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I. DETAILS OF MONTE CARLO SIMULATIONS

A. Details of Monte Carlo procedure

The Monte Carlo (MC) simulations described in the main
text are based on adaptive single-site Metropolis moves [1],
combined with over-relaxation moves [2]. A typical single-
site Metropolis move involves randomly selecting a spin and
changing its orientation to a random direction. However,
at low temperature, most such moves result in configura-
tions that are of much higher energies and thus rejected [3].
Therefore, we follow an adaptive approach that selects a
spin randomly and changes its orientation to a Gaussian
distributed random direction within a solid-angle of certain
width. The solid-angle-width changes adaptively to ensure
that the update-acceptance rate remains close to 50% at each
temperature (see Ref. [1] for details). The over-relaxation
move rotates a randomly selected spin by a random angle
about its local exchange field. This move is energy-conserving
and thus always accepted. We define a Monte Carlo sweep
at a certain temperature as a combination of N (total num-
ber of spins) random successive adaptive single-site Metropo-
lis moves with each followed by five random over-relaxation
moves. All the simulation results discussed in the main text
have been obtained by considering periodic boundary condi-
tions on a square lattice of size L by L and N = L2 spins. As
in the main text, we use units such that J = ℏ = kB = 1.

B. Simulation details of the order parameter distribution

Starting from a random spin configuration at high tempera-
ture, T = 10 (larger than K) where the system is in the param-
agnetic phase, we slowly cool down in steps of size δT = 0.1
to a final temperature T = 0.4 (much smaller than K). At
each temperature, we perform 105 MC sweeps to equilibrate
the system. Finally, at T = 0.4, after thermal equilibration has
been achieved, we record the net magnetization-per-spin over
106 MC samples, leaving five MC sweeps in between two con-
secutive measurements. From the net magnetization per spin,
M = (Mx,My,Mz), we calculate ϕ = arctan(My/Mx), comput-
ing a distribution for ϕ. Since the ferromagnetic Heisenberg-
compass model has a global C4 rotation symmetry in the x̂− ŷ
plane, we symmetrize the distribution by shifting the data by
π/2, π, and 3π/2 , i.e., add π/2, π, and 3π/2 to each entry of
the dataset. We have plotted the final dataset as a probability
density, P(ϕ) for ϕ ∈ [−π/4, π/4] with 50 bins for three dif-
ferent system sizes, N = 62, 102, and 142 in Fig. 1(a) in the

main text. We have chosen a large value for K, i.e., K = 5,
for all simulations in order to achieve a strong thermal order-
by-disorder selection effect at accessible system sizes. For the
gross spectral features, the largest system size considered for
spin-dynamics simulations was N = 1002, while for detailed
features, such as the temperature dependence of the pseudo-
Goldstone (PG) gap, up to N = 402 was used. Had smaller
values of K been used, all the MC simulations, as well as
spin-dynamics simulations, would have had to be performed
for much larger system sizes to obtain results that converge
when system size is extrapolated to the thermodynamic limit
(N → ∞).

C. Simulation details of magnetization and its derivative with
respect to temperature

Independently at each temperature T , 5 × 105 MC sweeps
are performed on a perfectly aligned ferromagnetic spin con-
figuration along x̂ for equilibration, followed by 3 × 106 suc-
cessive MC sweeps to measure the net magnetization per spin
along x̂ (M), total energy (E), and their product (EM). Their
product is recorded in order to calculate the derivative of the
magnetization(-per-spin) with respect to temperature, given
by

∂M
∂T
≡
⟨EM⟩ − ⟨E⟩⟨M⟩

T 2 , (S1)

where ⟨x⟩ is the MC thermal average of quantity x. To es-
timate the statistical errors on static quantities, the 3 × 106

measurements are divided into 30 blocks, and then resampled
using the standard bootstrap method [3]. Typically, O(103)
bootstrap samples were generated from these blocks to esti-
mate the statistical errors. In Fig. 3 of the main text, the error
bars shown correspond to twice the standard deviation esti-
mated via bootstrap.

II. DETAILS OF SPIN-DYNAMICS SIMULATIONS

Numerical integrations of the Landau-Lifshitz equations
have been done using an adaptive step size RK5(4) Dormand-
Prince integrator [4] from the Boost-Odeint C++ library [5,
6]. The initial spin configurations for the numerical integra-
tion are generated from MC simulations described in Sec. I.

To obtain the results shown in Fig. 1(b) in the main text,
we perform 5 × 105 equilibration MC sweeps on a perfectly
aligned ferromagnetic configuration along x̂ at T = 0.4. Start-
ing from the final state, we perform another 15 × 103 MC
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FIG. S1. Finite size scaling of the PG gap obtained from spin-
dynamics simulations for several temperatures (K = 5).
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FIG. S2. Finite size scaling of the PG gap obtained using SCMFT
for several temperatures (K = 5).

sweeps for 350 independent parallel runs to generate well-
equilibrated configurations at T = 0.4. Next, we feed each
of these 350 configurations into the Dormand-Prince integra-
tor as an initial state and integrate to a final time, tmax = 50.
The error tolerance of the integrator is set to 10−8, such that
the energy-per-spin and individual spin lengths are conserved
to at least one part in 107 and 1010, respectively. For each of
these independent 350 integrations, we calculate the Fourier
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FIG. S3. Finite size scaling of the PG linewidth obtained from spin-
dynamics simulations for several temperatures (K = 5).

transform of the spin configurations in space and time, S(k, ω)
using the C++ FFTW++ [7] library and then compute the dy-
namical structure factor, S(k, ω) = |S(k, ω)|2, finally taking
an average of the structure factors found from the 350 initial
configurations to obtain Fig. 1(b).

The results in Fig. 1(c) in the main text are obtained as fol-
lows: The system is initialized in a perfectly aligned ferro-
magnetic configuration along x̂ at a temperature T = 0.0004,
and slowly warmed up in steps of δT = 0.0004 to a tem-
perature T = 0.04. At each temperature, we perform 105

equilibration MC sweeps, generating a configuration at T =
0.008, 0.016, 0.024, 0.032, 0.04. At each of these tempera-
tures, we then apply the following procedure. Starting from
a given spin configuration, say at T = 0.008, we generate a
total of 2 × 103 configurations independently by performing
105 MC sweeps. Each of these configurations is fed into the
Dormand-Prince integrator independently to integrate to a fi-
nal time, tmax = 2500. Note that this tmax value is taken to be
much larger than the tmax = 50 value used to obtain the results
shown in Fig. 1(b). As discussed in the main text, to determine
the PG gap, ∆, and linewidth, Γ, a much higher frequency res-
olution is needed and thus the total integration time must be
significantly larger. The error tolerance of the integrator is
set to 10−10, such that the energy-per-spin and spin-length are
conserved to at least one part in 108 and 1010, respectively.
After the time evolution, we compute the Fourier transform of
the spin configurations in space and time using FFTW++ and
then compute the dynamical structure factor, S(k, ω). Finally,
we perform an average over the 2 × 103 initial spin config-
urations to obtain the average dynamical structure factor at
T = 0.008. In Fig. 1(c), we show only a cut of the average dy-
namical structure factor at the zone center, S(0, ω). To clearly
visualize S(0, ω) at several different temperatures in a single
plot, we stagger them on the y-axis by a fixed offset between
the S(0, ω) data at two consecutive temperatures.

To obtain the results shown in Fig. 2 of the main text,
we proceed as follows: At each temperature, we follow the
same method as described for Fig. 1(c) in the previous para-
graph and compute S(0, ω) for several system sizes, L =
20, 24, 28, 32, 36, and 40. To find the gap and linewidth for
each system size, we fit each data to a Gaussian (a Gaussian
lineshape fits the data in the range T ≤ 0.04 best, compared to,
e.g., a Lorentzian). The center of the Gaussian is used to de-
fine the PG gap and the full-width at half maximum (FWHM)
of the Gaussian, i.e., 2.355σ (σ being the standard devia-
tion), is taken as the PG linewidth. Finite size L-dependent
PG gaps and linewidths are then extrapolated in system size
(L → ∞) to obtain the corresponding values in the thermo-
dynamic limit. Finite size scaling behavior of the PG gap is
shown in Fig. S1. The finite size scaling of the PG gap ob-
tained using the self-consistent mean-field theory (SCMFT) is
shown in Fig. S2 (See Sec. III E below for details).

At very low temperatures, e.g., T ≤ 0.04, where S(0, ω)
falls very sharply away from the center of the peak, a Gaus-
sian lineshape is a natural choice. However, as temperature
increases further, S(0, ω) shows more pronounced tails and a
Lorentzian lineshape was found to provide a better descrip-
tion of the data. Finite size scaling of the PG linewidth is
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shown in Fig. S3. At T = 0.016, the PG linewidths for differ-
ent system sizes are found by fitting to a Gaussian while for
the remaining temperatures in Fig. S3, the PG linewidths are
found from fitting to Lorentzian (via the FWHM of the corre-
sponding Lorentzian). Finite size scaling reveals that at very
low temperatures, the PG linewidth scales almost linearly with
1/L with the scaling becoming quadratic in 1/L as tempera-
ture increases (see Fig. S3).

III. SPIN WAVE THEORY

Here, we elaborate on the formalism for interacting spin
waves in the ferromagnetic Heisenberg-compass model on the
square lattice. We consider the Heisenberg-compass model
Hamiltonian

H = −
∑
r,δ

[
JSr · Sr+δ + KS δrS

δ
r+δ

]
≡

∑
r,δ

S⊺r JδSr+δ, (S2)

where δ = x, y denotes the nearest-neighbour (horizontal
and vertical) bonds. For J > 0 and K > 0, the classical
ground state is ferromagnetic and has an accidental degener-
acy parametrized by an angle ϕ

Sr = S (cos ϕ x̂ + sin ϕ ŷ). (S3)

For small |K| and K < 0, one finds only a (symmetry-
enforced) discrete degeneracy, with Sr = ±S ẑ. For large |K|
and K < 0, the ground state is described by an XY-stripe phase
parametrized by a single angle whose two extreme limits are
an X-stripe phase (i.e., all spins are lying along the x̂ axis,
arranging themselves antiferromagnetically along the x̂ axis
and ferromagnetically along the ŷ axis) and a Y-stripe phase
(i.e., all spins are lying along the ŷ axis, arranging themselves
antiferromagnetically along the ŷ axis and ferromagnetically
along the x̂ axis). The phases for J < 0 can be obtained
by mapping Sr → (−1)rSr which alternates on the two sub-
lattices. We note that the dynamics however differ between
J > 0 and J < 0, since the sign change on one sublattice is not
a canonical transformation.

Returning to the J > 0, K > 0 case, we define a frame
aligned with a ferromagnetic ground state whose magnetiza-
tion direction is parametrized with an angle ϕ

êx = − sin ϕ x̂ + cos ϕ ŷ, êy = ẑ, êz = cos ϕ x̂ + sin ϕ ŷ,

as well as ê± ≡ (êx ± iêy)/
√

2 and ê0 ≡ êz. Here, x̂, ŷ and ẑ are
the global Cartesian axes. We then have the local exchanges
J
µν
δ = ê⊺µ Jδêν. The Fourier transforms of the exchange matrix

elements, Jµνδ , are defined as J k ≡
∑
δ 2 cos (k · δ)J δ where

the fact that −δ and δ are equivalent has been used. Explicitly,
these are given by

J+−k = −
(
2J + Ksin2ϕ

)
cos kx −

(
2J + Kcos2ϕ

)
cos ky,

J00
k = −2

(
J + Kcos2ϕ

)
cos kx − 2

(
J + Ksin2ϕ

)
cos ky,

J++k = −
(
Ksin2ϕ

)
cos kx −

(
Kcos2ϕ

)
cos ky,

J0±
k = −

K
√

2
sin (2ϕ)

(
cos ky − cos kx

)
,

with J−+k = [J+−k ]∗, J−−k = [J++k ]∗ and J0±
k = J

±0
k . Note

that J00
0 = −2(2J + K). For one of the four ground states

selected by order-by-thermal-disorder (ObTD), e.g. ϕ = 0,
these Jµνk are given by

J+−k = −2J cos kx − (2J + K) cos ky,

J00
k = −2 (J + K) cos kx − 2J cos ky,

J++k = −K cos ky,

J0±
k = 0.

Performing the usual Holstein-Primakoff expansion [8] to
O(S 0) on this model yields [9]

H ≈ E0 +H2 +
(
H4,2−2 +H4,3−1 +H4,1−3

)
+ · · · , (S4)

where we have defined the constant classical part E0 =

−NS 2(2J + K) [at O(S 2)] and

H2 =
∑

k

[
Aka†kak +

1
2!

(
Bka†ka†

−k + B∗ka
−kak

)]
, (S5a)

H4,2−2 =
1
N

∑
kk′q

1
(2!)2 Vk,k′,qa†k+qa†k′−qak′ak, (S5b)

H4,3−1 =
1
N

∑
kk′q

1
3!

Dk,k′,qa†ka†k′a
†
qak+k′+q = H

†

4,1−3. (S5c)

This includes the quadratic parts [at O(S )] in H2 as well as
the quartic parts [at O(S 0)] inH4 ≡ H4,2−2 +H4,3−1 +H4,1−3.
The quartic part has been decomposed into a 2 − 2 scattering
term,H4,2−2, and anomalous 3−1 and 1−3 terms,H4,3−1 and
H4,1−3. Since J0,±

k = 0, there are no three boson terms in H
[Eq. (S4)]. In terms of the local exchanges, the coefficients in
H2 andH4 are given explicitly by

Ak = S
(
J+−k − J

00
0

)
,

Bk = SJ++k ,

Vk,k′,q =
1
2

(
J00

k′−k−q +J
00
−q +J

00
+q +J

00
k−k′+q

)
−

1
2

(
J+−k +J

+−
k′ +J

+−
k′−q +J

+−
k+q

)
,

Dk,k′,q = −
1
2

(
J++k +J

++
k′ +J

++
q

)
.

By construction, these coefficients must satisfy the following
symmetry relations

Ak = A∗k,
Bk = B−k,

Vk,k′,q = Vk′,k,−q = Vk,k′,k′−k−q = Vk′,k,k−k′+q = V∗k+q,k′−q,−q,

Dk,k′,q = Dk,q,k′ = Dk′,k,q = Dk′,q,k = Dq,k,k′ = Dq,k′,k.

A. Non-interacting spin-waves

We first consider only the quadratic (non-interacting
magnon) portion ofH ,

H2 =
∑

k

[
Aka†kak +

1
2!

(
Bka†ka†

−k + H.c.
)]
. (S6)
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This can be diagonalized by the usual Bogoliubov transforma-
tion [8]. Defining the matrix

Mk ≡

(
Ak Bk
B∗k Ak

)
, (S7)

the spin-wave spectrum is obtained by diagonalization of
σz Mk, where σz is a (block) Pauli matrix. One finds the pos-
itive frequency mode

ωk =

√
A2

k − |Bk|2 > 0.

For the ferromagnetic Heisenberg-compass model, Ak and Bk
are given by

Ak = −S
[(

2J + Ksin2ϕ
)

cos kx +
(
2J + Kcos2ϕ

)
cos ky −

2(2J + K)
]

Bk = −S
[(

Ksin2ϕ
)

cos kx +
(
Kcos2ϕ

)
cos ky

]
.

Note that A0 = KS and B0 = −KS , yielding a zero energy
mode at k = 0, with ω0 = 0 and with both Ak and Bk real.
The eigenvector of σz Mk associated with the positive mode
can be written as (uk, vk) where

uk =

√
ωk + Ak

2ωk
, vk = −

Bk
√

2ωk(ωk + Ak)
,

which we have defined so that u2
k − v

2
k = 1. Note that since

both Ak and Bk are inversion even, we have u−k = uk, v−k = vk
and ωk = ω−k. Since both Ak and Bk are real, we find that uk
and vk are real as well. The diagonalized boson operators are
defined via

ak = ukγk + vkγ
†

−k, a†k = vkγ−k + ukγ
†

k.

Expectation values of bilinears of these bosons can be written
in terms of uk and vk. Noting that at temperature T these are

⟨γ†kγk⟩ = nB(ωk), ⟨γkγ
†

k⟩ = 1 + nB(ωk),

where nB(ω) = [exp(ω/T )−1]−1 is the boson thermal occupa-
tion number. The above thermal expectations for the original
a-bosons are given by

⟨a†kak⟩ = nB(ωk)u2
k + [1 + nB(ωk)] v2k,

⟨aka
−k⟩ = ⟨a

†

−ka†k⟩
∗
= [1 + 2nB(ωk)] ukvk.

In the classical limit, where T ≫ ωk, we have nB(ωk) ≈
T/ωk ≫ 1. The expectations then become

⟨a†kak⟩ =
T
ωk

(
u2

k + v
2
k

)
=

T
ωk

(
Ak

ωk

)
, (S8a)

⟨aka
−k⟩ = ⟨a

†

−ka†k⟩ =
2T
ωk

ukvk = −
T
ωk

(
Bk

ωk

)
. (S8b)

Finally, the ordered moment (selected by ObTD), M ≡
1
N

∑
r⟨Sr⟩ ≡ M x̂, can be expressed in terms of these boson

averages as

M = S −
1
N

∑
k

⟨a†kak⟩ ≡ S

1 − T
S N

∑
k

Ak

ω2
k

 . (S9)

B. Interacting spin-waves

To consider the effects of the quartic parts of H in Eq. S4,
H4,2−2, H4,3−1 and H4,1−3, we adopt a mean-field like ap-
proach, replacing each possible contraction of operators with
averages with respect to the quadratic, or “free” part, H2 [10,
11]. This procedure produces the same results as leading or-
der perturbation theory in the quartic interactions [12, 13]. For
example, consider the scattering term

a†k+qa†k′−qak′ak ≈ ⟨a
†

k+qak′⟩a
†

k′−qak + ⟨a
†

k′−qak⟩a
†

k+qak′

+ ⟨a†k+qak⟩a
†

k′−qak′ + ⟨a
†

k′−qak′⟩a
†

k+qak

+ ⟨a†k+qa†k′−q⟩ak′ak + ⟨ak′ak⟩a
†

k+qa†k′−q.

Using the fact that the expectation values satisfy ⟨a†kak′⟩ ∝

δk,k′ and ⟨akak′⟩ ∝ δk,−k′ , one finds

a†k+qa†k′−qak′ak ≈
(
δq,0 + δk+q,k′

) (
⟨a†k′ak′⟩a

†

kak + ⟨a
†

kak⟩a
†

k′ak′
)

+ δk,−k′
(
⟨a†k+qa†

−k−q⟩a−kak + ⟨a−kak⟩a
†

k+qa†
−k−q

)
.

Combining this decomposition with the interaction coeffi-
cients Vk,k′,q, as specified in Eq. (S5b), gives the expression

H4,2−2 ≈
∑

k

 1
N

∑
q

Vk,q,0⟨a†qaq⟩

 a†kak

+
1
2

∑
k


 1

2N

∑
q

Vq,−q,k−q⟨aqa−q⟩

 a†ka†
−k + H.c.

 ,
where Vk,k′,k′−k = Vk,k′,0 and Vk,k′,0 = Vk′,k,0 has been used
to simplify the normal term, and shifting the momentum has
been used to simplify the anomalous terms. The quartic terms
thus appear as corrections to the Ak and Bk quadratic terms.

Next, consider the same manipulations for the anomalous
boson terms, starting with

a†ka†k′a
†
qak+k′+q ≈ ⟨a

†

ka†k′⟩a
†
qak+k′+q + a†ka†k′⟨a

†
qak+k′+q⟩

+ ⟨a†ka†q⟩a
†

k′ak+k′+q + a†ka†q⟨a
†

k′ak+k′+q⟩

+ ⟨a†kak+k′+q⟩a
†

k′a
†
q + a†kak+k′+q⟨a

†

k′a
†
q⟩.

Using the fact that the expectations in this last equation are
diagonal in k (or skew-diagonal) [as in Eq. (S8)], we find

a†ka†k′a
†
qak+k′+q ≈ δk,−k′

(
⟨a†ka†

−k⟩a
†
qaq + a†ka†

−k⟨a
†
qaq⟩

)
+ δk,−q

(
⟨a†ka†

−k⟩a
†

k′ak′ + a†ka†
−k⟨a

†

k′ak′⟩
)

+ δk′,−q
(
⟨a†kak⟩a

†

k′a
†

−k′ + a†kak⟨a
†

k′a
†

−k′⟩
)
.

Combining this decomposition with the anomalous interaction
coefficients, Dk,k′,q from Eq. (S5c), and using the permutation
symmetry of its indices, we find

H4,3−1 ≈
∑

k

 1
2N

∑
q

Dq,−q,k⟨a†qa†−q⟩

 a†kak

+
1
2

∑
k

 1
N

∑
q

Dk,−k,q⟨a†qaq⟩

 a†ka†
−k.
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These terms thus also appear as corrections to Ak and Bk in
the quadratic part of the Hamiltonian. Note that the Hermitian
conjugate term of thisH4,3−1 also contributes, with its contri-
bution read off from the expression above.

H4,1−3 ≈
∑

k

 1
2N

∑
q

D∗q,−q,k⟨aqa−q⟩

 a†kak

+
1
2

∑
k

 1
N

∑
q

D∗k,−k,q⟨a
†
qaq⟩

 a
−kak.

Finally, we can summarize all of these contributions as cor-
rections δAk and δBk to the original Ak and Bk of quadratic
H2 origin and write

δAk =
1
N

∑
q

[
Vk,q,0⟨a†qaq⟩ +

1
2

(
Dq,−q,k⟨a†qa†−q⟩ + c.c.

)]
,

(S10a)

δBk =
1
N

∑
q

[
Dk,−k,q⟨a†qaq⟩ +

1
2

Vq,−q,k−q⟨aqa−q⟩

]
. (S10b)

In terms of these corrections, the renormalized spectrum is
given by

Ωk ≡

√
(Ak + δAk)2 − (Bk + δBk)2. (S11)

These corrections can be evaluated using the bare, free (non-
interacting) averages from Eq. (S8), though this approach
leads to divergences (see Sec. III F). Alternatively, they can
be evaluated self-consistently, with the averages in Eq. (S8)
computed using (Ak + δAk), (Bk + δBk) and Ωk instead of Ak,
Bk and ωk, a procedure that cures the divergences.

C. Pseudo-Goldstone gap

The effects of the interactions on the pseudo-Goldstone
mode can now be examined. The energy of the k = 0 mode is
given by

∆ ≡ Ω0 =

√
2KS (δA0 + δB0) + δA2

0 − δB
2
0. (S12)

For small corrections δA0, δB0, ∆ can be approximated by
(the leading term)

∆ ≈
√

2KS
√
δA0 + δB0. (S13)

In the quantum limit where T ≪ ωk, the corrections δAk, δBk
are O(S 0) and thus the gap scales as ∆ ∝

√
S . In the classi-

cal limit where T ≫ ωk, the corrections scale as δAk, δBk ∼

O(T/S ) and thus the gap scales as ∆ ∝
√

T , independent of S .

D. Pseudo-Goldstone linewidth

To estimate the scaling of the pseudo-Goldstone mode
linewidth with temperature, we consider the magnon self-
energy [11] at k = 0 near ω = 0, Σ(0, 0), which takes the

form

Σ(0, 0) ≡
(
δA0 δB0
δB∗0 δA

∗
0

)
,

where δA0 and δB0 are corrections due to magnon-magnon
interactions. Perturbatively, we expect that

δA0 = a1T + a2T 2 + · · · , (S14a)

δB0 = b1T + b2T 2 + · · · , (S14b)

where the O(T ) corrections (computed in this work) encoded
in a1, b1 are both real. The quasi-normal modes, correspond-
ing to the locations of poles of the magnon Green’s func-
tion [11, 14], are determined from the eigenvalues of σz Meff

0
where

Meff
0 =

(
A0 + δA0 −A0 + δB0
−A0 + δB∗0 A0 + δA∗0

)
. (S15)

Up to and including terms of O(T 2), the quasi-normal mode
frequency is thus given by

ReΩ0 ≈
√

2A0(a1 + b1)
√

T

+

a2
1 − b2

1 + 2A0(Re a2 + Re b2)
4A0(a1 + b1)

 T 3/2 + · · · ,

ImΩ0 ≈ (Im a2)T 2 + · · · .

We thus see that the linewidth, determined by ImΩ0, is ex-
pected to scale as T 2.

Next, we provide a similar perturbative argument for the
scaling relations of the pseudo-Goldstone gap and linewidth
with temperature for a type-II pseudo-Goldstone mode as
arises, for instance, in the ferromagnetic Heisenberg-compass
model on the cubic lattice [9]. For this type-II case, one has
A0 = B0 = 0 (in contrast to |A0| = |B0| , 0 for the type-I case
that we focus on in this work), with the magnon-self energy
taking the same form as in the type-I case, as discussed in the
main text. The poles of the Green’s function are determined
by the matrix [from Eq. (S15)]

Meff
0 =

(
δA0 δB0
δB∗0 δA

∗
0

)
,

with δA0 and δB0 taking a similar form as in Eq. (S14). As
three-boson terms are absent from the interacting spin-wave
Hamiltonian [9], a1 and b1 are real, as in the type-I case. How-
ever, generally a2 and b2 can have imaginary parts, producing
a spectrum

ReΩ0 ≈

(√
a2

1 − b2
1

)
T +

a1Re a2 − b1Re b2√
a2

1 − b2
1

 T 2 + · · · ,

ImΩ0 ≈ (Im a2)T 2 + · · · .

The leading temperature dependence of the gap is thus pre-
dicted to be ∆ = ReΩ0 ∝ T , as found from the effective de-
scription presented in the main text when applied to a type-II
pseudo-Goldstone mode. From ImΩ0, we obtain a linewidth
scaling as T 2 for this type-II case, identical to what was found
for the type-I pseudo-Goldstone mode.
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E. Self-consistent mean-field theory (SCMFT)

To include the effects of the magnon-magnon interactions
self-consistently, we define the “mean-fields”

nk ≡ ⟨a
†

kak⟩, dk ≡ ⟨a
†

ka†
−k⟩. (S16)

Using Eq. (S10), new values of nk and dk can then be com-
puted by iteratively updating Ak and Bk to A′k and B′k, respec-
tively, with

A′k = Ak +
1
N

∑
q

[
Vk,q,0nq +

1
2

(
Dq,−q,kdq + D∗q,−q,kd∗q

)]
,

B′k = Bk +
1
N

∑
q

[
Dk,−k,qnq +

1
2

Vq,−q,k−qd∗q

]
,

which, using Eq. (S8), results in updated values of nk and dk.
This process is repeated until the variables nk and dk have con-
verged to the desired precision across the full Brillouin zone.

For the calculations reported here, and in the main text, con-
vergence was considered reached when the sum of all absolute
values of the changes in nk and dk in Eq. (S16) over the Bril-
louin zone between subsequent iterations was less than 10−10.
To launch the iterative process, the mean-fields, nk and dk for
each k, are initially set to a value of 1/2, though the precise
choice of initial value was found to not affect the final results.
Following this approach, we calculate the PG gap for several
system sizes, using a discrete sum over the Brillouin zone with
N = L2 points. We then extrapolate the gap in the system size
to obtain the result in the thermodynamic limit (N → ∞). The
finite size scaling of the PG gap using SCMFT is shown in
Fig. S2.

F. Cancellation of divergences in the pseudo-Goldstone gap

Since the non-interacting LSWT spectrum is gapless, we
must be mindful of infrared divergent contributions to δA0 and
δB0. Let us first address this issue in the simplest context, bare
perturbation theory in the quartic interactions.

We focus on the classical limit where ωk ≪ T , but similar
considerations apply in the full quantum case at finite tem-
perature; since ωk → 0 as k → 0, there is always a regime
in k near the zone center where the frequency is small rela-
tive to temperature, even in the quantum limit. Consider the
corrections, Eq. (S10), in the thermodynamic limit (N → ∞),
replacing the discrete sums with integrals. At k = 0, this gives
[using Eq. (S8)]

δA0 =

∫
d2q

(2π)2

T
ω2

q

[
V0,q,0Aq − Dq,−q,0Bq

]
, (S17a)

δB0 =

∫
d2q

(2π)2

T
ω2

q

[
D0,0,qAq −

1
2

Vq,−q,−qBq

]
, (S17b)

where the integral is over the Brillouin zone −π ≤ qx, qy ≤
π (the lattice spacing has been set to one). At small q, the
spectrum is approximately linear in q with

ωq = S
√

2K
(
J|q|2 + Kq2

y

)
+ O(|q|2)

and thus the factor T/ω2
q ∝ 1/|q|2 is singular as |q| → 0. The

numerators (the coefficients of the T/ω2
q terms) in Eq. (S17)

remain finite in this limit, with

V0,q,0Aq − Dq,−q,0Bq = −
S K2

2
+ O(|q|2),

D0,0,qAq −
1
2

Vq,−q,−qBq = +
S K2

2
+ O(|q|2).

One therefore finds that both δA0 and δB0 are logarithmically
divergent. Explicitly, integrating over a region 2π/L < |q| <
Λ ≪ π∫

2π/L<|q|<Λ

d2q
(2π)2

1
ω2

q
=

1
4πS 2K

√
J(J + K)

ln
(

LΛ
2π

)
. (S18)

Since the upper cutoff is chosen to satisfy Λ ≪ π, the diver-
gent contributions to δA0 and δB0 take the form

δA0 = −
T K ln L

8πS
√

J(J + K)
+ (reg.), (S19a)

δB0 = +
T K ln L

8πS
√

J(J + K)
+ (reg.), (S19b)

where (reg.) stands for terms that remain finite as L→ ∞. In-
terestingly, while δA0 and δB0 are each ln L divergent, the sum
(δA0 + δB0) which appears in the expression for the pseudo-
Goldstone gap [Eq. (S13)], ∆, is finite. This can be made more
explicit by carrying out the same expansions for (δA0 + δB0),

δA0 + δB0 =

∫
d2q

(2π)2

T
ω2

q

[
2K2S (q2

x − q2
y) + O(|q|4)

]
. (S20)

The O(|q|2) term in the ω2
q denominator is thus compen-

sated by a corresponding O(|q|2) term in the numerator of
Eq. (S20). However, note that this cancellation only oc-
curs at leading order in δA0, δB0. The complete expression√

(A0 + δA0)2 − (B0 + δB0)2, which incorporates higher-order
contributions, remains logarithmically divergent. Similarly,
the leading corrections from bare perturbation theory to Ωk at
non-zero k are also divergent.

Since the bare perturbation theory diverges, except for the
leading temperature dependence of the PG gap at q = 0, in
order to obtain the full temperature dependence of the inter-
action corrections to Ωq, we proceed with a self-consistent
approach. This way, the equation for the corrections δA0 and
δB0 become

δA0 =

∫
d2q

(2π)2

T
Ω2

q

[
V0,q,0(Aq + δAq) − Dq,−q,0(Bq + δBq)

]
,

δB0 =

∫
d2q

(2π)2

T
Ω2

q

[
D0,0,q(Aq + δAq) −

1
2

Vq,−q,−q(Bq + δBq)
]
,

where the renormalized spectrum Ωq arises from evaluating
the averages in Eq. (S8) self-consistently. In such a self-
consistent mean-field theory, the spectrum Ωq “already” con-
tains a finite gap at q = 0. The gap acts as an effective infrared
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cutoff rendering the integrals in Eq. (S18) finite. The disap-
pearance of the divergence then manifests itself in the cancel-
lation of the leading (self-consistent) dependence on the gap
∆.

To see this explicitly, consider the self-consistent spectrum
which, for small q, takes the form

Ωq =

√
2KS 2

(
J|q|2 + Kq2

y

)
+ ∆2 + O(|q|2).

For sufficiently small ∆, the integration region can be divided
into two parts: |q| ≳ k0 and |q| ≲ k0 such that

Ωq ≈

∆, |q| ≲ k0,

S
√

2K
(
J|q|2 + Kq2

y

)
, |q| ≳ k0.

Roughly, the boundary separating these regions scales as

k0 ∼
∆

S K
∝
√

T (S22)

when K ≳ J. Alternatively, k0 is the wave-vector at which
the bare spectrum ωk becomes comparable to the interaction
induced gap, ∆. The primary change to the spectrum, and thus
to δA0 and δB0, occurs for |q| < k0. Carrying out the integra-
tion in Eq. (S18) over the region responsible for its divergent
contributions, we find they are rendered finite. Explicitly,∫

k0<|q|<Λ

d2q
(2π)2

1
Ω2

q
∼

ln (KSΛ/∆)
4πS 2K

√
J(J + K)

.

Given that ∆ ∝
√

T , this contribution to the integral now
scales as − ln T . Thus the divergence has been cured in the in-
dividual corrections δA0 and δB0. We note that the ln(Λ/∆) ∼
− ln T terms cancel in the sum (δA0 + δB0) which controls the
leading contribution to the gap [similarly to Eq. (S13)] and
the result from bare perturbation theory is recovered. In this
way, bare perturbation theory for the asymptotic

√
T scaling

of the pseudo-Goldstone gap is well-defined and divergence
free, and matches the results from the SCMFT calculations.
Note that the region 0 < |q| < k0 gives only a finite contribu-
tion that goes as∫

0<|q|<k0

d2q
(2π)2

1
Ω2

q
∼

k2
0

4π∆2 ∼ const. ,

since k0 ∝ ∆ from Eq. (S22).

G. Logarithmic corrections to magnetization

While the contributions ∝ ln T cancel in the leading order
correction in δA0, δB0 to ∆, they reappear explicitly in static
quantities such as the magnetization. In the classical limit, the
net magnetization [Eq. (S9)] is given by

M = S − T
∫

d2k
(2π)2

Ak

ω2
k
, (S23)

in the thermodynamic limit (N → ∞). Like the bare correc-
tions δA0 and δB0 in Eq. (S17), in LSWT, M has a logarith-
mic infrared divergence, given that ωk scales linearly with k
at small |k|, while Ak tends to the constant A0 = KS . Naı̈vely,
this would indicate the destruction of the long-range ferro-
magnetic order, as happens when there is a true symmetry-
protected Goldstone mode [15].

To resolve this divergence, we must include the dynami-
cally generated pseudo-Goldstone gap. The expression for M
in the SCMFT can be obtained from Eq. (S23), via the re-
placements ωk → Ωk and Ak → Ak + δAk. Explicitly,

M = S − T
∫

d2k
(2π)2

Ak + δAk

Ω2
k
, (S24)

where, again, Ωk is the self-consistent spectrum with pseudo-
Goldstone gap ∆. Following the same strategy as in Sec. III F,
we approximate the self-consistent spectrum, Ωk, over the
three pertinent regions of reciprocal space

Ωk ≈


∆, 0 < |k| ≲ k0,

S
√

2K
(
J|k|2 + Kk2

y

)
, k0 ≲ |k| ≲ Λ,

ωk. |k| ≳ Λ.

(S25)

The integral defining M is then split into three parts∫
d2k

(2π)2 =

∫
0<|k|<k0

d2k
(2π)2 +

∫
k0<|k|<Λ

d2k
(2π)2 +

∫
|k|>Λ

d2k
(2π)2 .

The first and second integrals depend on temperature through
∆ ∝

√
T and k0 ∼ ∆/(KS ) [see Eq. (S22)]. The last integral

is over wave-vectors large enough such that the interaction
corrections are minor and, therefore, this contribution to the
integral has no additional temperature dependence. The cor-
rection to M in Eq. (S24) arising from this last (third) term is
thus ∝ T (from the integral prefactor).

For the region |k| ≲ Λ, we approximate Ak + δAk ≈ KS ,
leaving the two contributions∫

0<|k|<k0

d2k
(2π)2

KS T
∆2 =

T
4πKS

,∫
k0<|k|<Λ

d2k
(2π)2

KS T

2KS 2
(
J|k|2 + Kk2

y

) = T ln (KSΛ/∆)
4πS
√

J(J + K)
.

The renormalized spectrum thus yields two additional contri-
butions to M: one that adds an additional part ∝ T and another
new, and perhaps most interesting, part, ∝ T ln T , and where
we used ∆ ∝

√
T .

To summarize, the magnetization at low temperatures takes
the form

M = S − c1T − c2T ln T + · · · , (S26)

where c1 and c2 are temperature independent constants. The
logarithmic T ln T dependence arises from the temperature
dependence of the pseudo-Goldstone gap, ∆. As T → 0,
both of these temperature dependent terms go to zero (as it
should classically) and the system becomes fully polarized
with M → S . Hence true long-range order is induced by
ObTD, with the lurking infrared divergences tamed by the
ObTD-induced PG gap, ∆.
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