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ORDER PARAMETERS AND CORRELATORS

As illustrated in Fig. 1 of the main text, three main
phases are studied in this paper: the U(1) manifold, di-
vided into ψ2 and ψ3 phases, and the splayed ferromag-
net (SFM). Their order parameters can be found in the
literature [1–5] and are repeated below for convenience.
In what follows, we adopt the convention of Ref. [6]

regarding the labeling of the spins, defined by their posi-
tions relative to the centre of the tetrahedron
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The spins at the four sites are denoted as ~Si=0,1,2,3 =

(Sx
i , S

y
i , S

z
i ) in the cubic coordinates, with |~Si| = 1/2.

For the U(1) manifold, the order parameter, per tetra-
hedron, is a two-dimensional vector.
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To differentiate between the ψ2 and ψ3 states
within the U(1) manifold, we define the angle

θU(1) = arctan(mβ

U(1)/m
α
U(1)); the function cos(6θU(1))

respectively equals to +1 and −1 for ψ2 and ψ3

states [1, 4, 5].

As for the splayed ferromagnetic phase, it is fully de-
scribed by two three-dimensional order parameters [4]
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where ~mSFM1 is simply the global magnetization and
~mSFM2 accounts for the splayed nature of the ferromag-
netism, i.e. the fact that the spins are not colinear. For
a given SFM ground state, both ~mSFM1 and ~mSFM2 are
finite.
In order to compare the growth of correlations between

the two phases, we define the order-parameter correlators

CIJ = 〈mImJ〉 − 〈mI〉〈mJ 〉 (5)

wheremI is the order parameter of phase I. For the U(1)
manifold, the use of the correlators is rather straightfor-
ward. However, for the SFM phase, since both ~mSFM1

and ~mSFM2 are finite, one needs to compute the matrix
of correlators

(

CSFM1,SFM1 CSFM1,SFM2

CSFM2,SFM1 CSFM2,SFM2

)

. (6)

By definition, this matrix is symmetric but a priori non-
diagonal. Upon diagonalization, the maximum eigen-
value is kept as correlator of the SFM phase. Please
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note that by symmetry of the lattice, calculations can
be simplified by considering only one component of the
order parameters, say e.g. ~mα

SFM1 and ~mα
SFM2.

MONTE CARLO SIMULATIONS

Fig. 1 in the main text has been obtained by classical
Monte Carlo simulations of Heisenberg spins on the py-
rochlore lattice. The conventional cubic unit cell consists
of 16 spins and the system size has N = 3456 spins. We
used the standard Metropolis algorithm where a Monte
Carlo step (MCs) is defined as N random single-spin-
flip attempts. To improve the quality of the simulations,
parallel tempering [7, 8] and over-relaxation [9] were in-
cluded in the simulations.

The error bars in Fig. 1 (main text) were obtained by
using two different cooling procedures during the equili-
bration of the simulations. For the first “annealed” pro-
cedure, the initial configuration is chosen randomly; the
system is then gradually cooled down from high temper-
ature (fixed at 10 K) to the temperature of measurement
T during 106 MCs; it is then equilibrated at the temper-
ature T during 106 additional Monte Carlo steps. Since
it is starting from high temperature, the annealed pro-
cedure tends to favor the phase with higher entropy, i.e.
the U(1) manifold, and provides a lower boundary to
the transition temperature. For the second “quenched”
procedure, the initial configuration is fixed in the SFM
phase; the system is then equilibrated at temperature T
during 106 additional Monte Carlo steps. Since it starts
in the ordered SFM phase, the quenched procedure fa-
vors the SFM phase and provides an upper boundary to
the transition temperature. Following these equilibration
procedures, measurements are done every 10 MCs during
107 MCs.

For the phase diagram of Fig. 3 b) (main text), the
system size was 3456 sites with measurements during 106

MCs. For the structure factors of Fig. 3 a) (main text),
no parallel tempering was necessary for simulations above
the transition temperature. The system size was 128000
sites with measurements during 106 MCs.

CLASSICAL LOW-TEMPERATURE EXPANSION

Classical low-temperature expansion is an expansion
in small fluctuations around an ordered state of classical
spins. It enables calculation of the free energy of a given
ordered phase up to leading term in temperature. We
have used it to determine the low-temperature depen-
dence of the phase boundary between the SFM and ψ3

phases, for comparison with MC simulation as indicated
by the green line in Fig. 1 of the main text. The method
is a standard one, outlined in (e.g.) Ref. [10].

LINEAR SPIN WAVE THEORY

Linear spin wave theory (LSW) is a semi-classical
method to study the stability of a classical phase in pres-
ence of the quantum zero-point energy. When the phase
is a classical ground state, such as the SFM phase in
the double-transition region of our paper, the method is
rather straightforward. But if the phase is not a classical
ground state, such as the U(1) manifold in the double-
transition region, the inclusion of zero-point energy re-
quires a variation of the LSW theory, as proposed in
Ref. [11] and outlined below.
At first, the approach is similar to standard spin wave

expansion. We rewrite the spin operators ~Si in terms of
Holstein-Primakoff bosons and perform a 1/S expansion
around the local spin configuration of the chosen ordered
state. At the harmonic level, our Hamiltonian takes the

form H ≈ HLSW = H
(0)
LSW

+H
(1)
LSW

+H
(2)
LSW

. H
(0)
LSW

is simply
the classical energy of the ordered state around which we

are expanding, while H
(1)
LSW

and H
(2)
LSW

contain only linear
and quadratic terms in boson operators, respectively.
If the chosen ordered state is a classical ground state,

then H
(1)
LSW

must vanish. As for H
(2)
LSW

, it can be diag-
onalized by Fourier transform followed by a Bogoliubov
transformation which will return real, positive, frequen-
cies and therefore a meaningful excitation spectrum. The
semi-classical energy can then be written

E0
semi−cl = E0

cl

(
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S

)

+
1

2

∑

~kλ

ω~kλ, (7)

where E0
cl
is the classical ground state energy, ω~kλ is the

spin wave dispersion of band λ at wave-vector ~k.
However, if the chosen ordered state is not a classi-

cal ground state, then H
(1)
LSW

may still vanish if the spin
configuration we are expanding around is a saddle point

of the classical energy. As shown in Ref. [2], this is the
case for the ψ2 and ψ3 configurations. The last remain-

ing point is the diagonalization of H
(2)
LSW

. Following the
approach developped by Coletta et al. [11], we add to

H
(2)
LSW

the positive definite term V = δ
∑

i a
†
iai, where the

a†i and ai operators are Holstein-Primakoff bosons. This
additional term V does not change the classical energy
and the parameter δ may be adjusted to the minimum
value for which we can obtain a real, positive excitation
spectrum. The energy calculated with the inclusion of V
is

Eδ
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where Ecl is the classical energy of the saddle-point con-
figuration and ωδ

~kλ
is the spin wave dispersion calculated

including the potential V . Since V is a positive definite
operator, Eδ

semi−cl
is an upper bound on the semiclassical

energy of the saddle-point configuration.
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FIG. 1. Semiclassical energy of the SFM states and upper
bounds of the ψ2 and ψ3 semiclassical energies as a function
of J1 (in meV). The exchange parameters are fixed to J2 =
−0.22 meV, J3 = −0.29 meV and J4 = 0. The dashed line is
the estimated frontier at J1 = −0.062 meV (see main text).

The SFM semiclassical energy from Eq. (7) (standard
approach) and the upper bounds of the ψ2 and ψ3 semi-
classical energies from Eq. (8) (approach of Ref. [11]) are
plotted in Fig. 1. The semiclassical boundary is found
to be at J1 = −0.062 meV, as written in Table 1 of the
main text.

EXACT DIAGONALIZATION

We consider the properties of the exchange Hamilto-
nian shown in Eq. (1) of the main text for a single tetra-
hedron (N = 4) and a single cubic unit cell of the py-
rochlore lattice (N = 16) with periodic boundary con-
ditions. Thanks to the small number of sites the full
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FIG. 2. Correlators CU(1) and CSFM computed via Exact
Diagonalization (ED) for N = 16 sites at zero temperature
as a function of J1 (in meV). The exchange parameters are
fixed to J2 = −0.22 meV, J3 = −0.29 meV and J4 = 0. The
dashed line is the estimated frontier at J1 ≈ −0.064 meV (see
main text).

spectrum is analytically accessible for N = 4 and the
lowest lying eigenstates can be easily found via standard
Lanczos diagonalization for N = 16.

As explained in the main text and plotted in Fig. 2, we
compare the correlatorsC of Eq. (5) of the U(1) and SFM
ordered phases to determine the boundary between the
two phases at zero temperature. This gives the frontier
at J1 ≈ −0.064 meV, given in Table 1 of the main text.

NUMERICAL LINKED CLUSTER EXPANSION

At finite temperature, we have also performed a nu-
merical linked cluster expansion (NLC) [12, 13], defined
as

P (L)/N =
∑

C⊂L
L(C)W (C) (9)

where P is some extensive quantity and N is the number
of lattice sites. The sum runs over clusters C of the lat-
tice, L(C) counts the number of clusters of type C per site
and W (C) is the weight evaluated on the cluster. This
weight is computed using inclusion-exclusion rule

W (C) = P (C)−
∑

C′⊂C

W (C′) (10)

where P (C) is the quantity computed on the cluster C and
the sum runs over proper subclusters of C. There is some
freedom in choosing the classes of clusters to sum over in
this expansion. We follow the approach of Ref. [14] and
use tetrahedra as our building block. A linked cluster
with nT tetrahedra will have at most 3nT +1 sites so we
are limited to nT ≤ 4 in the expansion. The properties,
P , to be computed, are defined on the tetrahedron and
so conform well to this expansion.

For convenience, we reproduce in Table I the geometri-
cal clusters used in Ref. [14], with the appropriate embed-
ding constant. These include the 0th order point up to
4th order which includes clusters composed of four tetra-
hedra. Each cluster has an associated Hamiltonian HC
obtained from the exchange Hamiltonian (Eq. (1) of the
main text) which we diagonalize numerically. The largest
nT = 4 clusters we consider have 13 sites and thus Hilbert
spaces of dimension 213 = 8192. These remain amenable
to full diagonalization and thus we can compute arbitrary
thermodynamic quantities at finite temperature.

The series is organized into terms Pn including up to n
tetrahedra. Explicitly carrying out the expansion using
the embedding constants one has
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C L(C) C L(C)

C0 1 •

C1
1

2
C2 1

C3 3 C4a 3

C4b 6 C4c 2

TABLE I. Clusters used for the NLC expansion. A graphical representation is shown along with the embedding constant L(C).

P0 = +P (C0) (11)

P1 = −P (C0) +
1

2
P (C1) (12)

P2 = −
3

2
P (C1) + P (C2) (13)

P3 = +
3

2
P (C1)− 5P (C2) + 3P (C3) (14)

P4 = −
1

2
P (C1) + 10P (C2)− 21P (C3)

+3P (C4a) + 6P (C4b) + 2P (C4c) (15)

Note that P (C0) does not appear directly past first order.
Following Ref. [14] the Euler resummation method is used
on the final two terms to accelerate convergence. If we
define the differences Sn = Pn − Pn−1 then the Euler
approximants are given by

E2 = P2 (16)

E3 = E2 +
1

2
S3 (17)

E4 = E3 +
1

4
(S3 + S4) (18)

The difference between 3rd and 4th order of expansion is
the uncertainty of our NLC computations.

HIGH TEMPERATURE EXPANSION

The High Temperature Expansions (HTE) are done up
to order β8, as explained in the book of Ref. [15]. The
series expansion are then analyzed using Padé approxi-
mants, i.e. based on rational functions. We constructed

all near-diagonal Padé approximants with 8 or 7 terms
in the series, i.e. [4/4], [5/3], [3/5], [6/2], [2/6], [4/3],
[3/4], [5/2], [2/5] where [m/n] stand for the powers of
the polynomial in the numerator and the denominator.
The resulting spread in Padé approximant values repre-
sents the error bars of our HTE computations.

Please find attached the coefficients ai=0,..,8 of the
high-temperature expansion

∑

i aiβ
i of the correlators

defined in Eq. (5), for different values of J1 [meV]. The
coefficients are correct up to 10 significant digits.
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