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Non-Hermitian topology of spontaneous magnon decay
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Spontaneous magnon decay is a generic feature of the magnetic excitations of anisotropic magnets and
isotropic magnets with noncollinear order. In this Rapid Communication, we argue that the effect of interactions
on one-magnon states can, under many circumstances, be treated in terms of an effective, energy-independent,
non-Hermitian Hamiltonian for the magnons. In the vicinity of Dirac or Weyl touching points, we show that the
spectral function has a characteristic anisotropy arising from topologically protected exceptional points or lines
in the non-Hermitian spectrum. Such features can, in principle, be detected using inelastic neutron scattering
or other spectroscopic probes. We illustrate this physics through a concrete example: a honeycomb ferromagnet
with Dzyaloshinskii-Moriya exchange. We perform interacting spin-wave calculations of the structure factor
and spectral function of this model, showing good agreement with results from a simple effective non-Hermitian
model for the splitting of the Dirac point. Finally, we argue that the zoo of known topological protected magnon
band structures may serve as a nearly ideal platform for realizing and exploring non-Hermitian physics in
solid-state systems.
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Introduction. Understanding the role of topology in con-
densed matter physics has been one of the principal goals of a
generation of physicists [1–8]. The topic has been profoundly
fruitful in recent years on both the theoretical and experimen-
tal fronts and its current significance is reflected in its ubiquity,
driving progress in nearly all subfields of condensed matter
physics. One relatively recent direction comes from progress
in the fabrication of photonic devices with engineered levels
of loss or dissipation of photons from the system [9,10].
This provides an experimentally realizable context where non-
Hermitian terms in the effective tight-binding Hamiltonian
can be important. Such terms can lead to new topological band
structures that are distinct from their Hermitian counterparts.
As in the conventional case, there is a wide variety of such
phases, depending on symmetry and dimensionality [11–36].

Whereas in photonic systems dissipation comes about
because the substrate used to channel light can be lossy,
effective non-Hermitian terms can also arise in closed quan-
tum systems [37–39]. By isolating a subsystem consisting
of the single quasiparticle states one may trace out the re-
maining (reservoir) degrees of freedom to arrive at an ef-
fective non-Hermitian momentum and frequency-dependent
Hamiltonian Heff (k, ω) = H (k) + �(k, ω) where H (k) is the
Hermitian part and the non-Hermitian part enters through
the self-energy �(k, ω). This effective Hamiltonian describes
propagating quasiparticle excitations with finite lifetime and
potentially nontrivial non-Hermitian topology. Various such
cases have been discussed in the literature in the context
of topological matter, where the self-energy is generated by
processes such as electron-electron, electron-impurity, finite
temperature electron-photon scattering or by coupling to finite
temperature leads [18,33–35].

In this Rapid Communication, we propose that magnonic
systems may be a nearly ideal platform to realize non-
Hermitian topological states. Topological magnon states have

been widely discussed in the Hermitian context [40–55].
One of the peculiarities of topological magnons compared to
their electronic cousins is that they appear as excited states
and therefore they are subject to the nonuniversal effects of
interactions [46,52,55]. Recent theoretical work has demon-
strated that topological magnon edge states can be nonpertur-
batively sharp and observable in principle despite the presence

FIG. 1. Spectral function, A(k, ω), of the honeycomb ferromag-
net with Dzyaloshinskii-Moriya interactions [see Eq. (8)], on con-
stant energy slices as a function of wave vector near the K point
(arbitrary linear scale from zero). The magnon lifetime is shortest in
the lower band on one side of the K point and, in the higher energy
band, on the opposite side of K . Energy slices of the full zone are
also shown.
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of magnon-magnon interactions [55]. Nevertheless, intrinsic
magnon decay coming from one-to-two magnon processes is
generic in magnetically ordered systems, particularly those
with some degree of anisotropic exchange. Such decay of
otherwise sharp magnon states into a multimagnon contin-
uum supplies a natural separation into system and reservoir,
and motivates the treatment of one-magnon states as a non-
Hermitian Hamiltonian problem.

The simplest realization of this physics occurs when the
noninteracting problem contains linear touching points. With-
out decay, it is known that the inelastic neutron scattering
intensity exhibits a characteristic signature that manifests as a
winding of the intensity around the touching point in constant
energy slices [56]. In the presence of non-Hermitian terms,
linear touching points evolve into topologically protected
exceptional points [in two dimensions (2D)] or lines [in three
dimensions (3D)] that bound degenerate lines or surfaces in
the real part of the energy [12–27,29,30,32]. The presence of
these features results in a universal anisotropy in the magnon
lifetime around the touching point as shown in Fig. 1.

Spin-wave theory. We first recall the notation and concepts
of spin-wave theory. We consider a magnetically ordered
system and expand about the classical limit using Holstein-
Primakoff bosons [57–59]. At leading order, the effective
Hamiltonian takes the form

∑
k

∑
αβ

[
Aαβ

k a†
kα

akβ + 1

2

(
Bαβ

k a†
kα

a†
−kβ

+ H.c.
)]

, (1)

where akα is the (Fourier-transformed) Holstein-Primakoff
boson with wave vector k on sublattice α of the (magnetic)
unit cell. The matrices Ak and Bk depend on the classical
ordering pattern and the details of the exchange model. The
linear spin-wave spectrum is determined by the eigenvalues
of the Bogoliubov dispersion matrix [60]

σ3Mk ≡
(

Ak Bk

−B∗
−k −A∗

−k

)
, (2)

where σ3 ≡ diag(+1,−1) is a block Pauli matrix. While this
generalized eigenvalue problem is not Hermitian, the matrix
Mk is Hermitian, and satisfies Mk = M†

k = σ1Mᵀ
−kσ1. The

spin-wave modes obtained at leading order are thus stable
quasiparticles, with infinite lifetime.

Going to higher order, one must consider magnon-magnon
interactions. The effects of these interactions are encoded in
the (retarded) self-energy, �(k, ω), which can be computed
perturbatively [60,61] in the limit 1/S → 0 [62–64]. This can
be defined via the (retarded) magnon Green’s function as

G(k, ω) ≡ {(ω + i0+)σ3 − [Mk + �(k, ω)]}−1. (3)

Such interactions appear first at next-to-leading order, induc-
ing both renormalization of the spin-wave spectrum and the
possibility of spontaneous magnon decay.

Non-Hermitian magnon Hamiltonians. To relate the
magnon self-energy to an effective non-Hermitian band struc-
ture, we consider the perturbative limit where the self-energy
is small, which can be reached, for example, as S → ∞ or
in very large magnetic fields. In this limit the one-magnon
excitations are then characterized by a set of quasinormal
modes that are defined by poles of the retarded Green’s

function [65]

det{(Ek − i�k + i0+)σ3 − [Mk + �(k, Ek + i�k)]} = 0, (4)

where Ek is the energy of the quasinormal mode and �k is
its inverse lifetime. Away from the edges of the two-magnon
continuum [64], singular features in the two-magnon density
of states, or degeneracies, one can solve this equation pertur-
batively [64]:

Ekα − i�kα = εkα + V †
kα

σ3�(k, εkα )V kα, (5)

where εkα and V kα are the noninteracting magnon energies
and eigenvectors for band α.

Now suppose the noninteracting magnon bands of interest
lie within an energy window such that the frequency de-
pendence of the self-energy can be neglected. This naturally
occurs at band touchings, such as Dirac or Weyl points, nodal
lines or surfaces, or even entirely flat bands. If we denote the
center of this energy window as ω0, then, in each case, we can
expand the self-energy as

�(k, ω) ≈ �(k, ω0) + (ω − ω0)∂ω�(k, ω0) + · · · . (6)

Keeping only the first piece, the nonlinear eigenvalue equation
for the quasinormal modes then becomes linear [66], with the
effective non-Hermitian dispersion matrix

Meff
k ≡ [Mk + �′(k, ω0)] + �′′(k, ω0), (7)

where we have separated the Hermitian (�′) and anti-
Hermitian (�′′) parts explicitly. Thus within this energy win-
dow, we have an explicitly non-Hermitian band structure and
thus can explore a range of fundamentally non-Hermitian phe-
nomena. We note that this effective non-Hermitian problem is
not entirely general, as causality enforces the constraint that
imaginary parts of the quasinormal modes must always be
negative.

Honeycomb ferromagnet. We now consider a simple il-
lustrative example. We consider a spin-1/2 ferromagnet on
the honeycomb lattice in the presence of a second-neighbor
in-plane Dzyaloshinskii-Moriya (DM) interaction

H = −
3∑

n=1

∑
〈i j〉n

JnSi · S j + D
∑
〈i j〉2

(−1)i r̂i j · (Si × S j ), (8)

where r̂i j is the direction from site i to j, and (−1)i is a
staggered sublattice sign (to preserve inversion symmetry).
To enhance the effects of magnon interactions, we include
small second- and third-neighbor ferromagnetic couplings
with J2/J1 = 0.2 and J3/J1 = 0.1 [67]. The ground state of
this model is a collinear ferromagnet, with the moment direc-
tion arbitrary; to preserve the twofold symmetry, we perform
our semiclassical expansion about a ground state polarized
along x̂. Similar to graphene, at leading order the spectrum
hosts symmetry-protected Dirac touching points [48] at the
corners of the Brillouin zone (wave vectors K and −K)
located at ω0 = 3(J1 + 3J2 + J3)/2, independent of the value
of D.

While it does not strongly affect the linear spin-wave
spectrum, the DM interaction is important at higher order,
generating spontaneous magnon decay. Indeed, from simple
kinematics one can see that the Dirac touching points sit
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well within the two-magnon continuum and thus are liable
to decay spontaneously once the DM interaction is turned
on. Further, when the polarization is along the x̂ direction
these touchings are protected by symmetry so, while their
position shifts, they are not lifted by the interaction-induced
Hermitian perturbations generated by the DM exchange. This
model thus affords us an ideal setting to observe the effect
of non-Hermitian perturbations on the Dirac touching points,
with the DM interaction serving as a tuning parameter to
control their strength [68].

Two-band model. The effect of non-Hermitian perturba-
tions to a Dirac touching point has been thoroughly studied
[16,18,19,21], so we only briefly review the relevant theory.
One can write an effective two-band model near the (Hermi-
tian) touching point as

v(kxσx + kyσy) − i(a0 + a · σ ), (9)

where energy and momentum are measured relative to the
nodal point, σ are the Pauli matrices, and all parameters are
real. Hermitian perturbations that do not lift the node can be
absorbed into the definition of the energy and momentum of
the nodal point, and thus have been discarded. The four pa-
rameters a0, a represent the (leading) constant non-Hermitian
perturbations. While a0 is simply a constant width, the vector
part has a more dramatic effect, splitting the Dirac point
into a line that connects two (nondiagonalizable) exceptional
points with a dispersion ∼|k|1/2, as illustrated in Fig. 2(a).
This arc is centered at the touching point, has length 2|a|/v,
and runs perpendicular to a⊥ = (ax, ay). This is a distinctly
non-Hermitian topological phenomenon as can be seen by
taking a closed path around one of the exceptional points.
The two eigenvalues swap discontinuously upon crossing the
arc and this is associated with a half-integer winding number
[19]; this is visible in the linewidth, which changes discon-
tinuously going through the arc, but smoothly going around
it. These exceptional points are topologically protected, and
must annihilate in pairs, thus surviving even in the presence of
sufficiently small σz mass terms in the Hamiltonian. We note
that causality imposes the constraint that a0 � |a|, requiring
some amount of diagonal broadening on top of the structure
of the arc and exceptional points.

Comparison. Precisely this physics arises in the ferro-
magnetic honeycomb model given in Eq. (8). The leading
contribution to the self-energy comes from a (bubble) dia-
gram corresponding to decay and recombination of a single
magnon, yielding only the normal part of the self-energy
(denoted as �−+)

�−+
αβ (k, ω) = 1

N

∑
q

∑
ρρ ′

[
W α,ρρ ′

k,q

]∗
W β,ρρ ′

k,q

ω − εqα − εk−q,β + i0+ , (10)

where α, β are sublattice indices, ρ, ρ ′ are band indices, and
W α,ρρ ′

k,q is a form factor [64]. Due to the absence of anomalous
terms [the Bk terms in Eq. (1)], only this single diagram
contributes, greatly simplifying the calculation. This can be
expanded about the Dirac touching at energy ω0 and at wave
vector K to yield an effective non-Hermitian perturbation. For

FIG. 2. (a),(b) Constant slices of the real part of the quasinormal
modes, Ek, as a function of momentum for the touching point in
(a) 2D, showing the arc joining exceptional points (EPs) and (b) 3D
showing the surface bounded by exceptional lines (ELs). The inverse
of the imaginary part of the modes, 1/�k, is also shown. (c)–(h) Com-
parison of the spectral function, A(k, ω), evaluated for D/J1 = 0.125
near the Dirac touching for the [(c)–(e)] analytic effective model
(with the arc and exceptional points indicated) using �−+(K, ω0)
[Eq. (11)] and [(f)–(h)] the result from nonlinear spin-wave theory
(NLSWT), with a full solution of Dyson’s equation (arbitrary linear
scale from zero).

example, at D/J1 = 0.125 this yields

�−+
αβ (K, ω0) ≈ D2

J1

(
0.08 − 0.95i −0.41 + 0.28i

−0.41 + 0.28i 0.08 − 0.95i

)
αβ

, (11)

where the associated wave-vector sum in Eq. (10) has been
evaluated numerically for a large, but finite system. As re-
quired by symmetry, the masslike terms ∝σz are absent, and
both the Hermitian and non-Hermitian parts are nonzero and
comparable.

To see how the picture obtained from the two-band
model is borne out, we compare the results of this effective
non-Hermitian description with the results of more complete
interacting spin-wave calculation that retains the energy de-
pendence of the self-energy and solves the full Dyson equa-
tion. This comparison is shown in Figs. 2(c)–2(h) for the
magnon spectral function A(k, ω) ≡ −ImTr[G(k, ω)]/π for
D/J1 = 0.125 for several energies near the (renormalized)
band touching. One can see good agreement, showing that
the effective low-energy theory captures the physics of the
magnon-magnon interactions. The characteristic anisotropy of
the linewidth can be seen directly in the interacting spin-wave
theory by looking at constant energy cuts near the K point, as
shown in Figs. 1 and 2(c)–2(h).
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M K

FIG. 3. (a) The structure factor, S(k, ω), computed within
NLSWT for D/J1 = 0.125 along a path in momentum space
(arbitrary linear scale from zero). The linear spin-wave dispersions
(dashed) and the bottom of the two-magnon continuum (dotted) for
D/J1 = 0 are indicated. (b)–(d) Evolution of the neutron scattering
intensity at a fixed D/J1 = 0.125 as the energy is varied through the
Dirac node, from (b) ω/J1 = 2.525 to (c) ω/J1 = 2.55 to (d) ω/J1 =
2.575.

Discussion and outlook. The above example cleanly illus-
trates the non-Hermitian topological physics of magnons in
the presence of Dirac band touchings in two dimensions. The
existence of exceptional points and a line of degeneracies in
the real part of the eigenvalue rests on the quasinormal modes
being well defined which, in turn, relies on a meaningful
separation of system and reservoir. At zero temperature, both
the real and imaginary parts of the non-Hermitian effective
Hamiltonian depend on the exchange alone so the above
discussion is valid at weak coupling—independent of the
order of perturbation theory—only potentially breaking down
when interactions are strong. When the magnon-magnon cou-
pling is intrinsically weak, temperature itself can provide an
effective tuning parameter [69,70] for the non-Hermitian part
of the effective magnon Hamiltonian. Thermal decay [70]
can thus directly mirror the above discussion of spontaneous
decay, providing another route to realizing this kind of non-
Hermitian physics, so long as one is well below the ordering
temperature.

The characteristic pattern of line broadening reported
above is expected to be directly visible using inelastic neutron
scattering in magnetic materials that exhibit Dirac or Weyl
points within linear spin-wave theory. We illustrate the dy-
namical structure factor, computed within spin-wave theory
[71]

S(k, ω) ∝
∑
μν

(δμν − k̂μk̂ν )
∫

dt eiωt
∑

i j

eik·(ri−r j )
〈
Sμ

i (t )Sν
j (0)

〉
,

as would be seen in inelastic neutron scattering [72], in Fig. 3.
One can see the characteristic behavior of the broadening
near the Dirac touching, as a function of both wave vector

and energy. In particular, while the intensity is modulated
going away from the zone center [56], the modulation of the
width follows the direction of the exceptional line. We note
that similar anisotropies in the broadening are expected in
the vicinity of the exceptional lines [Fig. 2(b)] around non-
Hermitian Weyl points in three dimensions. While observation
of such features experimentally is potentially challenging
given their small extent in wave vector and energy, progress
should be possible through careful studies using time-of-flight
instruments or perhaps using specialized techniques such as
neutron resonance spin echo (NRSE) [73,74].

There is an enormous variety of real magnetic materials
that have been synthesized, many with the significant spin-
orbit coupling or the noncollinear ground states needed for
magnon decay to be relevant experimentally. Among such
materials, in three dimensions, the requirement of noninteract-
ing spin-wave spectra with Weyl touching points is expected
not to be a particularly stringent condition [8], while in two
dimensions a discrete remnant symmetry is required [2].

A few possible examples of magnetic materials with linear
touching points in the magnon spectrum that may also exhibit
significant magnon interaction effects include the quasi-2D
honeycomb materials CrBr3 [70,75,76] and CrI3 [77], the 3D
antiferromagnet Cu3TeO6 [78], and the possible Weyl magnon
system Lu2V2O7 [79,80]. Another potentially interesting case
is the kagome ferromagnet Cu(1, 3 − bdc) [44] that is thought
to have significant antisymmetric exchange couplings. In this
case, the noninteracting magnon theory exhibits Chern bands.
Chern bands are also well defined in a non-Hermitian setting,
with topologically protected edge states that are continuously
connected to their Hermitian counterparts [19].

Alongside the natural variety of magnets in nature, many
magnets have ground states or excitations that are tuneable us-
ing experimentally accessible magnetic fields. This provides a
possible tuning parameter that is not available in photonic or
acoustic realizations of non-Hermitian topological states. A
magnetic field will tend to cause a nontrivial evolution of the
magnon spectrum as well as shifting the band center to higher
energies. The latter effect can separate the one-magnon states
from the multimagnon continua, thus supplying a mechanism
to tune and ultimately switch off the non-Hermitian terms. Be-
cause the boundaries of the continua are sharp, the exceptional
points may annihilate discontinuously.

The utility of field tunability can be illustrated vividly in
our honeycomb ferromagnet example, where one finds that
the Dirac point sits above a set of van Hove singularities
in the two-magnon density of states. Under application of a
magnetic field, hx, along the moment direction x̂, both the
one- and two-magnon energies rigidly shift, but at different
rates (hx/2 and hx, respectively). Thus by tuning the field,
the van Hove singularity can be pushed closer to the Dirac
touching, further enhancing the effect of magnon decay. Given
the DM interaction is typically subdominant in transition
metal magnets [81], such as Lu2V2O7 [80] or the CrX3

family [75–77], a protocol such as this potentially presents
a practical experimental route to controlling the effects of
magnon decay, allowing full exploration of the non-Hermitian
physics.

Aside from the experimental inference of exceptional
points in magnon spectra using inelastic neutron scattering
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or terahertz spectroscopy, various interesting issues remain
including, for example, the effect of non-Hermitian terms [82]
on magnon transport (such as in magnon Chern insulators) and
the potential for novel measurements of topological physics in
magnonic crystals [40], the role of magnon-phonon coupling
as a separate dissipation mechanism, and the possibility of in-
troducing gain by optically pumping magnons, bypassing the
causality restrictions of interaction-induced non-Hermitian
terms. Another closely related avenue for the realization
of non-Hermitian topology is in lattice vibrations via the
presence of spontaneous phonon decay [83,84]. Another set

of questions relates to physics beyond the approximation of
the multimagnon states as an incoherent bath and possible
interesting quantum effects arising from coherent coupling
between single and multimagnon states.
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