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When magnetic moments are subject to competing or frustrated interactions, continuous degeneracies that are
not protected by any symmetry of the parent Hamiltonian can emerge at the classical (mean-field) level. Such
“accidental” degeneracies are often lifted by both thermal and quantum fluctuations via a mechanism known
as order-by-disorder (ObD). The leading proposal to detect and characterize ObD in real materials, in a way
that quantitatively distinguishes it from standard energetic selection, is to measure a small fluctuation-induced
pseudo-Goldstone gap in the excitation spectrum. While the properties of this gap are known to leading order
in the spin wave interactions, in both the zero-temperature and classical limits, the pseudo-Goldstone (PG) gap
in quantum magnets at finite temperature has yet to be characterized. Using non-linear spin wave theory, we
compute the PG gap to leading order in a 1/𝑆 expansion at low temperature for a variety of frustrated quantum
spin systems. We also develop a formalism to calculate the PG gap in a way that solely uses linear spin-wave
theory, circumventing the need to carry out tedious quantum many-body calculations. We argue that, at leading
order, the PG gap acquires a distinct power-law temperature dependence, proportional to either 𝑇𝑑+1 or 𝑇𝑑/2+1

depending on the gapless dispersion of the PG mode predicted at the mean-field level. Finally, we examine
the implications of these results for the pyrochlore oxide compound Er2Ti2O7, for which there is compelling
evidence of ObD giving rise to the experimentally observed long-range order.

In systems of interacting degrees of freedom, both thermal
and quantum fluctuations typically act to destabilize broken
symmetries and long-range order. In certain condensed matter
systems, these fluctuations can be so pronounced that they
completely suppress order even at absolute zero temperature. A
striking example is liquid helium, which avoids freezing into a
crystalline solid at atmospheric pressure due to strong quantum
zero-point fluctuations [1]. Within the field of magnetism, the
quest for quantum spin liquids—states that lack long-range
magnetic order down to the lowest temperatures—has long been
a central endeavor [2–6]. One preeminent setting for this search
considers highly frustrated magnetic systems where competing
spin-spin interactions produce an exponentially large number
of classically degenerate ground states [7, 8]. This degeneracy
leads to an extensive entropy that can prevent magnetic ordering
down to absolute zero temperature, even in three-dimensional
systems, giving rise to a classical spin liquid [8–10]. Such a
classical perspective has motivated an intense theoretical and
experimental exploration of quantum analogs of such systems.

An intriguing intermediate situation between energetically
stabilized long-range magnetic order and fluctuation-driven
spin liquid states happens in certain models of frustrated spin
systems that possess a sub-exponentially large (in the system
size) manifold of classical ground states. In these systems,
the accidental degeneracies are not protected by global sym-
metries of the spin Hamiltonian but rather emerge from the
specific form of the spin-spin interactions [11]. Although no
unique classical ground state (modulo global symmetries) is
energetically favored at the mean-field level, thermal or quan-
tum fluctuations can lift the degeneracy, stabilizing a subset of
configurations within the manifold of classical ground states
and cause long-range magnetic order—this is the celebrated

𝑣 |𝒌 | →
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Δ(𝑇) ∼ Δ0 + 𝑐𝑇𝑑+1

𝑣 |𝒌 |2 → 𝑣 |𝒌 |2 + Δ
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FIG. 1. Schematic picture depicting the spectrum of a PG modes for
(a) type I with a linear dispersing mode, 𝜖 = 𝑣 |𝒌 |, and (b) type II.
with a quadratic dispersing mode, 𝜖 = 𝑣 |𝒌 |2. In both cases, the mode
acquires a gap Δ via the ObD mechanism, modifying the dispersion.
Quantum fluctuations at zero temperature (𝑇 = 0) generates a gap Δ0
(quantum ObD), which then increases with 𝑇 as a power-law, 𝑇𝑑+1

and 𝑇𝑑/2+1, for type I and type II mode, respectively.

phenomenon of order-by-disorder (ObD) [12–14], a conceptual
cornerstone of frustrated magnetism.

While ObD driven by thermal or quantum fluctuations has
been well-established in an abundant number of theoretical
models of frustrated spin systems [12–48], a long-standing
question is whether ObD is realized in real magnetic materials
and, if so, what experimental signatures can unambiguously
demonstrate its role in stabilizing the observed long-range or-
der. The conventional approach to experimentally confirming
ObD has been rather indirect, proceeding by constructing a
theoretical model of the material, demonstrating ObD within
that framework, and then experimentally verifying a maximum
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number of the model’s predictions against the material prop-
erties [39, 49–53]. This program for identifying ObD in real
materials raises two important concerns. Firstly, it presents
significant methodological challenges, as establishing detailed
quantitative agreement between theory and experiment where
ObD is operating necessitates intricate high-order quantum
many-body perturbation theory calculations. Secondly, even in
cases where it can be successfully executed, the above program
leaves one wanting for a deeper understanding of ObD, such
as asking whether there may exist more direct experimental
evidence for ObD in a material that do not rely on a back and
forth “dialogue” between theoretical calculations and the fitting
of experimental data.

Two recent developments [43, 54] have begun address-
ing the above two issues by considering the formation of
an ObD-induced energy gap Δ in the otherwise gapless pseudo-
Goldstone (PG) mode (i.e. spin-wave excitations) predicted
by mean-field theory (see Fig. 1). The first development is the
observation that, for a given Hamiltonian model for a quantum
spin-𝑆 system, the curvatures of classical plus quantum zero-
point energies computed at 𝑂 (𝑆) are sufficient to determine
the PG zero-temperature gap Δ0 exactly to 𝑂 (𝑆0), without the
necessity of performing involved self-energy calculations due
to magnon-magnon interactions [43]. The second develop-
ment is the observation that frustrated classical spin systems,
displaying thermal but no quantum ObD, feature a temperature-
dependent gap generated by magnon interactions scaling like
Δ(𝑇) ∝ 𝑇 𝜇 with 𝜇 = 1

2 (𝜇 = 1) for linearly dispersing (quadrat-
ically dispersing) PG modes [54]. These two results beg for
two important follow-up questions: “What is the expected
temperature-dependence of Δ(𝑇) for a quantum treatment of
models with linearly or quadratically dispersing PG modes?”
and “Can one compute such temperature dependence through
a generalization of the framework of Ref. [43] involving cur-
vatures of the free energy density using only linear spin-wave
theory?” In this paper, we answer the second question in
the affirmative, and show that the above exponent 𝜇 become
𝑑 + 1 (linearly dispersing PG mode, 𝜖𝒌 ∝ |𝒌 |) and 𝑑/2 + 1
(quadratically dispersing PG mode, 𝜖𝒌 ∝ |𝒌 |2), respectively
(see Fig. 1). In short, we have (i) identified a “smoking-gun”
experimental evidence for ObD in a spin system in the form of
two “universal” types of ObD-generated temperature dependent
gaps Δ(𝑇) to the PG mode, and (ii) propose a straightforward
methodology to compute Δ(𝑇) that is unburdened from com-
plex finite-temperature quantum-many body calculations.

Spin-wave theory—To investigate the thermal properties of
the fluctuation-induced gap, we use the formalism of spin-wave
theory, extending the calculations of Ref. [43] to finite tem-
perature to incorporate thermal fluctuation effects. Formally,
spin operators are mapped to Holstein-Primakoff bosons [55]
and subsequently expanded in powers of 1/𝑆, where 𝑆 is the
spin quantum number [56]. Substituting this expansion into
the Hamiltonian and keeping only the bilinear terms results in

the linear spin-wave Hamiltonian

𝐻2 =
∑︁
𝒌

∑︁
𝛼𝛼′

[
𝐴𝛼𝛼′
𝒌 𝑎†

𝒌 ,𝛼
𝑎𝒌 ,𝛼′ + 1

2

(
𝐵𝛼𝛼′
𝒌 𝑎†

𝒌 ,𝛼
𝑎†−𝒌 ,𝛼′ + H.c.

)]
,

(1)
where 𝑎𝒌 ,𝛼 is a Holstein-Primakoff boson with wavevector 𝒌 on
sublattice 𝛼 of the magnetic unit cell, and the coefficients 𝐴𝛼𝛼′

𝒌

and 𝐵𝛼𝛼′
𝒌

depend on both the magnetic exchange interactions
and the specific classical ground state configuration(s) consid-
ered [56]. The quasiparticle dispersion is then determined by
the eigenvalues of the (non-Hermitian) Bogoliubov-de Gennes
matrix [57]

𝝈3𝑴𝒌 = 𝝈3

(
𝑨𝒌 𝑩𝒌

𝑩†
𝒌

𝑨⊺−𝒌

)
, (2)

where 𝝈3 = diag(I,−I) is a Pauli matrix acting on the particle-
hole degree of freedom.

Beyond linear spin-wave theory, the quasiparticle energies
correspond to poles of the (retarded) single-magnon propagator

𝑮R (𝒌, 𝜔) =
[
𝜔 + 𝑖0+ − 𝝈3

(
𝑆𝑴𝒌 + 𝚺R (𝒌, 𝜔)

)]−1
𝝈3, (3)

where 𝚺R (𝒌, 𝜔) is the retarded (thermal) self-energy matrix.
We note that the matrix in Eq. (3) has both sublattice indices
and indices that track the normal and anomalous components
[43, 57, 58]. We may then include leading order effects of spin-
wave interactions perturbatively by computing the self-energy
to 𝑂 (𝑆0) in the 1/𝑆 expansion [59]. This contribution to the
self-energy can be represented as the sum of three one-particle
irreducible diagrams [60]

𝚺R = + + , (4)

constructed from both three- and four-magnon interaction ver-
tices. In general, these diagrams carry a conserved wavevector
and frequency (𝒌, 𝜔), and sublattice indices, and include both
normal and anomalous propagators [56, 58]. Note that in order
to incorporate thermal effects into the self-energy, we must
take the limit 1/𝑆 → 0 while keeping 𝑇/𝑆 fixed [56].

Next, we consider a gapless PG mode, which falls into one
of two categories depending on its spectral properties, referred
to as “type I” and “type II” [43, 61]. Throughout this paper, we
assume that this mode is located at the Brillouin zone center
(𝒌 = 0), although this assumption can be relaxed in general.
At the level of linear spin-wave theory, a type I PG mode has
linear dispersion, 𝜖𝒌 ∝ |𝒌 |, while the type II mode disperses
quadratically, 𝜖𝒌 ∝ |𝒌 |2, as depicted in Fig. 1. For a type I
mode, there is a single linearly independent eigenvector 𝑽0
corresponding to a zero eigenvalue. In this case, the PG gap
appears at 𝑂 (𝑆1/2) as

Δ(𝑇) = 𝑆1/2
√︃
𝑽†

0
[
𝚺R

0 (𝑇)𝝈3𝑴0 + 𝑴0𝝈3𝚺R
0 (𝑇)

]
𝑽0, (5)
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where 𝚺R
0 (𝑇) ≡ 𝚺R (0, 0) is introduced to make the temperature

dependence of the self-energy explicit. For a type II mode,
there are two linearly independent eigenvectors, 𝑽0 and 𝑾0,
corresponding to a zero eigenvalue. In this case, the PG gap
appears at 𝑂 (𝑆0) as

Δ(𝑇) = 𝑆0
√︂(

𝑽†
0𝚺

R
0 (𝑇)𝑽0

)2
−

���𝑽†
0𝚺

R
0 (𝑇)𝑾0

���2. (6)

We refer the interested reader to the Supplementary Material of
Ref. [43] for a detailed derivation of Eqs. (5,6). With the PG
gap, the low energy dispersion now takes the form

√︁
𝑣2 |𝒌 |2 + Δ2

for a type I mode and 𝑣 |𝒌 |2 + Δ for a type II mode, as depicted
in Fig. 1. The gap then acquires a temperature dependence
Δ → Δ(𝑇) from the self-energy 𝚺R (𝒌, 𝜔) in Eqs. (5,6).

Curvature formula—In previous work characterizing the PG
gap in both the quantum zero-temperature [43] and classical
finite-temperature [54] scenarios, it was argued that the gap
at leading order can be calculated exactly by computing the
curvature of the linear spin-wave free energy. Here, we develop
a similar formalism analogous to Refs. [43, 54] that allows us to
calculate the PG gap at 𝑂 (𝑆0) using only the linear spin-wave
energy eigenvalues at 𝑂 (𝑆), circumventing the need to carry
out tedious calculations of the magnon self-energy.

The derivation of such a formula resembles the zero-
temperature proof in Ref. [43], which can be generalized
to finite temperature. Consider a local reference frame
(𝒆𝑥,𝛼, 𝒆𝑦,𝛼, 𝒆0,𝛼) where 𝒆0,𝛼 is the classical ordering direc-
tion, 𝒆𝑦,𝛼 is the soft mode direction, and 𝒆𝑥,𝛼 = 𝒆𝑦,𝛼 × 𝒆0,𝛼.
We may parametrize the soft mode by an angle 𝜙 (along
with its canonically conjugate pair 𝜃) and define the rotated
Hamiltonian H(𝜙, 𝜃) = 𝑈 (𝜙, 𝜃)†𝐻𝑈 (𝜙, 𝜃) where𝑈 (𝜙, 𝜃) is a
unitary transformation that generates the soft modes of the spin
configurations. Formally, this modifies the local frame as

©­«
𝒆𝑥,𝛼 (𝜙, 𝜃)
𝒆𝑦,𝛼 (𝜙, 𝜃)
𝒆0,𝛼 (𝜙, 𝜃)

ª®¬
= ©­«

cos 𝜙 − sin 𝜙 sin 𝜃 sin 𝜙 cos 𝜃
0 cos 𝜃 sin 𝜃

− sin 𝜙 − cos 𝜙 sin 𝜃 cos 𝜙 cos 𝜃

ª®¬
©­«
𝒆𝑥,𝛼
𝒆𝑦,𝛼
𝒆0,𝛼

ª®¬
.

(7)
We subsequently expand the rotated Hamiltonian to 𝑂 (𝑆) to
obtain

H(𝜙, 𝜃) = 𝑆(𝑆 + 1)𝑁𝜖cl (𝜃) + 𝑆𝑁𝜖qu (𝜙, 𝜃)
+ 𝑆

∑︁
𝒌 ,𝛼

𝜖𝒌 ,𝛼 (𝜙, 𝜃)𝑏†𝒌 ,𝛼𝑏𝒌 ,𝛼, (8)

where 𝑆2𝜖cl is the classical ground state energy (per spin) and
𝑆(𝜖cl + 𝜖qu) is the quantum zero-point energy (per spin), and
𝑆𝜖𝒌 ,𝛼 is the linear spin-wave dispersion [56]. Equation (8)
effectively parametrizes the magnons with respect to the zero-
mode subspace. For a type I mode, only 𝜙 corresponds to a
soft mode at the classical level, so the classical configuration
energy depends on 𝜃. When 𝜃 ≠ 0, the spin configuration is
classically unstable, implying that the zero-point and spin-wave
energies are not well-defined. For a type II mode, both angles
are classically soft, so 𝜖cl (𝜃) = 𝜖cl (0). In general, the free

energy per spin at 𝑂 (𝑆) is

𝑓 (𝜙, 𝜃) = 𝑆(𝑆 + 1)𝜖cl (𝜃) + 𝑆𝜖qu (𝜙, 𝜃)

+ 𝑘B𝑇

𝑁

∑︁
𝒌 ,𝛼

ln
(
1 − 𝑒−𝑆𝜖𝒌 ,𝛼 (𝜙,𝜃 )/𝑘B𝑇

)
. (9)

We may now establish an equivalence between the effective
Hamiltonian to 𝑂 (𝑆1) in Eq. (8) and the PG gap using a sum
rule for the magnon spectral function

1
𝑆𝑁

〈(
𝜕2H
𝜕𝜆𝜇𝜕𝜆𝜈

)
0

〉
= 𝑼†

𝜇𝝈3

[∫ ∞

−∞
d𝜔𝜔 A(0, 𝜔)

]
𝝈3𝑼𝜈 ,

(10)
where (· · · )0 is used to denote evaluation at 𝜙 = 𝜃 = 0,
𝜇, 𝜈 = 𝜙, 𝜃 label the two angles, 𝜆𝜙 = 𝜙, 𝜆𝜃 = 𝜃, and
A(0, 𝜔) ≡ 1

2𝑖
(
𝑮R (0, 𝜔) − 𝑮R (0, 𝜔)†) is the single-magnon

spectral function evaluated at temperature 𝑇 . The vectors 𝑼𝜇

are defined as 𝑼𝜙 ≡ 𝑖(𝑾0 − 𝑽0)/
√

2, 𝑼𝜃 ≡ (𝑾0 + 𝑽0)/
√

2,
where 𝑽0 and 𝑾0 are vectors that span the zero-mode subspace
in linear spin wave theory [43, 56]. Here, ⟨· · · ⟩ denotes the
thermal expectation value at a fixed temperature 𝑇 .

The right-hand side of Eq. (10) is related to the PG gap
at 𝑂 (𝑆0), while the left-hand side is related to curvature of
the linear-spin wave energies at 𝑂 (𝑆) and 𝑂 (𝑆2) [56], paving
the way for bypassing the need of performing self-energy
calculations. In particular, the thermal gap at leading order is
given by the formula

Δ(𝑇) =


𝑆1/2

√︂(
𝜕2 𝜖cl
𝜕𝜃2

)
0
𝑔𝜙𝜙 (type I)

𝑆0
√︃
𝑔𝜙𝜙𝑔𝜃 𝜃 − 𝑔2

𝜙𝜃 (type II),
(11)

where

𝑔𝜇𝜈 (𝑇) ≡ 1
𝑆

[(
𝜕2 𝑓

𝜕𝜆𝜇𝜕𝜆𝜈

)
0
+ 𝐾𝜇𝜈

]
, (12)

and

𝐾𝜇𝜈 ≡ 𝑆2

4𝑘B𝑇𝑁

∑︁
𝒌 ,𝛼

(
𝜕𝜖𝒌 ,𝛼
𝜕𝜆𝜇

)
0

(
𝜕𝜖𝒌 ,𝛼
𝜕𝜆𝜈

)
0

csch2

(
𝑆𝜖𝒌 ,𝛼
2𝑘B𝑇

)
.

(13)
As 𝑇 → 0, 𝑆2

𝑘B𝑇
csch2

(
𝑆𝜖

𝒌 ,𝛼

2𝑘B𝑇

)
→ 4𝑘B𝑇

𝜖 2
𝒌 ,𝛼

for small 𝜖𝒌 ,𝛼, while

csch2
(
𝑆𝜖

𝒌 ,𝛼

2𝑘B𝑇

)
→ 0 exponentially otherwise. Therefore 𝐾𝜇𝜈

vanishes in the zero temperature limit. At high temperature,
𝐾𝜇𝜈 ∝ 𝑇 , so this term does not affect the scaling proposed in
Ref. [62] for the classical PG gap. Note that since 𝑇/𝑆 is kept
fixed in perturbation theory, 𝑔𝜇𝜈 is formally of𝑂 (𝑆0) whenever
both 𝜇 and 𝜈 correspond to soft modes. The derivatives in
Eq. (13) can be readily calculated using the Hellmann-Feynman
theorem [63]. More details regarding the proof of Eq. (11) and
the calculation of Eq. (13) are provided in the Supplemental
Material [56]. The formula for the PG gap in Eq. (11) is a
finite-temperature generalization of the curvature formula in
Ref. [43].
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Δ(𝑇) − Δ0 ∝ 𝑇4

Δ(𝑇) − Δ0 ∝ 𝑇5/2

(a)

(b)

FIG. 2. PG gap for the Heisenberg-compass model Eq. (14) on a
simple cubic lattice with (a) 𝜉 = 0 (type I mode) and (b) 𝜉 = 1 (type
II mode). In both cases, we use 𝐾/𝐽 = 0.5 and 𝑆 = 1/2.

Models— As a first example, we consider a ferromagnetic
Heisenberg-compass model on the simple cubic lattice, defined
by the Hamiltonian

𝐻 = −
∑︁
𝒓

[
𝐽

∑︁
𝜹=𝒙,𝒚,𝒛

𝑺𝒓 · 𝑺𝒓+𝜹

+ 𝐾
(
𝑆𝑥𝒓 𝑆

𝑥
𝒓+𝒙 + 𝑆𝑦𝒓 𝑆𝑦𝒓+𝒚 + 𝜉𝑆𝑧𝒓 𝑆𝑧𝒓+𝒛

)]
, (14)

where 𝑺𝒓 is a spin-𝑆 operator at site 𝒓 and 𝜹 = 𝒙, 𝒚, 𝒛 are the
nearest-neighbor bonds, and 𝐽, 𝐾 > 0. For 𝐾 = 0, Eq. (14)
is simply the Heisenberg ferromagnet, with collinear ground
states related by a global 𝑆𝑈 (2) symmetry. When 𝐾 > 0, there
is no longer an exact continuous symmetry. In the following,
we consider the cases of 𝜉 = 0 and 𝜉 = 1.

When 𝜉 = 0, the classical ground state corresponds to a
collinear ferromagnet with magnetization along any direction
in the 𝒙̂ − 𝒚̂ plane. In contrast to the (𝐾 = 0) Heisenberg model,
this degeneracy is accidental. This accidental𝑈 (1) degeneracy
is lifted by quantum and thermal fluctuations to select one of
four magnetization directions along the ±𝒙̂,±𝒚̂ directions. In
this case, the associated PG mode is of type I.

When 𝜉 = 1, the classical ground state is a collinear fer-
romagnet with arbitrary magnetization direction, signaling
an accidental 𝑂 (3) degeneracy. The degeneracy is lifted by
fluctuations to select one of six magnetization directions along
the cubic axes ±𝒙̂,±𝒚̂,±𝒛. In this latter case, the associated
PG mode is of type II [56].

The PG gap at 𝑂 (𝑆0) for Eq. (14) is depicted in Fig. 2 over
a range of temperature in the case of both a type I (𝜉 = 0)
and type II (𝜉 = 1) mode. We find an excellent quantitative
agreement between the gap calculated using the curvature
formula in Eq. (11) and the self-energy calculation of Eqs. (5,6).
We emphasize that these two calculations are carried out
independently of one another, and there are no free parameters
introduced to make them agree. We note that the gap calculation
is relatively simple for this model, as the lack of three-magnon
interactions implies that 𝐾𝜇𝜈 = 0 in Eq. (12) [56]. In both
cases, there is a zero-temperature contribution due to the gap
Δ0 induced by quantum ObD (i.e. zero-point fluctuations) [43].
At low-temperature, the leading thermal contribution to the gap
is proportional to 𝑇4 for a type I mode and 𝑇5/2 for a type II
mode.

Next, we discuss an application to the XY pyrochlore antifer-
romagnet Er2Ti2O7, which is arguably one of the best material
candidates for ObD [39, 49, 64]. The spin-orbit entangled
electronic states of Er3+ are subject to a highly anisotropic
crystal-field producing a ground doublet described using an
effective (pseudo) spin- 1

2 with the Er3+−E3+ interactions de-
scribed by an anisotropic exchange-like model [39, 65, 66]

𝐻 =
∑︁
⟨𝑖, 𝑗 ⟩

[
𝐽𝑧𝑧𝑆

𝑧
𝑖 𝑆

𝑧
𝑗 − 𝐽±

(
𝑆+𝑖 𝑆

−
𝑗 + 𝑆−𝑖 𝑆+𝑗

)

+ 𝐽±±
(
𝛾𝑖 𝑗𝑆

+
𝑖 𝑆

+
𝑗 + H.c.

)
+ 𝐽𝑧±

(
𝜁𝑖 𝑗

[
𝑆𝑧𝑖 𝑆

+
𝑗 + 𝑆+𝑖 𝑆𝑧𝑗

]
+ H.c.

)]
. (15)

Here ⟨𝑖, 𝑗⟩ denotes the sum over nearest-neighbor bonds, and
𝛾𝑖 𝑗 , 𝜁𝑖 𝑗 are bond-dependent phase factors uniquely determined
by the lattice geometry and symmetries of the single-ion wave-
functions [66]. The four nearest-neighbour 𝐽𝑢𝑣 couplings in
Eq. (15) have been fitted to reproduce inelastic neutron scat-
tering data on Er2Ti2O7 [39]. The classical ground states are
non-collinear antiferromagnetic configurations of spins lying
in the local XY planes perpendicular to the local ⟨111⟩ cubic
axes of the pyrochlore lattice [66], parametrized by an acci-
dental 𝑈 (1) degeneracy [23, 67]. Below 𝑇c ≈ 1.17 K [35],
ObD selects one of the six “𝜓2” states, leading to a type I PG
mode [39, 66].

The PG gap for Er2Ti2O7 is depicted in Fig. 3 over a range
of temperatures up to 𝑇 = 700mK. We find a zero-temperature
contribution to the gap of Δ0 = 31.1 𝜇eV, consistent with
the gap calculated in Ref. [43], and somewhat smaller than
the experimentally determined values of 43 𝜇eV [68] and
53 𝜇eV [49]. At low-temperature, the gap scales proportional
to 𝑇4, similar to the type I mode in Fig. 2(a).

Discussion—The curvature formula in Eq. (11) directly
implies that the PG gap satisfies a universal scaling relation
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Δ(𝑇) − Δ0 ∝ 𝑇4

FIG. 3. PG gap for the pyrochlore antiferromagnet Er2Ti2O7, cal-
culated using the exchange couplings from Ref. [39]. The classical
ground states are parametrized by an accidental 𝑈 (1) degeneracy,
corresponding to a type I mode. The gap is plotted up to 𝑇 = 700 mK.

as a function of temperature. By noting that the spin-wave
dispersion is linear (𝜖𝒌 ∼ |𝒌 |) for a type I mode and quadratic
(𝜖𝒌 ∼ |𝒌 |2) for a type II mode, a straightforward dimensional
analysis of Eq. (12) implies that the leading thermal correction
generically satisfies

Δ(𝑇) − Δ0 ∝
{
𝑆1/2 (

𝑇
𝑆

)𝑑+1 (type I)
𝑆0 (

𝑇
𝑆

)𝑑/2+1 (type II),
(16)

where 𝑑 is the spatial dimension, and is consistent with the
results in Figs. 2 and 3. We propose that this universal
temperature-dependence of the gap increasing with tempera-
ture at 0 < 𝑇 ≪ 𝑇c, where 𝑇c is the critical temperature, can
serve as experimental evidence for ObD in a spin systems that
does not rely on fitting exchange couplings to a microscopic
model.

The ability to calculate the PG gap using only linear spin-
wave theory [Eq. (11)] provides a substantial simplification
when compared to the tedious calculation of of the magnon
self-energy, particularly in cases with non-collinear order. In
addition, the presence of a gapless mode in the linear spin-
wave spectrum renders a direct calculation of the self-energy
infrared divergent when 𝑑 < 3 [69], drawing an analogy
to the Hohenberg–Mermin–Wagner theorem [70–73]. To
circumvent this divergence, one could employ a more involved,
self-consistent approach to calculate the self-energy, such
as those described in Refs. [54, 74–77]. Alternatively, the
curvature formula for the gap in Eq. (11) is well-defined for
𝑑 < 3, avoiding the need to regularize an infrared divergence
in the first place.

Our observation that the PG gap obeys a universal,
temperature-dependent scaling relation can serve as a frame-
work to diagnose ObD in real materials in a way that is in-
dependent of the microscopic spin Hamiltonian describing
the material. Leading candidates where ObD may be present

include the compounds Er2Ti2O7 [49, 64, 68], CoTiO3 [51],
Sr2Cu3O4Cl2 [52], and Fe2Ca3(GeO4)3 [53]. It remains un-
clear, however, whether the small gap measured in these ma-
terials is truly a PG gap, as it is possible that such a gap can
arise from further neighbor exchange, anisotropic spin inter-
actions or higher-order spin interactions such as a biquadratic
interaction. The experimental observation of a temperature-
dependent gap such as in Eq. (16) would aid in resolving these
questions. The experimental details of how to resolve and
characterize small thermal corrections to the PG gap remain
an open problem. For the pyrochlore material Er2Ti2O7, the
thermal correction to the gap up to 𝑇 = 700 mK is predicted to
be Δ(700 mK) −Δ0 = 2.9 𝜇eV (see Fig. 3). This will likely be
challenging to measuring experimentally with high resolution
in temperature as this energy scale is at the lower end of what
is currently accessible using high-resolution inelastic neutron
backscattering measurements [78]. In addition, there will be
a crossover temperature, 𝑇∗, where thermal fluctuations and
the progressive restoration of symmetry as 𝑇𝑐 is approached
from below, will take over and make Δ(𝑇) begin decreasing.
The treatment of corrections to Δ(𝑇) arising from pre-critical
fluctuations is beyond the scope of this work, as we focus only
on Δ(𝑇) in the limit 𝑇 ≪ 𝑇c. Nonetheless, our work provides
a robust theoretical framework to guide future experimental
efforts in this exciting field of research.

Note—In the process of finalizing this manuscript, we became
aware of a very recent preprint [79] that reports calculations of
the PG gap at nonzero temperature similar to those presented
here.
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I. DETAILS OF SPIN WAVE THEORY

A. Holstein-Primakoff expansion

We consider a general bilinear spin model

𝐻 =
1
2

∑︁
𝒓𝒓′

∑︁
𝛼𝛼′

𝑺⊺𝒓,𝛼 𝑱𝒓−𝒓′,𝛼𝛼′𝑺𝒓′,𝛼′ , (S1)

where 𝑟 represents the position of a unit cell and 𝛼 is a sublattice index. The associated spin wave

theory can be obtained by expressing the spin-operators as Holstein-Primakoff bosons,

𝑺𝒓,𝛼 =
(
𝑆 − 𝑛𝒓,𝛼

)
𝒆𝛼,0 +

√
𝑆

[(
1 − 𝑛𝒓,𝛼

2𝑆

)1/2
𝑎𝒓,𝛼𝒆𝛼,− + 𝑎†𝒓𝛼

(
1 − 𝑛𝒓,𝛼

2𝑆

)1/2
𝒆𝛼,+

]
, (S2)

where 𝑛𝒓,𝛼 = 𝑎†𝒓,𝛼𝑎𝒓,𝛼 and the vectors 𝒆𝛼,± ≡ (𝒆𝛼,𝑥 ± 𝑖𝒆𝛼,𝑦)/
√

2, 𝒆𝛼,0 define a local reference frame

with respect to the classical ordering direction 𝒆𝛼,0 (i.e. 𝒆𝛼,𝑥 × 𝒆𝛼,𝑦 = 𝒆𝛼,0). We define the (Fourier

transform of the) exchange interactions in this local frame as

J 𝜇𝜈
𝒌,𝛼𝛽

≡
∑︁
𝜹

𝑒𝑖𝒌·𝜹𝒆⊺𝛼,𝜇𝑱𝜹,𝛼𝛽𝒆𝛽,𝜈, (S3)

where the sum is taken over all bonds 𝜹 between a site on sublattice 𝛼 to a site on sublattice 𝛽.

Expanding Eq. (S2) in powers of 1/𝑆 about an ordered state (typically a classical ground state),

leads to the series representation 𝐻 = 𝑆2 ∑∞
𝑛=0 𝑆

−𝑛/2𝐻𝑛. The magnon interactions to O(𝑆0) are

given by

𝐻0 = 𝑁

(
1 + 1

𝑆

)
𝜖cl, (S4)

𝐻1 =
√︁
𝑁𝑐

∑︁
𝛼

[
𝐿𝛼𝑎†0,𝛼 + 𝐿

𝛼
𝑎0,𝛼

]
, (S5)

𝐻2 =
1
2

∑︁
𝒌

∑︁
𝛼𝛽

[
𝐴
𝛼𝛽
𝒌
𝑎†
𝒌,𝛼
𝑎𝒌,𝛽 + 𝐴𝛽𝛼−𝒌𝑎−𝒌,𝛼𝑎

†
−𝒌,𝛽 + 𝐵

𝛼𝛽
𝒌
𝑎†
𝒌,𝛼
𝑎†−𝒌,𝛽 + 𝐵

𝛼𝛽
𝒌 𝑎−𝒌,𝛽𝑎𝒌,𝛼

]
, (S6)

𝐻3 =
1

2!
√
𝑁𝑐

∑︁
𝒌𝒒

∑︁
𝛼𝛽𝜇

[
𝑇
𝛼𝛽𝜇
𝒌,𝒒

𝑎†
𝒌,𝛼
𝑎†𝒒,𝛽𝑎𝒌+𝒒,𝜇 + 𝑇

𝛼𝛽𝜇
𝒌,𝒒 𝑎

†
𝒌+𝒒,𝜇𝑎𝒒,𝛽𝑎𝒌,𝛼

]
, (S7)

𝐻4 =
1
𝑁𝑐

∑︁
𝒌𝒒𝑸

∑︁
𝛼𝛽𝜇𝜈

[
1

(2!)2𝑉
𝛼𝛽𝜇𝜈
𝒌,𝒒,𝑸

𝑎†
𝒌+𝑸,𝛼𝑎

†
𝒒−𝑸,𝛽𝑎𝒒,𝜇𝑎𝒌,𝜈 +

1
3!

(
𝐷
𝛼𝛽𝜇𝜈
𝒌,𝒒,𝑸

𝑎†
𝒌,𝛼
𝑎†𝒒,𝛽𝑎

†
𝑸,𝜇
𝑎𝒌+𝒒+𝑸,𝜈 + H.c.

)]
,

(S8)

2
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where 𝑁 = 𝑁𝑐𝑁𝑠 is the number of spins in a system with 𝑁𝑐 primitive unit cells, 𝑁𝑆2𝜖cl is the

energy of the classical configuration, and the symmetrized interaction vertices are

𝜖cl =
1

2𝑁𝑠

∑︁
𝛼𝛽

J 00
0,𝛼𝛽, (S9)

𝐿𝛼 =
∑︁
𝛽

J+0
0,𝛼𝛽, (S10)

𝐴
𝛼𝛽
𝒌

= J+−
𝒌,𝛼𝛽 − 𝛿𝛼𝛽

∑︁
𝜇

J 00
0,𝛼𝜇, (S11)

𝐵
𝛼𝛽
𝒌

= J++
𝒌,𝛼𝛽, (S12)

𝑇
𝛼𝛽𝜇
𝒌𝒒

= −𝛿𝛽𝜇J+0
𝒌,𝛼𝛽 − 𝛿𝛼𝜇J+0

𝒒,𝛽𝛼, (S13)

𝑉
𝛼𝛽𝜇𝜈
𝒌,𝒒,𝑸

=
1
2
𝛿𝛼𝜇𝛿𝛽𝜈

(
J 00
𝒌−𝒒+𝑸,𝛼𝛽 + J 00

−𝒌+𝒒−𝑸,𝛽𝛼
)
+ 1

2
𝛿𝛼𝜈𝛿𝛽𝜇

(
+J 00

𝑸,𝛼𝛽 + J 00
−𝑸,𝛽𝛼

)
− 1

2

(
𝛿𝛽𝜇𝛿𝛽𝜈J+−

𝒌+𝑸,𝛼𝛽 + 𝛿𝛼𝜇𝛿𝛼𝜈J+−
𝒒−𝑸,𝛽𝛼 + 𝛿𝛼𝛽𝛿𝛼𝜈J+−

𝒒,𝛼𝜇 + 𝛿𝛼𝛽𝛿𝛼𝜇J+−
𝒌,𝛼𝜈

)
, (S14)

𝐷
𝛼𝛽𝜇𝜈
𝒌,𝒒,𝑸

= −1
2

(
𝛿𝜇𝛽𝛿𝜈𝛽J++

𝒌,𝛼𝛽 + 𝛿𝛼𝜇𝛿𝛼𝜈J++
𝒒,𝛽𝛼 + 𝛿𝛼𝛽𝛿𝛼𝜈J++

𝑸,𝜇𝛼

)
. (S15)

The one-magnon vertex 𝐿𝛼 vanishes so long as the classical configuration energy is at a local

minimum.

B. Linear spin wave theory

The linear spin wave Hamiltonian results from truncating the Holstein-Primakoff expansion at

𝑂 (𝑆) about a configuration corresponding to a classical ground state

𝐻 = 𝑁𝑆(𝑆 + 1)𝜖cl + 𝑆
∑︁
𝒌

∑︁
𝛼𝛼′

[
𝐴𝛼𝛼

′
𝒌 𝑎†

𝒌,𝛼
𝑎𝒌,𝛼′ +

1
2

(
𝐵𝛼𝛼

′
𝒌 𝑎†

𝒌,𝛼
𝑎†−𝒌,𝛼′ + H.c.

)]
+𝑂 (𝑆1/2). (S16)

The linear spin wave energies and corresponding wavefunctions are determined by diagonalizing

the 2𝑁𝑠 × 2𝑁𝑠 boson Bogoliubov-de Gennes matrix [1]

𝝈3𝑴𝒌 ≡ ©­
«
𝑨𝒌 𝑩𝒌

−𝑩†
𝒌
−𝑨⊺

−𝒌

ª®
¬
, (S17)

where 𝝈3 = diag(I,−I) is a block Pauli matrix. We may diagonalize Eq. (S17) by defining a new

set of bosons 𝑏𝒌,𝛼, such that

©­«
𝒂𝒌

𝒂†−𝒌

ª®¬
= T𝒌

©­«
𝒃𝒌

𝒃†−𝒌

ª®¬
. (S18)

3
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By requiring
[
𝑏𝒌,𝛼, 𝑏𝒌,𝛽

]
= 0 and

[
𝑏𝒌,𝛼, 𝑏

†
𝒌,𝛽

]
= 𝛿𝛼𝛽, we obtain the para-unitary condition [2]

T−1
𝒌 = 𝝈3T†

𝒌
𝝈3. (S19)

The eigenvectors of Eq. (S17) come in pairs 𝑽𝒌,𝛼 and 𝑾𝒌,𝛼 = 𝝈1𝑽−𝒌,𝛼 [3], with eigenvalues ±𝜖±𝒌,𝛼,

and make up the columns of the transformation matrix, i.e.

T𝒌 =

©­­­­«

| | | |
𝑽𝒌,1 · · · 𝑽𝒌,𝑁𝑐 𝑾𝒌,1 · · · 𝑾𝒌,𝑁𝑐

| | | |

ª®®®®¬
. (S20)

Using Eq. (S19), the eigenvectors can be normalized to satisfy the para-orthogonality conditions

𝑽†
𝒌,𝛼

𝝈3𝑽𝒌,𝛽 = +𝛿𝛼𝛽, (S21)

𝑾†
𝒌,𝛼

𝝈3𝑾𝒌,𝛽 = −𝛿𝛼𝛽, (S22)

𝑽†
𝒌,𝛼

𝝈3𝑾𝒌,𝛽 = 0. (S23)

The linear spin wave Hamiltonian then takes the diagonal form

𝐻 = 𝑁𝑆(𝑆 + 1)𝜖cl + 𝑁𝑆𝜖qu + 𝑆2
∑︁
𝒌

∑︁
𝛼

𝜖𝒌,𝛼𝑏
†
𝒌,𝛼
𝑏𝒌,𝛼 +𝑂 (𝑆1/2), (S24)

where the quantum zero-point energy (per spin) is

𝑆𝜖qu ≡ 𝑆

2𝑁

∑︁
𝒌

∑︁
𝛼

𝜖𝒌,𝛼 . (S25)

We may subsequently calculate the free energy (per spin) to 𝑂 (𝑆) at temperature 𝑇 as

𝑓 (𝑇) = 𝑆(𝑆 + 1)𝜖cl + 𝑆𝜖qu + 𝑘B𝑇

𝑁

∑︁
𝒌

∑︁
𝛼

ln
(
1 − 𝑒−𝑆𝜖𝒌 ,𝛼/𝑘B𝑇

)
+𝑂 (𝑆1/2). (S26)

Next, we discuss the circumstance of interest, where the linear spin wave spectrum contains zero

modes. This implies that the matrix 𝝈3𝑴𝒌 is positive semi-definite. We assume, without loss of

generality, that there is a single zero mode at the Brillouin zone center (𝒌 = 0). This mode can be

classified based on the spectral properties of 𝑴0 ≡ 𝑴0. In particular, 𝑴0 has either one or two

linearly independent eigenvectors corresponding to the zero mode, which we refer to as type I and

type II respectively. We define 𝑽0 and 𝑾0 to be the vectors that span the zero mode subspace, while

simultaneously satisfying the normalization conditions Eqs. (S21-S23). The projection of 𝑴0 into

4
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the zero mode subspace is then given by [4]

©­«
𝑽†

0 𝑴0𝑽0 𝑽†
0 𝑴0𝑾0

𝑾†
0 𝑴0𝑽0 𝑾†

0 𝑴0𝑾0

ª®¬
=




𝑽†
0 𝑴0𝑽0

©­­«
1 1

1 1

ª®®¬
(type I)

©­­«
0 0

0 0

ª®®¬
(type II)

. (S27)

A more detailed treatment of non-interacting bosons with zero modes can be found in Refs. [1, 4].

C. Non-linear spin wave theory at finite temperature

To incorporate effects of spin wave interactions at leading order in 1/𝑆 and at finite temperature,

we use the imaginary time formalism. To this effect, we assume the 𝑂 (𝑆) Hamiltonian in Eq. (S16)

is solvable, and treat the three- and four-body interactions perturbatively to 𝑂 (𝑆0) [5]. We are

interested in the single-magnon spectrum, encoded in the thermal Green’s functions

G−+
𝛼𝛽 (𝒌, 𝑖𝜔𝑛) =

∫ (𝑘B𝑇)−1

0
d𝜏 𝑒𝑖𝜔𝑛𝜏

〈
T𝑎𝒌,𝛼 (𝜏)𝑎†𝒌,𝛽 (0)

〉
, (S28)

G+−
𝛼𝛽 (𝒌, 𝑖𝜔𝑛) =

∫ (𝑘B𝑇)−1

0
d𝜏 𝑒𝑖𝜔𝑛𝜏

〈
T𝑎†−𝒌,𝛼 (𝜏)𝑎−𝒌,𝛽 (0)

〉
, (S29)

G++
𝛼𝛽 (𝒌, 𝑖𝜔𝑛) =

∫ (𝑘B𝑇)−1

0
d𝜏 𝑒𝑖𝜔𝑛𝜏

〈
T𝑎†−𝒌,𝛼 (𝜏)𝑎

†
𝒌,𝛽

(0)
〉
, (S30)

G−−
𝛼𝛽 (𝒌, 𝑖𝜔𝑛) =

∫ (𝑘B𝑇)−1

0
d𝜏 𝑒𝑖𝜔𝑛𝜏

〈
T𝑎𝒌,𝛼 (𝜏)𝑎−𝒌,𝛽 (0)

〉
, (S31)

where 𝛼, 𝛽 label the sublattice structure, 𝜔𝑛 = 2𝜋𝑛
𝑘B𝑇

is a bosonic Matsubara frequency, T is the

(imaginary) time-ordering operator [6], ⟨· · · ⟩ denotes the thermal average with respect to the

equilibrium density matrix 𝜌 = 𝑍−1𝑒−𝐻/𝑘B𝑇 [7]. This can be organized more compactly into a

Bogoliubov-de Gennes block matrix, analogous to Eq. (S17)

G(𝒌, 𝑖𝜔𝑛) ≡ ©­«
G−+(𝒌, 𝑖𝜔𝑛) G−−(𝒌, 𝑖𝜔𝑛)
G++(𝒌, 𝑖𝜔𝑛) G+−(𝒌, 𝑖𝜔𝑛)

ª®¬
=

[
− 𝑖𝜔𝑛 + 𝝈3 (𝑆𝑴𝒌 + 𝚺(𝒌, 𝑖𝜔𝑛))

]−1
𝝈3, (S32)

where 𝚺(𝒌, 𝑖𝜔𝑛) is the imaginary time self-energy that encodes interactions. The single-magnon

dispersion then corresponds to poles of the (real time) retarded Green’s function, related to the

thermal Green’s function via analytic continuation

𝑮R(𝒌, 𝜔) = −G(𝒌, 𝑖𝜔𝑛 → 𝜔 + 𝑖0+) =
[
𝜔 + 𝑖0+ − 𝝈3

(
𝑆𝑴𝒌 + 𝚺R(𝒌, 𝜔)

) ]−1
𝝈3, (S33)

5
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with the retarded self-energy defined similarly as 𝚺R(𝒌, 𝜔) = 𝚺(𝒌, 𝑖𝜔𝑛 → 𝜔 + 𝑖0+). We note that

the temperature dependence of Eq. (S33) enters implicitly in the self-energy.

D. Calculation of the pseudo-Goldstone gap

For the remainder of Sec. I, the calculation of the pseudo-Goldstone (PG) gap proceeds similarly

to Ref. [4], but now with the retarded self-energy 𝚺R(𝒌, 𝜔) evaluated at finite temperature 𝑇 . Since

the PG mode appears at zero energy in linear spin-wave theory, we may expand the self energy to

leading order

𝚺R(0, 𝜔) = 𝚺R(0, 0) +𝑂 (𝑆−1), (S34)

which is exact to 𝑂 (𝑆0). The subspace associated with the PG mode is two-dimensional, therefore

we must calculate the poles of Eq. (S33) in the context of degenerate perturbation theory. At 𝑂 (𝑆0),
this comes down to diagonalizing the effective Hamiltonian [4]

𝐻eff ≡ 𝝈3
©­«
𝑽†

0

[
𝑆𝑴0 + 𝚺R

0 (𝑇)
]
𝑽0 𝑽†

0

[
𝑆𝑴0 + 𝚺R

0 (𝑇)
]
𝑾0

𝑾†
0

[
𝑆𝑴0 + 𝚺R

0 (𝑇)
]
𝑽0 𝑾†

0

[
𝑆𝑴0 + 𝚺R

0 (𝑇)
]
𝑾0

ª®¬
(S35)

projected into the zero mode subspace, where we have defined 𝚺R
0 (𝑇) ≡ 𝚺R(0, 0) to make the

temperature dependence explicit. In the case of a type I mode, we may use Eq. (S27) to compute

the effective Hamiltonian

𝐻eff = ©­
«
𝑆𝑽†

0 𝑴0𝑽0 + 𝑽†
0𝚺

R
0 (𝑇)𝑽0 𝑆𝑽†

0 𝑴0𝑽0 + 𝑽†
0𝚺

R
0 (𝑇)𝑾0

−𝑆𝑽†
0 𝑴0𝑽0 −𝑾†

0𝚺
R
0 (𝑇)𝑽0 −𝑆𝑽†

0 𝑴0𝑽0 − 𝑽†
0𝚺

R
0 (𝑇)𝑽0

ª®
¬
. (S36)

Computing the eigenvalues of 𝐻eff , we obtain a PG gap of 𝑂 (𝑆1/2),

Δ(𝑇) = 𝑆1/2
√︃
𝑽†

0
[
𝚺R

0 (𝑇)𝝈3𝑴0 + 𝑴0𝝈3𝚺R
0 (𝑇)

]
𝑽0. (S37)

Similarly, for a type II mode, we use Eq. (S27) to obtain

𝐻eff = ©­«
𝑽†

0𝚺
R
0 (𝑇)𝑽0 𝑽†

0𝚺
R
0 (𝑇)𝑾0

−𝑾†
0𝚺

R
0 (𝑇)𝑽0 −𝑾†

0𝚺
R
0 (𝑇)𝑾0

ª®¬
. (S38)

In this case, the PG gap appears at 𝑂 (𝑆0) as

Δ(𝑇) = 𝑆0
√︂(

𝑽†
0𝚺

R
0 (𝑇)𝑽0

)2
−

���𝑽†
0𝚺

R
0 (𝑇)𝑾0

���2. (S39)
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II. CURVATURE FORMULA

Next, we show how the PG gap computed to 𝑂 (𝑆0), at finite temperature, can be related

to the curvatures of the linear spin-wave dispersion. This is in essence a nonzero temperature

generalization of the curvature formula derived in Ref. [4], where it was shown that the relationship

between these two quantities can be established through the first moment of the magnon spectral

function, projected into the zero-mode subspace. We consider the Holstein-Primakoff expansion

about a configuration that is related to the classical ground state by small rotations about the local

𝒆𝛼,𝑥 and 𝒆𝛼,𝑦 axes, labeled by the angles 𝜃 and 𝜙 respectively. Relative to the classical ground state,

this transforms the local frame as

𝒆𝛼,0(𝜁) =
(
1 − |𝜁 |2

)
𝒆𝛼,0 + 𝜁 𝒆𝛼,+ + 𝜁 𝒆𝛼,− + O(𝜁3), (S40)

𝒆𝛼,+(𝜁) =
(
1 − 1

2
|𝜁 |2 + 1

4
𝜁2 − 1

4
𝜁2

)
𝒆𝛼,+ − 𝜁 𝒆𝛼,0 − 1

4
𝜁2𝒆𝛼,− + O(𝜁3), (S41)

𝒆𝛼,−(𝜁) =
(
1 − 1

2
|𝜁 |2 + 1

4
𝜁2 − 1

4
𝜁2

)
𝒆𝛼,− − 𝜁 𝒆𝛼,0 − 1

4
𝜁2𝒆𝛼,+ + O(𝜁3), (S42)

where 𝜁 ≡ (𝜙 + 𝑖𝜃)/
√

2. One can subsequently calculate the appropriate spin-wave theory using

Eqs. (S4-S8). Alternatively, these small rotations can be related to the magnon zero-modes

𝑏0 ≡ 𝑽†
0𝝈3

©­«
𝒂0

𝒂†0

ª®¬
, 𝑏†0 ≡ −𝑾†

0𝝈3
©­«
𝒂0

𝒂†0

ª®¬
, (S43)

using the Hermitian operators

Φ ≡
√︂
𝑆𝑁

2

[
𝑏†0 + 𝑏0

]
+𝑂 (𝑆−1/2) (S44)

Θ ≡ 𝑖
√︂
𝑆𝑁

2

[
𝑏†0 − 𝑏0

]
+𝑂 (𝑆−1/2). (S45)

These operators generate rotations about the soft directions [4], given by the unitary operator

𝑈 (𝜙, 𝜃) ≡ 𝑒−𝑖𝜙Φ𝑒−𝑖𝜃Θ. (S46)

This can be used to define a transformed Hamiltonian that encodes these rotations H(𝜙, 𝜃) ≡
𝑈 (𝜙, 𝜃)†𝐻𝑈 (𝜙, 𝜃). Expanding to second order in 𝜙 and 𝜃 using the Baker–Campbell–Hausdorff

formula, we obtain

H(𝜙, 𝜃) = 𝐻+ 𝑖𝜃 [Θ, 𝐻] + 𝑖𝜙[Φ, 𝐻] − 1
2
𝜃2 [Θ, [Θ, 𝐻]] − 1

2
𝜙2 [Φ, [Φ, 𝐻]] −𝜙𝜃 [Φ, [Θ, 𝐻]] +𝑂 (𝜁3).

(S47)

7
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Proceeding to compute the curvatures of H(𝜙, 𝜃), we find they are related to the nested commutators(
𝜕2H
𝜕𝜙2

)
0
= −[Φ, [Φ, 𝐻]],

(
𝜕2H
𝜕𝜃2

)
0
= −[Θ, [Θ, 𝐻]],

(
𝜕2H
𝜕𝜙𝜕𝜃

)
0
=

(
𝜕2H
𝜕𝜃𝜕𝜙

)
0
= −[Φ, [Θ, 𝐻]],

(S48)

where (· · · )0 is used as a shorthand for the evaluation at 𝜙 = 𝜃 = 0.

A. First moment of the spectral function

To relate the curvatures in Eqs. (S48) to the PG gap, we first establish a sum rule for the first

moment of the magnon spectral function. More generally, the real-time retarded and advanced

Green’s function for a pair of operators 𝑋 and 𝑌 are respectively [6]

𝐺R
𝑋𝑌 (𝑡) ≡ −𝑖𝜃 (𝑡) ⟨[𝑋 (𝑡), 𝑌 (0)]⟩ , (S49)

𝐺A
𝑋𝑌 (𝑡) ≡ 𝑖𝜃 (−𝑡) ⟨[𝑋 (𝑡), 𝑌 (0)]⟩ , (S50)

with 𝜃 (𝑡) the Heaviside step function and the time evolution is assumed to be in the Heisenberg

picture, i.e. d𝑋
d𝑡 = 𝑖[𝐻, 𝑋]. The corresponding spectral function is defined as

A𝑋𝑌 (𝜔) ≡ 1
2𝑖

∫ ∞

−∞
d𝑡 𝑒𝑖𝜔𝑡

[
𝐺R
𝑋𝑌 (𝑡) − 𝐺A

𝑋𝑌 (𝑡)
]
. (S51)

The first moment of this spectral function is then∫ ∞

−∞
d𝜔𝜔A𝑋𝑌 (𝜔) = 1

2

∫ ∞

−∞
d𝜔

∫ ∞

−∞
d𝑡 𝑒𝑖𝜔𝑡

d
d𝑡

[
𝐺R
𝑋𝑌 (𝑡) − 𝐺A

𝑋𝑌 (𝑡)
]
= − ⟨[𝑌, [𝑋, 𝐻]]⟩ (S52)

The following sum rules then directly follow from Eqs. (S48)∫ ∞

−∞
d𝜔𝜔AΦΦ(𝜔) =

〈(
𝜕2H
𝜕𝜙2

)
0

〉
,

∫ ∞

−∞
d𝜔𝜔AΘΘ(𝜔) =

〈(
𝜕2H
𝜕𝜃2

)
0

〉
, (S53)

∫ ∞

−∞
d𝜔𝜔AΦΘ(𝜔) =

〈(
𝜕2H
𝜕𝜙𝜕𝜃

)
0

〉
,

∫ ∞

−∞
d𝜔𝜔AΘΦ(𝜔) =

〈(
𝜕2H
𝜕𝜃𝜕𝜙

)
0

〉
. (S54)

Next, we relate these spectral functions to the single magnon spectral function, defined using

Eq. (S33) as

A(𝒌, 𝜔) = 1
2𝑖

[
𝑮R(𝒌, 𝜔) − 𝑮R(𝒌, 𝜔)†] , (S55)

Projecting into the zero mode subspace, using Eq. S43, we find

A0(𝜔) ≡ ©­«
A𝑏0𝑏

†
0
(𝜔) A𝑏0𝑏0

(𝜔)
A𝑏†0𝑏

†
0
(𝜔) A𝑏†0𝑏0

(𝜔)
ª®¬
= ©­«

𝑽†
0𝝈3A(0, 𝜔)𝝈3𝑽0 −𝑽†

0𝝈3A(0, 𝜔)𝝈3𝑾0

−𝑾†
0𝝈3A(0, 𝜔)𝝈3𝑽0 𝑾†

0𝝈3A(0, 𝜔)𝝈3𝑾0

ª®¬
. (S56)
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We can make use of Eqs. (S44-S45) and the rotated vectors

𝑼𝜙 ≡ 𝑖√
2
(𝑾0 − 𝑽0) , 𝑼𝜃 ≡ 1√

2
(𝑾0 + 𝑽0) , (S57)

to write the spectral functions of Φ and Θ as

A𝜇𝜈 (𝜔) = 𝑁𝑆𝑼†
𝜇𝝈3A(0, 𝜔)𝝈3𝑼𝜈, (S58)

where 𝜇, 𝜈 = Φ,Θ. The first moment of the magnon spectral functions may then be written in the

compact form
1
𝑆𝑁

〈(
𝜕2H
𝜕𝜆𝜇𝜕𝜆𝜈

)
0

〉
= 𝑼†

𝜇𝝈3

[∫ ∞

−∞
d𝜔𝜔 A(0, 𝜔)

]
𝝈3𝑼𝜈, (S59)

where 𝜆Φ ≡ 𝜙 and 𝜆Θ ≡ 𝜃. This is equivalent to the result derived in [4], with the expectation value

now performed at nonzero temperature 𝑇 . It is also useful to express the Eq. (S59) in terms of the

zero mode magnons explicitly. It follows from Eqs. (S44-S45) that

A0(𝜔) = 1
2𝑆𝑁

[
(1+𝝈1)AΦΦ(𝜔) + (1−𝝈1)AΘΘ(𝜔) − (𝝈2 + 𝑖𝝈3)AΦΘ(𝜔) − (𝝈2 − 𝑖𝝈3)AΘΦ(𝜔)

]
.

(S60)

This implies that the first moment can be written as∫ ∞

−∞
d𝜔𝜔A0(𝜔) = 1

2𝑆𝑁

[
(1 + 𝝈1)

〈(
𝜕2H
𝜕𝜙2

)
0

〉
+ (1 − 𝝈1)

〈(
𝜕2H
𝜕𝜃2

)
0

〉
− 2𝝈2

〈(
𝜕2H
𝜕𝜙𝜕𝜃

)
0

〉]
.

(S61)

This sum rule will enable us to demonstrate the equivalence between the PG gap and the curvature

formula in the main text.

B. Calculation of the gap

Next, we discuss how to use the sum rule to calculate the PG gap for both type I and type II

modes. Using Eqs. (S40-S42), we carry out a Holstein-Primakoff expansion about a rotated spin

configuration to obtain H(𝜙, 𝜃). First, we discuss the case of a type II PG mode, where both angles

𝜙 and 𝜃 correspond to soft directions. In this case, the Holstein-Primakoff expansion is

H(𝜙, 𝜃) = 𝑆(𝑆 + 1)𝑁𝜖cl + 𝑆𝑁𝜖qu(𝜙, 𝜃) + 𝑆
∑︁
𝒌,𝛼

𝜖𝒌,𝛼 (𝜙, 𝜃)𝑏†𝒌,𝛼𝑏𝒌,𝛼 +𝑂 (𝑆1/2),

as the classical configuration energy 𝜖cl is independent of 𝜙 and 𝜃. The second derivative is then [4]

1
𝑆𝑁

〈(
𝜕2H
𝜕𝜆𝜇𝜕𝜆𝜈

)
0

〉
=

(
𝜕2𝜖qu

𝜕𝜆𝜇𝜕𝜆𝜈

)
0

+ 1
𝑁

∑︁
𝒌

∑︁
𝛼

(
𝜕2𝜖𝒌𝛼
𝜕𝜆𝜇𝜕𝜆𝜈

)
0
𝑛B(𝜖𝒌,𝛼) +𝑂 (𝑆−1), (S62)

9
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where 𝑛B(𝜖𝒌,𝛼) ≡
(
exp

(
𝑆𝜖𝒌 ,𝛼
𝑘B𝑇

)
− 1

)−1
is the Bose distribution function. Eq. (S62) can be written in

a more tractable form involving the free energy per spin, defined as

𝑓 (𝜙, 𝜃) = 𝑆(𝑆 + 1)𝜖cl + 𝑆𝜖qu(𝜙, 𝜃) + 𝑘B𝑇

𝑁

∑︁
𝒌

∑︁
𝛼

ln
(
1 − 𝑒−𝑆𝜖𝒌 ,𝛼 (𝜙,𝜃)/𝑘B𝑇

)
. (S63)

It follows that

𝑔𝜇𝜈 ≡ 1
𝑆𝑁

〈(
𝜕2H
𝜕𝜆𝜇𝜕𝜆𝜈

)
0

〉
=

1
𝑆

[(
𝜕2 𝑓

𝜕𝜆𝜇𝜕𝜆𝜈

)
0
+ 𝐾𝜇𝜈

]
, (S64)

where

𝐾𝜇𝜈 ≡ 𝑆2

4𝑘B𝑇𝑁

∑︁
𝒌,𝛼

(
𝜕𝜖𝒌,𝛼
𝜕𝜆𝜇

)
0

(
𝜕𝜖𝒌,𝛼
𝜕𝜆𝜈

)
0

csch2

(
𝑆𝜖𝒌,𝛼
2𝑘B𝑇

)
. (S65)

To calculate the PG gap, we use the fact that the first moment of the spectral function is equivalent

to the effective Hamiltonian in Eq. (S35) (see Ref. [4] for more details). In particular, we have

𝝈3

∫ ∞

−∞
d𝜔𝜔A0(𝜔) = 𝐻eff =

1
2

©­
«

𝑔ΘΘ + 𝑔ΦΦ 𝑔ΘΘ − 𝑔ΦΦ + 2𝑖𝑔ΦΘ

𝑔ΦΦ − 𝑔ΘΘ + 2𝑖𝑔ΦΘ −𝑔ΘΘ − 𝑔ΦΦ

ª®
¬
. (S66)

Diagonalizing 𝐻eff , we find for the PG gap

Δ(𝑇) = 𝑆0
√︃
𝑔ΘΘ𝑔ΦΦ − 𝑔2

ΦΘ (Type II). (S67)

Next, we consider the case of a type I PG mode, where only one of the angles 𝜙 corresponds to a

soft direction. In this case, the Holstein-Primakoff expansion is only stable when 𝜃 = 0. Following

the same line of reasoning as Ref. [4], we find

𝝈3

∫ ∞

−∞
d𝜔𝜔A0(𝜔) = 𝐻eff =

1
2

©­«
𝑆

(
𝜕2𝜖cl
𝜕𝜃2

)
0
+ 𝑔ΦΦ 𝑆

(
𝜕2𝜖cl
𝜕𝜃2

)
0
− 𝑔ΦΦ

𝑔ΦΦ − 𝑆
(
𝜕2𝜖cl
𝜕𝜃2

)
0
−𝑆

(
𝜕2𝜖cl
𝜕𝜃2

)
0
− 𝑔ΦΦ

ª®¬
. (S68)

Diagonalizing 𝐻eff , we find for the PG gap

Δ(𝑇) = 𝑆1/2

√︄(
𝜕2𝜖cl

𝜕𝜃2

)
0
𝑔ΦΦ (Type I). (S69)

C. Evaluation of 𝐾𝜇𝜈

In this subsection, we discuss the evaluation of Eq. (S65) and the circumstances when this term

vanishes. One can work out an explicit form of these derivatives with respect to the spin exchange

matrices in a local reference frame, avoiding the need to approximate them numerically. For this,

10
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we make use of the Hellmann-Feynmann theorem, generalized to bosonic Bogoliubov-de Gennes

systems.

To begin, suppose the spin-wave theory depends on some continuous parameter 𝜆. The linear

spin-wave energies satisfy the eigenvalue equation 𝝈3𝑴𝒌 (𝜆)𝑽𝒌,𝛼 (𝜆) = 𝜖𝒌,𝛼 (𝜆)𝑽𝒌,𝛼 (𝜆). So long as

the normalization conditions Eqs. (S21-S23) are satisfied, the derivatives of the spin-wave energies

satisfy
𝜕𝜖𝒌,𝛼
𝜕𝜆

= 𝑽†
𝒌,𝛼

𝜕𝑴𝒌

𝜕𝜆
𝑽𝒌,𝛼 . (S70)

Making use of the local rotated frame in Eqs. (S40-S42), the first derivatives are evaluated to(
𝜕𝒆𝑎,0
𝜕𝜃

)
0
= − 𝑖√

2
(
𝒆𝑎,+ − 𝒆𝑎,−

)
,

(
𝜕𝒆𝑎,+
𝜕𝜃

)
0
= − 𝑖√

2
𝒆𝑎,0,

(
𝜕𝒆𝑎,−
𝜕𝜃

)
0
= + 𝑖√

2
𝒆𝑎,0,(

𝜕𝒆𝑎,0
𝜕𝜙

)
0
= + 1√

2
(
𝒆𝑎,+ + 𝒆𝑎,−

)
,

(
𝜕𝒆𝑎,+
𝜕𝜙

)
0
= − 1√

2
𝒆𝑎,0,

(
𝜕𝒆𝑎,−
𝜕𝜙

)
0
= − 1√

2
𝒆𝑎,0. (S71)

It follows that the local exchange matrices are given by
(
𝜕J+−

𝒌,𝛼𝛽

𝜕𝜃

)
0

= + 𝑖√
2

(
J+0
𝒌,𝛼𝛽 − J̄+0

𝒌,𝛽𝛼

)
,

(
𝜕J++

𝒌,𝛼𝛽

𝜕𝜃

)
0

= − 𝑖√
2

(
J+0
𝒌,𝛼𝛽 + J+0

−𝒌,𝛽𝛼
)
,

(
𝜕J+−

𝒌,𝛼𝛽

𝜕𝜙

)
0

= − 1√
2

(
J+0
𝒌,𝛼𝛽 + J̄+0

𝒌,𝛽𝛼

)
,

(
𝜕J++

𝒌,𝛼𝛽

𝜕𝜙

)
0

= − 1√
2

(
J+0
𝒌,𝛼𝛽 + J+0

−𝒌,𝛽𝛼
)
, (S72)

where we have used the properties J 0−
𝒌,𝛼𝛽

= J̄+0
𝒌,𝛽𝛼

and J 0+
𝒌,𝛼𝛽

= J+0
−𝒌,𝛽𝛼. We may then evaluate the

derivatives of the spin-wave energies using Eqs. (S70,S72) as

(
𝜕𝜖𝒌,𝛼
𝜕𝜆𝜇

)
0
= 𝑽†

𝒌,𝛼

©­«
𝑪𝒌,𝜇 𝑫𝒌,𝜇

𝑫†
𝒌,𝜇

𝑪⊺
−𝒌,𝜇

ª®¬
𝑽𝒌,𝛼, (S73)

where

[
𝑪𝒌,𝜇

]
𝛼𝛽

≡
(
𝜕J+−

𝒌,𝛼𝛽

𝜕𝜆𝜇

)
0

,
[
𝑫𝒌,𝜇

]
𝛼𝛽

≡
(
𝜕J++

𝒌,𝛼𝛽

𝜕𝜆𝜇

)
0

. (S74)

The 𝐾𝜇𝜈 term may then be evaluated as

𝐾𝜇𝜈 (𝑇) = 𝑆2

4𝑇𝑁

∑︁
𝒌,𝛼

𝑽†
𝒌,𝛼

©­«
𝑪𝒌,𝜇 𝑫𝒌,𝜇

𝑫†
𝒌,𝜇

𝑪⊺
−𝒌,𝜇

ª®¬
𝑽𝒌,𝛼𝑽

†
𝒌,𝛼

©­«
𝑪𝒌,𝜈 𝑫𝒌,𝜈

𝑫†
𝒌,𝜈

𝑪⊺
−𝒌,𝜈

ª®¬
𝑽𝒌,𝛼 csch2

(
𝑆𝜖𝒌,𝛼
2𝑇

)
. (S75)

This expression vanishes in the zero-temperature limit, that is 𝐾𝜇𝜈 → 0 as 𝑇 → 0+. The expression

in Eq. (S75) is enormously useful as it involves only the linear spin-wave eigenvectors and exchange

11
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matrices, and therefore circumvents the need to calculate derivatives of the spin-wave energies

numerically (e.g. using a finite difference method).

We note the J+0
𝒌,𝛼𝛽

exchange couplings appearing in Eq. (S72) are directly related to the

three-Magnon interaction vertices in Eq. (S7), given by

𝑇
𝛼𝛽𝜇
𝒌𝒌′ = −𝛿𝛼𝜇J+0

𝒌′,𝛽𝛼 − 𝛿𝛽𝜇J+0
𝒌,𝛼𝛽. (S76)

We may therefore conclude that if the spin-wave theory does not have any three-magnon,

interactions, i.e. T 𝛼𝛽𝜇
𝒌𝒌′ = 0, then 𝐾𝜇𝜈 (𝑇) = 0 and the PG gap can be calculated to 𝑂 (𝑆0) from the

curvature of the linear spin-wave free energy. In the general case where three-body interactions are

present, this additional term 𝐾𝜇𝜈 (𝑇) will be nonzero, however we emphasize that it still allows one

to compute the PG gap within the framework of linear spin-wave theory.

III. MODELS

We now discuss details of two additional magnetic pyrochlore materials, where the quantum

spin models are known to exhibit ObD.

A. Yb2Ge2O7

First, we discuss the XY pyrochlore antiferromagnet Yb2Ge2O7. Similar to the material Er2Ti2O7

discussed in the main text, strong spin-orbit effects lead to a highly anisotropic (pseudo) spin-1
2

model

𝐻 =
∑︁
⟨𝑖, 𝑗⟩

[
𝐽𝑧𝑧𝑆

𝑧
𝑖 𝑆
𝑧
𝑗 − 𝐽±

(
𝑆+𝑖 𝑆

−
𝑗 + 𝑆−𝑖 𝑆+𝑗

)
+ 𝐽±±

(
𝛾𝑖 𝑗𝑆

+
𝑖 𝑆

+
𝑗 + H.c.

)
+ 𝐽𝑧±

(
𝜁𝑖 𝑗

[
𝑆𝑧𝑖 𝑆

+
𝑗 + 𝑆+𝑖 𝑆𝑧𝑗

]
+ H.c.

)]
,

(S77)

where 𝛾𝑖 𝑗 , 𝜁𝑖 𝑗 are bond-dependent phase factors (see Ref. [8]). The four nearest-neighbor couplings

have been fitted to inelastic neutron scattering data, with the best fit given by [9]

𝐽𝑧𝑧 = 0.128 meV, 𝐽± = 0.138 meV, 𝐽±± = 0.044 meV, 𝐽𝑧± = −0.188 meV. (S78)

The classical ground states are non-collinear antiferromagnetic configurations of spins lying in

the local XY planes perpendicular to the local [111] cubic axes of the pyrochlore lattice [8],

parametrized by an accidental𝑈 (1) degeneracy [10]. Below 𝑇c ≈ 0.572 K [9], ObD selects one of

the six “𝜓3” states, leading to a type I PG mode.
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Δ(𝑇) − Δ0 ∝ 𝑇4

FIG. S1. PG gap for the pyrochlore antiferromagnet Yb2Ge2O7, calculated using the exchange couplings

from Ref. [9]. The classical ground states are parametrized by an accidental𝑈 (1) degeneracy, corresponding

to a type I mode. The gap is plotted up to 𝑇c/2 = 286 mK.

The temperature dependence of PG gap for Yb2Ge2O7 is depicted in Fig. S1 over a range of

temperatures up to 𝑇c/2. We find a zero-temperature contribution to the gap of Δ0 = 13.028 𝜇eV,

and a very small thermal correction of Δ(𝑇c/2) − Δ0 ≈ 6 neV. At low-temperature, the gap scales

proportional to 𝑇4 as expected for a type I mode.

B. Lu2V2O7

Finally, we discuss the somewhat unique scenario of the pyrochlore ferromagnet Lu2V2O7. In

this material, the 𝑉4+ transition metal ions are magnetic, leading to the effective spin-1
2 model

𝐻 = −𝐽
∑︁
⟨𝑖, 𝑗⟩

𝑺𝑖 · 𝑺 𝑗 −
∑︁
⟨𝑖, 𝑗⟩

𝑫𝑖 𝑗 · (𝑺𝑖 × 𝑺 𝑗 ), (S79)

where the DM vectors are of the “indirect” type [12]. The two nearest-neighbor couplings have

been fitted to inelastic neutron scattering data, with the best fit given by [11]

𝐽 = 8.22 meV, |𝑫𝑖 𝑗 | = 1.5 meV. (S80)
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Δ(𝑇) − Δ0 ∝ 𝑇7/2

FIG. S2. PG gap for the pyrochlore ferromagnet Lu2V2O7, calculated using the exchange couplings from

Ref. [11]. The ground states are parametrized by an accidental 𝑂 (3) degeneracy, corresponding to a type II

mode. The gap is plotted up to 𝑇c/2 = 36.5 K.

The ground states are collinear ferromagnetic configurations parametrized by an accidental 𝑂 (3)
degeneracy [13]. Below 𝑇c ≈ 73 K [11], ObD (within the model of Eq. (S79) selects one of the

⟨111⟩ directions for the bulk magnetization [13], leading to a type II PG mode.

The temperature dependence of the PG gap for Lu2V2O7 is depicted in Fig. S2 over a range of

temperatures up to 𝑇c/2. In this case, there is no zero-temperature contribution to the gap, consistent

with recent work in Ref. [13] arguing that this material exhibits ObD without quantum zero-point

fluctuations. Moreover, we find at low-temperature a gap scales proportional to 𝑇7/2, distinct from

the expected 𝑇5/2 scaling for a type II mode. This exception arises due to the observation pointed

out in Ref. [13], that the anisotropy enters the spin-wave dispersion at 𝑂 (𝑘4) in the wavevector,

when |𝑫𝑖 𝑗 | ≪ 𝐽. This implies the linear spin-wave free energy, at low-temperature, takes the form

𝑓 (𝜙, 𝜃) = 𝑎𝑇5/2 + 𝑏(𝜙, 𝜃)𝑇7/2 +𝑂 (𝑇9/2), (S81)

with the coefficient 𝑎 being independent of the spin orientation. The 𝐾𝜇𝜈 terms entering the

curvature formula will have a similar low-temperature expansion, and Eq. (S67) is consistent with
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this power-law scaling.
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