutation relations the diagonalizing transformation must satisfy T−1
k = 𝜼T†

k𝜼.

Polarized neutron cross section

Inelastic neutron scattering on magnetic materials is most often carried out without regard to the

spin polarization of the neutron. Nevertheless there are many instruments that both allow the in-

going neutron polarization to be controlled and for the polarization of the out-going neutron to be

measured. The HYSPEC experiment was operated in a half-polarized mode − measuring the total

out-going intensity for a fixed initial polarization. The inelastic neutron scattering cross section for

energy transfer 𝜔 and momentum transfer 𝑸 for this setting is(
𝑑2𝜎

𝑑Ω𝑑𝜔

)
∝

∫
𝑑𝑡𝑒−𝑖𝜔𝑡

[
⟨M⊥

−𝑸 · M⊥
𝑸 (𝑡)⟩ + 𝑖Pin · ⟨M⊥

−𝑸 × M⊥
𝑸 (𝑡)⟩

]
(S13)

where M𝑸 =
∑

r,𝑛 𝜇𝑛 𝑓𝑛 (𝑸)𝑒𝑖𝑸·(r+𝜹𝑛)Sr,𝑛 and M⊥
𝑸 ≡ 𝑸̂ ×

(
M𝑸 × 𝑸̂

)
. Here 𝜇𝑛 are the moments on

sublattice 𝑛 which have form factor 𝑓𝑛 (k). The initial neutron polarization Pin was chosen to align

or anti-align with the crystal [1/2 1/2 1] direction (and therefore varied with respect to the lab

frame).

The experiment was first carried out with Pin fixed and then repeated with the sign reversed

polarization. Evidently, by subtracting the two intensities we isolate the contribution coming from

the second term on the right-hand-side of Eq. S13 while the sum of the two intensities is the usual

unpolarized inelastic cross section. The difference map is sensitive to the chirality of the magnon

modes as we shall see.

We compute the contribution from each term within the linear flavour wave theory using

𝑆𝛼𝑖 → 𝑀 ⟨𝑖, 0|𝑆𝛼𝑖 |𝑖, 0⟩ +
√
𝑀

2𝑆∑︁
𝑝=1

(
𝐴
†
𝑖𝑝
[𝑆𝛼𝑖 ] 𝑝0 + 𝐴𝑖𝑝 [𝑆𝛼𝑖 ]0𝑝

)
. (S14)

The correlation functions corresponding to the first and second terms on the right-hand-side of

Eq. S13 are, respectively(
𝑑2𝜎

𝑑Ω𝑑𝜔

)
un−pol

∝ 𝑀 𝑓 2
Mn(𝑸)

∑︁
𝑎𝑏,𝛼𝛽=𝑥,𝑦

(
𝛿𝛼𝛽 − 𝑄̂𝛼𝑄̂𝛽

)
⟨𝑆𝛼−𝑸,𝑎,−𝜔𝑆

𝛽

𝑸,𝑏,𝜔
⟩ (S15)(

𝑑2𝜎

𝑑Ω𝑑𝜔

)
pol

∝ 𝑖𝑀 𝑓 2
Mn(𝑸)

(
Pin · 𝑸̂

)
𝑄̂𝑧𝜖 𝑧𝛼𝛽

∑︁
𝑎𝑏

⟨𝑆𝛼−𝑸,𝑎,−𝜔𝑆
𝛽

𝑸,𝑏,𝜔
⟩ (S16)
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For Mn2+ the magnetic form factor is 𝑓Mn(k) = ⟨ 𝑗0(k)⟩ approximated by (50)

𝑓Mn(𝑠) = 𝐴 exp(−𝑎𝑠2) + 𝐵 exp(−𝑏𝑠2) + 𝐶 exp(−𝑐𝑠2) + 𝐷 (S17)

with 𝑠 = sin 𝜃/𝜆 in Å and parameters in Table S2.

Table S2: Table of form factor coefficients.

A a B b C c D

0.4220 17.6840 0.5948 6.0050 0.0043 -0.6090 -0.0219

Parameterization of the dispersion relations

The minimal model with Heisenberg exchange couplings 𝐽1. . . . , 𝐽7𝑎, 𝐽7𝑏 with fixed dipolar cou-

pling was used to parameterize dispersion relations extracted from the data. To obtain the model

parameters, a least squares minimization was carried out using a Levenberg-Marquardt algorithm

implemented in Julia. In other words, given a set of dispersion points from the scattering data 𝜔(𝑒)
𝑛

within energy uncertainty 𝜎𝑛 and computed points at the same wavevectors 𝜔(𝑐)
𝑛 , the expression

𝑆 =
∑︁
𝑛

(
𝜔

(𝑒)
𝑛 − 𝜔(𝑐)

𝑛

𝜎
(𝑐)
𝑛

)2

(S18)

was minimized. The experimental dispersion points and those computed from the best fit are

shown in Fig. S8(left panel). Error bars were extracted from the experimental data as discussed

above. Clearly the fit is good within the experimental uncertainties. The plots in the main text were

computed using these parameters.

In order to estimate uncertainties in the exchange couplings, we generated data from the original

dispersions by adding a Gaussian random variable to each point with mean zero and standard

deviation extracted from the FWHM of the fitted intensity peaks. We carried out an optimization

of the couplings for many noise realizations. The distribution of each coupling 𝐽𝑛 (𝑛 ≤ 6) obtained

in this way is peaked around some value and the quoted error below is the standard deviation

from a Gaussian fit of that distribution. This analysis reveals that 𝐽4 and 𝐽6 are zero within errors.

These couple identical magnetic sublattices. Within sampling errors the distribution of 𝐽7𝑎, 𝐽7𝑏
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is bimodal with reflection symmetry about 𝐽7𝑎 = 𝐽7𝑏 indicating that the dispersion relations are

insensitive to the relative sign of the difference of the couplings (Fig. ). Fig. S8(right panel) illustrates

the covariance matrix of the parameters extracted from fits to the noisy data. This shows strong

correlations between several pairs of parameters and, in particular, highlights the anticorrelation

between 𝐽7𝑎, 𝐽7𝑏.

We may further constrain 𝐽7𝑎 and 𝐽7𝑏 from the ratio of the chiral term to the total intensity

extracted from the experiment. This ratio was found to be between 5% and 11% depending on

the cut. Taking the ratio to be 10% for the reported 4 : 1 domain ratio, the ratio for a mono-

domain sample would be about 16%. The figure constrains |𝐽7𝑎 − 𝐽7𝑏 | ≈ 0.04. We therefore take

𝐽7𝑎 = −0.006 and 𝐽7𝑏 = −0.002 about the center of mass values from the fit.

The resulting exchange parameters from the distribution of best fit couplings are:

𝐽1 = −0.075(2)meV 𝐽2 = 0.287(3)meV 𝐽3 = −0.012(1)meV

𝐽4 = −0.001(1)meV 𝐽5 = 0.008(2)meV 𝐽6 = 0.001(2)meV

𝐽7𝑎 = −0.006(3)meV 𝐽7𝑏 = −0.002(3)meV (S19)

For comparison, Nikotin et al. (37), based on their data taken at the DR3 reactor facility in

Denmark, carried out a fit of 𝐽1, 𝐽2 and 𝐽3 with fixed dipolar coupling obtaining:

𝐽1 = −0.056(2)meV 𝐽2 = 0.304(2)meV 𝐽3 = 0.008(2)meV (S20)

Compared to the figures directly reported in their paper, these use the convention with antiferromag-

netic couplings positive and the couplings are multiplied by two to coincide with our Hamitonian

convention.

A much more recent study based on data from the CAMEA instrument at PSI in Switzerland

uses the first three neighbor couplings and a single ion Ising anisotropic coupling 𝐷𝑐 instead of the

long-range dipolar coupling (42). With this Hamiltonian, their data is fit well using

𝐽1 = −0.0677(9)meV 𝐽2 = 0.3022(6)meV 𝐽3 = −0.0044(4)04meV (S21)

and 𝐷𝑐 = −0.0267(6) meV.
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A priori constraints on the anisotropic couplings

In this section, we consider possible origins of the measured polarization dependence of the magnon

modes beyond the Heisenberg model considered in the main text. As we have discussed extensively,

the principal couplings in MnF2 are Heisenberg exchange as appropriate to pure spin 𝑆 = 5/2 and

the long-range magnetostatic dipolar interaction. The dipolar coupling cannot introduce a chiral

splitting because the coupling has the symmetries of the body-centered tetragonal lattice whereas

the altermagnetism comes from the full MnF2 crystal structure. For example, the 𝐶4𝑧 symmetry of

the former is broken in the latter structure. Here we consider couplings allowed by the crystalline

symmetries.

With these observations in mind, we consider single ion terms and general two-spin interactions.

It is also conceivable that 2𝑛-spin (𝑛 ≥ 2) couplings play a role in the altermagnetism in MnF2 but

we leave an examination of these to future studies.

Single ion couplings

The local site symmetry is 𝐷2ℎ that constrains the crystal field Hamiltonian such that it admits

𝐵0
2, 𝐵

2
2, 𝐵

0
4, 𝐵

2
4, 𝐵

4
4. (S22)

Higher order couplings need not be considered within the 𝑆 = 5/2 multiplet. We note that the

body-centred tetragonal lattice − where only the manganese ions are present − has a significantly

higher symmetry I4/mmm (# 139) with 𝐷4ℎ site symmetry allowing only

𝐵0
2 𝐵

0
4 𝐵

4
4. (S23)

The fits presented in this article with fixed dipolar coupling capture the anisotropy gap very well so

the 𝐵0
2 ∝ (𝑆𝑧)2 + const.may be neglected consistent with spin-orbital effects being small. When the

dipolar splitting is not resolved, the magnon dispersion relations are well described by Heisenberg

exchange including further neighbour couplings with, in addition, a non-vanishing 𝐵2
0 (42).

The principal interest here is in crystal field terms that are not admitted by the body-centred

tetragonal lattice as these have symmetries that underlie altermagnetism. The simplest such coupling

is 𝑂2
2 = 𝑆𝑥𝑆𝑦 + 𝑆𝑦𝑆𝑥 . This operator, like most anisotropic couplings, breaks the U(1) symmetry of
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the Heisenberg couplings. With coupling 𝐵2
2 on one sublattice, the 𝐶4𝑧 translation leads to −𝐵2

2 on

the other sublattice.

Now we consider an interacting spin model with Heisenberg couplings and long-range dipolar

couplings in the presence of a small 𝐵2
2 single-ion term. The mean field ground state for 𝐵2

2 = 0 has

moments along ±ẑ. When 𝐵2
2 is switched on, there is a finite threshold before expectation values

of 𝑥 − 𝑦 spin components become nonzero in the ground state. Above the threshold in 𝐵2
2 there is

canting of the moments and a spin flop into a state with the moment entirely in the 𝑥 − 𝑦 plane. The

chirality is zero below the threshold. Only above the threshold may the chirality be nonzero.

Two-spin couplings

Turning now to two-spin terms out to the seventh neighbor, we compute the constraints coming

from the crystal symmetries with the following results. For a given bond labelled by the sites at the

endpoints 𝑖, 𝑗 , we compute the form of the symmetry-allowed anisotropic exchange 𝐽𝛼𝛽
𝑖 𝑗
𝑆𝛼
𝑖
𝑆
𝛽

𝑗
where

𝛼, 𝛽 label the spin components. As a shorthand we use the notation J𝑛 for the exchange couplings

at the 𝑛th nearest neighbor bond referring to Fig. S7.

For bonds connecting identical magnetic sublattices we find:

Bond J1 Bond J3 Bond J4
𝑥𝑥 𝑥𝑦 0

𝑥𝑦 𝑥𝑥 0

0 0 𝑧𝑧



𝑥𝑥 𝑥𝑦 0

𝑥𝑦 𝑦𝑦 0

0 0 𝑧𝑧



𝑥𝑥 𝑥𝑦 𝑥𝑧

𝑥𝑦 𝑦𝑦 𝑦𝑧

𝑥𝑧 𝑦𝑧 𝑧𝑧


Bond J6 Bond J7

𝑥𝑥 𝑥𝑦 0

𝑥𝑦 𝑥𝑥 0

0 0 𝑧𝑧



𝑥𝑥 𝑥𝑦 0

𝑥𝑦 𝑥𝑥 0

0 0 𝑧𝑧


.

For example, for J1, there are three allowed couplings: XXZ couplings and a symmetric off-diagonal

exchange coupling. The 𝐽4 bond has the lowest symmetry with 6 allowed couplings. All of these

bonds have only symmetric exchange. For exchange between magnetic ions on different sublattices
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we find:
Bond J2 Bond J5

𝑥𝑥 𝑥𝑦 𝑥𝑧

𝑥𝑦 𝑥𝑥 −𝑥𝑧

𝑧𝑥 −𝑧𝑥 𝑧𝑧



𝑥𝑥 𝑥𝑦 𝑥𝑧

𝑥𝑦 𝑥𝑥 −𝑥𝑧

𝑧𝑥 −𝑧𝑥 𝑧𝑧


Now we find allowed DMI couplings 𝑆𝑥

𝑖
𝑆𝑧
𝑗
− 𝑆𝑧

𝑖
𝑆𝑥
𝑗

and for 𝑦, 𝑧 components also.

We note that 𝐽𝑥𝑧, 𝐽𝑦𝑧, 𝐽𝑧𝑥 and 𝐽𝑧𝑦 terms do not enter the linear spin wave theory. Their effects

emerge at higher order in perturbation theory through other further neighbor couplings. This may

include symmetric off-diagonal exchange 𝐽𝑥𝑦 = 𝐽𝑦𝑥 which is allowed for all neighbors at least out

to 7th neighbor.

It is helpful to inspect the couplings that are allowed on the body-centered tetragonal lattice

that is obtained from the structure we have been considering by removing the F ions. This structure

does not admit altermagnetism. We find that the 𝐽𝑥𝑦 coupling is forbidden on bonds 1, 3, 4 and 6

connecting identical magnetic sublattices. The seventh neighbor bonds 𝑎 and 𝑏 are identical once

the fluoride decoration has been removed. On bonds 2 and 5, 𝐽𝑥𝑦 remains but there is an additional

constraint on the couplings given above of the form 𝐽𝑥𝑧 = 𝐽𝑧𝑥 .

Comparing the couplings allowed for the rutile structure and the body-centered tetragonal

lattice directly imply that the 𝐽𝑥𝑦 coupling between different magnetic sublattices cannot lead to a

net chirality. They do, however, lead to a splitting of the magnon bands as one might expect as they

form a component of the dipolar coupling. Direct calculation of the effect of this coupling reveals

further interesting features: although the coupling breaks the 𝑈 (1) symmetry of the Heisenberg

model there is an accidental 𝑈 (1)∗ symmetry of the linear spin wave Hamiltonian such that

Goldstone modes are present in the spectrum. The coupling produces a splitting everywhere but the

(𝐻0𝐿) planes and the chiral term in the neutron cross section vanishes. The latter result may also be

inferred from the argument of Ref. (34) where a general two-sublattice𝑈 (1) breaking perturbation

as the sole cause of magnon splitting

𝛿M®𝑘 =

©­­­­­­­«

0 𝐹𝐴𝐵k 𝐺𝐴𝐴
k 0

[𝐹𝐴𝐵k ]∗ 0 0 𝐺𝐵𝐵
k

[𝐺𝐴𝐴
k ]∗ 0 0 [𝐹𝐴𝐵k ]∗

0 [𝐺𝐵𝐵
k ]∗ 𝐹𝐴𝐵k 0

ª®®®®®®®¬
. (S24)
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Bond 𝐽𝑥𝑦 = 𝐽𝑦𝑥 Splitting 𝐽𝑥𝑥 ≠ 𝐽𝑦𝑦 Splitting

J1 yes no no -

J2 yes yes no -

J3 yes no yes yes

J4 yes no yes yes

J5 yes yes no -

J6 yes no no -

J7a/b yes yes no -

Table S3: Allowed two-spin couplings that break U(1) symmetry

was shown to maximally mix chiralities.

Symmetric off-diagonal exchange 𝑆𝑥
𝑖
𝑆
𝑦

𝑗
+ 𝑆𝑦

𝑖
𝑆𝑥
𝑗

connecting identical sublattices is forbidden for

the body-centered tetragonal structure but allowed for the rutile structure. Therefore it is a candidate

for producing a net chirality. However, we find that it does not cause splitting of the magnon bands.

This is because the bare couplings coupling A to A sublattices have a reversed sign compared to

those coupling B to B. But, in the local quantization frame of the antiferromagnetic structure, the

signs are the same and the coefficient is pure imaginary. There is therefore an effective translation

symmetry connecting the two sublattices.

For the 𝐽𝑥𝑥 ≠ 𝐽𝑦𝑦 interaction for 3rd and 4th neighbor bonds, there is splitting everywhere but

the zone boundary and the (𝐻𝐻𝐿) and (𝐻𝐻̄𝐿) planes. Once again this coupling does not lead to a

finite chirality.

In summary, we have examined all anisotropic exchange couplings on bonds out to − and

including − seventh nearest neighbor. Of those that enter into the quadratic spin wave Hamiltonian,

we have identified two classes that bring about a splitting of the two magnon bands. These are:

𝑆𝑥
𝑖
𝑆
𝑦

𝑗
+ 𝑆𝑦

𝑖
𝑆𝑥
𝑗

on 2nd, 5th and 7th neighbor bonds and 𝑆𝑥
𝑖
𝑆𝑥
𝑗
− 𝑆𝑦

𝑖
𝑆
𝑦

𝑗
on 3rd and 4th neighbor bonds.

These do not lead to a net chiral term in the neutron cross section. In this way, we have shown

that the sole two-spin coupling that generates a non-vanishing chiral term within linear spin wave

theory is the imbalance between Heisenberg 𝐽7 couplings.
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Figure S1: Top: The two magnetic domains 𝐶Domain1 and 𝐶Domain2 in MnF2. Bottom: Rocking

scans across the (2, 1, 0) and (2,−1, 0) reflections with the neutron spin polarization Pin ∥ 𝒁 and

Pin ∥ −𝒁
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𝐸𝑖 = 9 meV
Fermi Chopper frequency = 360 Hz

Figure S2: Calculated energy resolution for an incident energy 𝐸𝑖 = 9 meV and a Fermi chopper

frequency of 360 Hz.
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Figure S3: Unpolarized neutron scattering dispersion maps and fits. (a–f) Disper-

sion spectra of MnF2 measured with incident energy 𝐸𝑖 = 9 meV along 𝑸 =

(0, 0, 𝐿), (0.5, 0.5, 𝐿), (1, 1, 𝐿), (𝐻, 𝐻, 0), (𝐻, 𝐻, 0.5), and (𝐻, 𝐻, 1). Gaussian fits are shown as

green and magenta circles in (f), corresponding to slices at fixed 𝑸 or energy 𝐸 . Green vertical and

magenta horizontal dashed lines indicate slices exemplified in (g–l) for 𝐻 = 0.35, 0.45, 0.50 r.l.u.

and 𝐸 = 2.98, 3.46, 3.98 meV. Black markers show experimental integrated intensities. In (g–i), the

solid green line shows the total fit from one or two Gaussians, with shaded green areas highlighting

individual components. In (j–l), the solid magenta line shows the total fit from four Gaussians, with

shaded pink areas highlighting the components.
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a b

Figure S4: (a) Scattering geometry for 𝑸 = (1/2, 1/2, 1) (in purple) within the (𝐻𝐻𝐿) scattering

plane. The 𝑿,𝒀 , 𝒁 (blue vectors) with 𝑿 ∥ 𝑸, 𝒀 ⊥ 𝑸 and 𝒁 ∥ [11̄0] corresponds to the Blume-

Maleev frame. Our HYSPEC experiment was performed by maximizing the incident polarization

Pin with respect to 𝑸 at 6 meV energy transfer. The purple arc-circle denotes the 𝑸-range, i.e.

between 𝑸 = (0, 0, 1) and 𝑸 = (1.25, 1.25, 1) where the polarization Pin keeps at least 90 % of

its maximum value within this 𝑸-range and 1-7 meV energy transfer. (b) Variation of the angle 𝛼𝑠
between the 𝑿 incident polarization direction and the momentum transfer vector given in |𝑸 | (Å−1)

for a 9 meV incident energy on HYSPEC. 𝛼𝑠 = 0 at 𝑸=(0.5,0.5,1) and 𝐸 = 6 meV as indicated by

the red cross. The dashed lines correspond to the region (5 − 7) meV where the chiral splitting is

seen on our polarized inelastic scattering data. In this region, 𝛼𝑠 stays close to zero.
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Figure S5: 𝑸 dependence of energy scans obtained from experimental sum (black points) and

difference (blue points) between Pin and P−in cross sections. Black curves are guide to the eye. Blue

curves are results from a double Gaussian fit. All data herein are integrated over 0.05 meV steps

along energy and 0.03 r.l.u. steps in 𝑸 along the plotted axis. The transverse-𝑸 averaging window

is 0.1 r.l.u. in both cases.
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Figure S6: 𝑸 dependence of of the ratio between the integrated intensities of the chiral contribution

|Pin - P−in | and the total cross section Pin + P−in corresponding to areas under Gaussian fits to the

data shown in Fig. S5. The blue curve is a guide to the eye.
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Figure S7: Figure showing the crystal structure of MnF2 and 𝑛th nearest neighbor bonds used to

specify the range of exchange couplings 𝐽𝑛.
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Figure S8: (Left) Plot of the dispersion points extracted from the scattering data with their associated

uncertainty and the corresponding points calculated from the best fit exchange model. (Right) From

the distributions of the eight fitted exchange parameters extracted from the experimental data

including noise, the covariance matrix 𝑀𝑎𝑏 is computed. The plot shows sgn(𝑀𝑎𝑏)
√︁
|𝑀𝑎𝑏 |.

Figure S9: Plot showing 𝐽7𝑎 and 𝐽7𝑏 from optimized set of parameters to noisy data as described

in the main text. The distribution is bimodal with an approximate symmetry interchanging the

couplings.
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Figure S10: Plot showing the calculated ratio of the chiral term in the neutron cross section at

[𝐻𝐻1] with 𝐻 = 0.7 and the total intensity for different |𝐽7𝑎 − 𝐽7𝑏 | with all other couplings fixed

to their values in Eq. S19. The horizontal line indicates a value compatible with experiment having

adjusted for the measured domain ratio. This constrains the magnitude of the altermagnetic splitting

in MnF2.
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