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Observing altermagnetism using polarized neutrons
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Altermagnets are collinear compensated magnets whose magnetic symmetries at zero spin-orbit coupling
break spin degeneracy leading to spin-split electronic and magnonic bands that reflect an underlying multipolar
order. When there is an approximate U (1) symmetry the magnons in altermagnets are split into equal and
opposite chiral pairs. We show that in altermagnets polarized neutrons provide a means to detect the population
of time-reversed domains and allow direct measurement of the magnon chirality anisotropy in momentum
space—the central signature of the altermagnetic phase. We demonstrate this response to polarized neutrons
in two candidate materials MnF2 and MnTe and show that the presence of these chiralities is stable to small
perturbations that break spin-rotation symmetry. This provides a magnonic analog of spin-polarized ARPES that
has been used to discern altermagnetism in the electronic band structures of various candidate materials.
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Many of the advances in condensed matter physics of this
century have originated from a focus on systems with strong
spin-orbit coupling. This has been true of much of the broader
field of band topology as well as in research into exotic
superconductivity and the collective phenomena of magnetic
systems. In recent years there has been renewed interest in
systems where the spin-orbit coupling is weak driven, in part,
by the presence of generalized symmetries such as spin-space
symmetries [1–7]. This is exemplified by the discovery of
altermagnetism [8–10] where the conditions for spin degener-
acy are broken in antiferromagnets at zero spin-orbit coupling
as a direct consequence of their distinctive magnetocrystalline
symmetries.

Altermagnets, as defined from the zero spin-orbit coupled
limit, have the feature that their electronic bands are spin split
and feature an anisotropy in momentum space [8–10] reflect-
ing an underlying multipolar order [11,12]. Recently, ARPES
and its spin-polarized analog have been used to directly
visualize the breaking of spin degeneracy along momentum-
space cuts in altermagnetic candidate materials such as MnTe
[13,14].

Signatures of altermagnetism are also visible via the
magnetic excitations [15,16]. In a classic Heisenberg-Néel
antiferromagnet with two magnetic sublattices there is a single
doubly degenerate magnon band due to a good quantum num-
ber defining a magnon “chirality” [17]. The existence of this
conserved chirality is little more than a curiosity under these
circumstances, with weak spin-orbit coupling often favoring
states with zero net chirality. While in an antiferromagnet
these chiralities can only be split using (e.g.) a magnetic
field, in an altermagnet the magnon chiralities are intrinsically
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split in energy due to an isotropic exchange over most of the
Brillouin zone—exhibiting the same anisotropy in momentum
space as the one present in their electronic bands. Experimen-
tal evidence for this altermagnetic splitting has been observed
in MnTe [18] and should be observable in MnF2 through
measurements along specific high-symmetry directions [1].

In this Letter, we point out that neutron scattering provides
the means to distinguish all altermagnetic magnetic domains,
including those related by time reversal, and the chiralities of
the magnon modes in altermagnets. We show that this is a
general feature of altermagnets—a direct consequence of their
defining symmetries—and that it is stable to the inclusion of
weak spin-orbit coupling. The key to these measurements is
the ability to control the polarization of the ingoing neutron
beam and to measure the polarization of the scattered beam.
It is often said that altermagnets blend certain properties of
ferromagnets and antiferromagnets. As we show, a majority
single-domain altermagnet polarizes an initially unpolarized
neutron beam through inelastic scattering from its magnon ex-
citations. In this sense altermagnets behave like ferromagnets
[19] despite being entirely compensated like antiferromag-
nets. However, the direction of polarization has a much richer
dependence on the local moment orientation, magnon band,
and scattering wave vector than in simple ferromagnets. Ex-
periments using polarized neutrons can thus be used to map
out the anisotropic splitting of chirality, just as spin-polarized
ARPES can be used to map out the anisotropic pattern of
spin splitting of the electronic band structures of altermagnets.
Going further, the relative intensities of each of the chiral
modes can be modulated across the Brillouin zone by tuning
the polarization of the ingoing neutron beam. By taking data
with flipped ingoing polarizations it is possible to isolate
and measure the chiralities of the magnon bands individually,
mirroring the signature in the outgoing polarization.

Observability of these effects rests on having a sample with
an imbalance in the populations of domains related by time
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reversal—ideally a single magnetic domain. In some systems
this can be practically achieved by annealing from a high-field
state (as has been done in MnF2 [20,21]). We give a general
argument that, in altermagnets, (elastic) neutron polarimetry
can distinguish such domains thus providing the means to
identify or validate suitable samples for inelastic scattering
experiments using polarized neutrons. Whereas previous work
has demonstrated experimentally that magnon chirality can be
probed using polarized neutrons in uncompensated magnets
[22,23], this work establishes neutron polarization as a pow-
erful tool to characterize altermagnets generally through their
magnetic excitations.

We organize the rest of the Letter as follows. We first ex-
plain how the ratio of time-reversed domains in altermagnets
can be measured by exploiting nuclear-magnetic interference
in neutron diffraction. We then give a brief introduction to
altermagnetic splittings of chiral magnon modes including
examples of toy models for candidate altermagnetic materials
MnF2 and MnTe. Turning then to inelastic neutron scattering
of polarized neutrons, we show that the chiralities of alter-
magnetic magnons can be measured in the spin-orbit free
limit. Finally, we discuss the role of spin-orbit coupling as
a perturbation to this limit which is potentially an important
consideration when carrying out studies of real altermagnetic
materials.

Diffraction. The cross section for neutron diffraction using
unpolarized neutrons is time-reversal invariant and therefore
they cannot be used to distinguish magnetic domains related
by time-reversal symmetry. However, when the neutrons are
polarized, there is a contribution in the cross section that is
time-reversal odd originating from the interference of nuclear
and magnetic contributions. This contribution can, in princi-
ple, distinguish such magnetic domains.

This point was made already in 1962 [20] for the case
of MnF2. The observation in that work rests on the identifi-
cation of the crystalline symmetries now central to defining
altermagnetism. The generalization of their argument to all
collinear centrosymmetric altermagnets is as follows.

For this discussion it will be sufficient to consider moments
aligned or antialigned along a common axis N̂. Then the
relevant contribution to the elastic cross section at a reciprocal
lattice vector, G, of the crystal lattice is proportional to

∝ (N̂ · P⊥
in )Re[Fnuc(G)F ∗

mag(G)]. (1)

Here P⊥
in ≡ Ĝ × (Pin × Ĝ) with Pin the polarization of the

ingoing neutron beam. The contribution from the basis of sites
in the primitive cell is Fnuc(G) = ∑

n exp(iG · δn)bn where bn

is the scattering length of the nth nucleus in the unit cell
and δn is its position. The magnetic contribution is similar
with Fmag(G) = ∑

n μnσn fn(G) exp(iG · δn) where σn = ±1
specifies the moment direction of each magnetic atom with
respect to N̂ and, μn, its size, while fn(G) is its magnetic form
factor.

An altermagnet can be thought of as a colinear com-
pensated magnet where the oppositely oriented magnetic
sublattices cannot be connected by time reversal com-
bined with either translation or inversion. Instead they are
connected, for example, by the combined operations of
translation, rotation, and time reversal. Consider first the

conventional case, where the ions in the primitive cell can
be grouped into two sets related by a translation τ and time
reversal. Then the magnetic part, containing only the magnetic
ions, takes the form F ∗

mag(G) = �mag(G)[1 − exp(−iG · τ)]
where �mag(G) is real. The nuclear contribution takes a
similar form with Fnuc(G) = �nuc(G)[1 + exp(iG · τ)]. The
product has vanishing real part so the domains related by time
reversal cannot be distinguished using polarized neutrons.
Instead consider the case where there are two groups related
by time reversal and inversion. Now F ∗

mag(G) = �∗
mag(G) −

�∗
mag(−G) and Fnuc(G) = �nuc(G) + �nuc(−G). As �nuc(G)

and �mag(G) are sums of phases perhaps weighted with (real-
valued) scattering lengths or moment lengths (etc.), for both
�(G) = �∗(−G) and so, again, the real part vanishes.

To see that this part of the cross section can indeed be
nonvanishing in an altermagnet we take the elementary exam-
ple of MnF2. This is tetragonal with primitive lattice vectors
a1 = ax̂, a2 = aŷ, and a3 = cẑ. Using these basis vectors the
magnetic ions lie at (0,0,0) and (1/2, 1/2, 1/2) while the
fluoride ions lie at (±ε,±ε, 0) and (1/2 ± ε, 1/2 ∓ ε, 1/2).
The nuclear-magnetic contribution to the scattering intensity
is then from Eq. (1),

Re[Fnuc(G)F ∗
mag(G)]

∝ μ sin(aGxε) sin(aGyε)[1 − cos(G · δ)].

The Bragg reflections for this lattice are indexed by
G=2π (G1x̂/a+G2ŷ/b+G3ẑ/c) for (G1, G2, G3) ∈ Z. The
nuclear-magnetic scattering is then nonvanishing for G1+
G2+G3 odd. Therefore, if we measure the Bragg intensi-
ties at these reflections I± for both flipped polarizations
±P⊥

in then a nonvanishing net polarization (asymmetry)
(I+ − I−)/(I+ + I−) signals the presence of one majority
time-reversed domain.

As a second example, we consider altermagnetic can-
didate MnTe for which the Mn atoms are at positions
δMn,1 = (0, 0, 0) and δMn,2 = (0, 0, 1/2) (with equal and op-
posite moments) and the Te atoms have positions δTe,1 =
(1/3, 2/3, 1/4) and δTe,2 = (2/3, 1/3, 3/4) in terms of the
usual hexagonal basis vectors (a1 = ax̂, a2 = −a/2x̂ +√

3a/2ŷ, and a3 = cẑ). Now, one finds that

Re[Fnuc(G)F ∗
mag(G)] ∝ μ[cos(G · δTe,1) + cos(G · δTe,2)],

when G · b3 = G3 is odd and zero otherwise. Thus the
nuclear-magnetic polarization dependent scattering at re-
flections with G3 odd can distinguish the direction of the
altermagnetic order.

Altermagnetic magnons. The peculiar symmetries of alter-
magnets described above in the zero spin-orbit limit have two
central consequences. One is to preserve the spin quantum
number of the electronic bands and the chirality of the magnon
bands. The second, originating from the replacement of time-
reversal symmetry by time reversal in conjunction with a
point group operation, is to lift the degeneracy of the spins
and chiralities in an anisotropic pattern in reciprocal space.
In a d-wave altermagnet, for example, a fourfold rotation in
momentum at fixed energy reverses both spins and magnon
chiralities.

We can see how these features arise in a simple set-
ting: a two-sublattice collinear compensated magnet with a
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U (1) symmetry along the moment direction N̂. The Holstein-
Primakoff bosons on the two sublattices (labeled A and B)
transform under this U (1) symmetry as

ak,A → e+iθ ak,A, ak,B → e−iθ ak,B.

At the level of linear spin waves, this restricts the Hamiltonian
to have the form

H=
∑

k

[
AA

k a†
k,Aak,A + AB

k a†
k,Bak,B + (

BAB
k a†

k,Aa†
−k,B + H.c.

)]
.

It is natural to write AA
k and AB

k equivalently as AA
k =

Ak + δAk/2 and AB
k = Ak − δAk/2 as well as defining BAB

k =
BBA

−k ≡ Bk. If we further assume an inversion symmetry, as is
present in many of the canonical examples of altermagnets,
then Ak = A−k and B∗

k = B−k = Bk. The relevant Bogoliubov
matrix is then [17,24]

Mk =

⎛
⎜⎜⎜⎜⎜⎝

Ak + 1
2δAk 0 0 Bk

0 Ak − 1
2δAk Bk 0

0 Bk Ak + 1
2δAk 0

Bk 0 0 Ak − 1
2δAk

⎞
⎟⎟⎟⎟⎟⎠.

Due to the U (1) symmetry, the diagonalization of these two
independent blocks yields the spin-wave energies

εk,1 = + 1
2δAk +

√
A2

k − B2
k ≡ �k + 1

2δAk, (2a)

εk,2 = − 1
2δAk +

√
A2

k − B2
k ≡ �k − 1

2δAk. (2b)

The splitting of the two magnon bands is thus given
by |εk,1 − εk,2| = |δAk| and thus vanishes when symme-
try requires AA

k = AB
k . In an altermagnet there is no such

symmetry—the operations linking the sublattices involve a
spatial operation—and thus δAk is generally nonzero. If
this symmetry operation is denoted as R, then this implies
δAR(k) = −δAk, following the same anisotropy present in the
spin splitting as the electronic bands.

Importantly, the associated eigenvectors are not affected by
δAk, since its contribution is proportional to the identity in
each Bogoliubov subblock. The eigenvectors associated with
each positive energy mode can thus be written as

uk =
√

�k + Ak

2�k
, vk = − Bk√

2�k(�k + Ak)
, (3)

which satisfy |uk|2 − |vk|2 = 1. The standard (unpolarized)
neutron dynamical structure factor can be expressed in terms
of these quantities. The (textbook) result is that one-magnon
intensity [17] is ∝ [1 + (N̂ · k̂)2]Ck where

Ck =
√

Ak + Bk

Ak − Bk
. (4)

The intensities of these two chiral modes are thus identical
when ignoring neutron polarization, even when a nonzero
altermagnetic splitting is present.

We now take an explicit example: that of insulating MnF2.
As Mn2+ has quenched orbital angular momentum L = 0 and
spin S = 5/2 we expect the principal magnetic couplings to
be highly isotropic. A minimal model for the altermagnetism

in this material could include nearest-neighbor exchange
with a coupling J between the two magnetic sublattices.
With this coupling alone, the modes are doubly degenerate,
with εk,1 = εk,2 = 8JS(1 − γ 2

k )1/2 and Ck = [(1 − γk)/(1 +
γk)]1/2 where γk = cos(akx/2) cos(aky/2) cos(ckz/2). This
(accidental) degeneracy originates from the fact that the
nearest-neighbor coupling has a higher symmetry than the
lattice [16,25]. The shortest-range exchange that has the true
symmetry of the lattice appears with representative bond
direction along a(x̂ + ŷ). At this distance there are two in-
equivalent couplings J110 and J ′

110 which, when different,
induce a finite δAk lifting the degeneracy of the two magnon
bands. Explicitly one finds that

Ak = 8SJ + 2S(J110 + J ′
110)[cos(akx ) cos(aky) − 1], (5a)

δAk = 4S(J110 − J ′
110) sin(akx ) sin(aky), (5b)

Bk = −8SJγk. (5c)

The degeneracy of the modes is therefore lifted over much
of the zone except in the [h0l] and [0kl] planes and at the zone
boundaries where δAk vanishes. Note that δAk changes sign
between the quadrants kxky > 0 and kxky < 0 reversing the
chirality of the modes at a given energy. This is the magnonic
signature of a d-wave altermagnet. An illustration of these
magnon bands (and their chirality) is shown in Fig. 1(a).

A similar exercise can be carried out for the MnTe mag-
netic structure which is a g-wave altermagnet. As before,
we couple the different magnetic sublattices via Heisenberg
exchange to nearest neighbor. Then we include the shortest-
range couplings that break the symmetry down to that of
the lattice. Reference [25] contains a systematic study of the
couplings that generate altermagnetism from which we read
off the J121 exchanges along the representative bond r1 ≡
(1, 2, 1) with threefold symmetry and inversion giving six
bonds ±r1, ±r2, ±r3 with the same coupling. There is a sec-
ond symmetry-inequivalent coupling J ′

121 with the same bond
length as the J121 bond but with representative r′

1 ≡ (1, 2,−1)
and six equivalent bonds ±r′

1, ±r′
2, ±r′

3 under symmetry.
Defining γk ≡ ∑3

μ=1 cos(k · rμ) and γ ′
k ≡ ∑3

μ=1 cos(k · r′
μ)

one finds

Ak = 2SJ + S(J121 + J ′
121)(γk + γ ′

k − 6), (6a)

δAk = 2S(J121 − J ′
121)(γk − γ ′

k), (6b)

Bk = 2SJ cos(ckz/2), (6c)

as the role of J121 and J ′
121 swap in going from sublattice A to

sublattice B. This has degeneracies at [hk0], the planes [h0l],
and at the zone boundaries where δAk = 0. The chiralities
reverse in the upper (lower) energy band under a sixfold
rotation so the model exhibits g-wave altermagnetism in the
magnon bands. The model of Liu et al. [18] includes other
short-range exchanges (e.g., J2, J3); while we have neglected
these in Eq. (6a) for simplicity they are included in the explicit
calculations shown in Fig. 2.

While we have focused on the case of two magnetic sublat-
tices where the magnons are theoretically simple, the chirality
remains well defined whenever there is a global U (1) sym-
metry. This thus still leads to positive and negative chirality
blocks in the linear spin wave Hamiltonian. Altermagnetism
in such bipartite crystal structures with more than two
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FIG. 1. (a) Illustration of the magnon dispersion of MnF2 (J110/J = −0.25, J ′
110/J = −0.5) with finite altermagnetic exchange differences

in the [h, k, 0.25] plane. The order parameter is oriented along ẑ. The chirality of the magnon bands, which determines the polarization of
outgoing neutrons Pz

out, is indicated by the color of the bands. (b)–(e) Cuts in the [hk1] plane at fixed energy E/(JS) of the dispersion of the
MnF2 magnon bands showing the polarization of the outgoing neutron at each energy and wave vector [see Eq. (8)]. Polarization is averaged
with a (Lorentzian) energy broadening δE/JS = 0.25 to loosely mimic finite experimental resolution.

sublattices thus should be detectable using polarized neutrons
in a similar manner.

Detecting polarized altermagnetic magnons. We have seen
that while unpolarized neutrons can detect the altermagnetic
splitting in the energy bands, they are not sensitive to the po-
larization of the modes. However, as was the case for domains

FIG. 2. (a) Magnon dispersion of MnTe using the parameters
from Liu et al. [18] along a path 
-M-L-
 in momentum space [see
Eq. (6a)]. The chirality of the magnon bands, which determines the
polarization of outgoing neutrons Pz

out, is indicated by the color of the
bands and is visible along the 
-L line, canceling due to symmetry
along the other segments of the path. (b), (c) Comparison of neu-
tron scattering intensity in the kx-ky plane with kz = 4/3(2π/c) at
E = 33 meV for polarized (Pz

in = 1) and unpolarized (Pz
in = 0)

incoming neutrons [see Eq. (7)]. Intensity is averaged with a
(Lorentzian) energy broadening δE = 1 meV to loosely mimic finite
experimental resolution.

in the elastic scattering, the chirality of these altermagnetic
magnons can be detected using polarized neutrons. We will
describe two complementary experimental setups to observe
this polarization.

First one can consider the total scattering intensity of an
initial polarized beam with initial polarization Pin [17,26],(

d2σ

d�dω

)
∝

∫
dte−iωt [〈M⊥

−k · M⊥
k (t )〉

+ iPin · 〈M⊥
−k × M⊥

k (t )〉], (7)

where we have defined M⊥
k ≡ k̂ × (Mk × k̂) with Mk ≡∑

r,n μn fn(k)eik·(r+δn )Sr,n being the magnetization opera-
tor at wave vector k (assuming isotropic g factors). The
polarization-dependent part couples to an antisymmetric com-
bination of the moment operators and thus allows access to the
antisymmetric components of the dynamical structure factor
[27].

Alternatively, an initially unpolarized beam will become
polarized by scattering from the altermagnetic magnons with
the outgoing polarization Pout given by

Pout =
(

d2σ

d�dω

)−1

Pin=0

∫
dte−iωt [−i〈M⊥

−k × M⊥
k (t )〉]. (8)

This probes the same antisymmetric part of the dynamical
structure that is accessible using the initially polarized beam.

Both of these quantities can be readily computed via spin-
wave theory. The total intensity due to a polarized beam at
zero temperature can be written in terms of weights associated
with each magnon band as(

d2σ

d�dω

)
∝

∑
n

Wk,n(Pin )δ(ω − εk,n).

The weightsWk,n(Pin ) are defined as

Wk,n(Pin ) = |A⊥
k,n|2 + iPin · (A⊥

k,n × [A⊥
k,n]∗),
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in terms ofA⊥
k,n = k̂ × (Ak,n × k̂), and where

Aμ

k,n ≡
∑

m

(
êμ

m,−V m
k,n,+ + êμ

m,+V m
k,n,−

)
,

where m here runs over the magnetic atoms. Here we have
split our Bogoliubov eigenvectors [28] into blocks as Vᵀk,n ≡
(Vᵀk,n,+,Vᵀk,n,−) and denoted choice of Cartesian frame ên,± ≡
(x̂n ± iŷn)/

√
2 for the nth magnetic ion. For the simple

two-sublattice case discussed above, these vectors would be
Vᵀk,1 = (uk, 0, 0, vk ) and Vᵀk,2 = (0, uk, vk, 0). Similarly we
can express the polarization of the outgoing intensity at each
of the magnon bands due to an initially unpolarized beam as

Pout (k, εk,n) = −i
A⊥

k,n × [A⊥
k,n]

∗

A⊥
k,n · [A⊥

k,n]∗
.

For the case of a collinear altermagnet with two sublattices
and isotropic interactions, one can show that

−iA⊥
k,n × [A⊥

k,n]∗ = −(−1)nk̂(k̂ · N̂)Ck,

A⊥
k,n · [A⊥

k,n]∗ = 1
2 [1 + (k̂ · N̂)2]Ck,

where Ck is the one-magnon intensity defined in Eq. (4).
From these expressions we see that for an initially polarized
beam the outgoing intensity is modulated by the polarization
oppositely for the two bands

Wk,n(Pin ) = (
1
2 [1 + (k̂ · N̂)2] + (−1)n(Pin · k̂)(k̂ · N̂)

)
Ck.

One may carry out such an experiment on an instrument in
which the incident (or scattered) neutron beam is polarized
using the method often referred to as the “half-polarized” or
the “flipping-ratio” method. One gains the most insight by
aligning the neutron polarization along the moment direction
with Pin = ±N̂. One measures the cross section for Pin = +N̂
and again for −N̂ and this gives access to the relevant terms.
No polarization analysis is needed in this case; explicitly, if
we define �Wk,n ≡ [Wk,n(+N̂) −Wk,n(−N̂)]/2 and divide
out the unpolarized result one directly arrives at

�Wk,n

Wk,n(0)
= (−1)n

(
2(k̂ · N̂)2

1 + (k̂ · N̂)2

)
,

independent of the one-magnon intensity factor Ck.
The differing signs for the two modes directly correspond

to their respective chiralities. Note that in situations where
there is altermagnetic splitting for scattering wave vectors
along the moment direction (which is certainly the case for
ideal altermagnets), the entire scattering intensity for such
wave vectors can be reweighted from one mode to the other
simply by reversing the polarization direction of the ingoing
beam.

Similarly for an initially unpolarized beam the polarization
of the intensity of the magnon bands is opposite on each band,

Pout (k, εk,n) = −(−1)n

(
2(k̂ · N̂)

1 + (k̂ · N̂)2

)
k̂.

For the component of the polarization along N̂ this yields the
same result (up to sign) as �Wk,n/Wk,n(0). In this case, the
experiments require use of a neutron polarization analyzer (for
example, CRYOPAD [29,30]).

Examples of what experimental neutron scattering inten-
sities might look like are shown in Figs. 1 and 2. For MnF2

(Fig. 1) we show the outgoing polarization of the intensity
for an initially unpolarized neutron beam. The polarization
directly shows the d-wave symmetry of the magnon chirality
in both the dispersion and fixed energy cuts. For MnTe (Fig. 2)
we show the dispersion (with magnon chiralities indicated)
and the neutron intensity for an experiment where the in-
coming neutrons are polarized. Compared to the unpolarized
intensity, the polarization enhances the intensity of one chiral
band, extinguishing the other and thus revealing the spatial
g-wave structure of the magnon wave functions. For a smaller
altermagnetic splitting (or broader energy resolution) this ex-
tinguishment will not be perfect, but a spatial anisotropy in the
intensity should still be visible.

Weakly breaking the U (1) symmetry. So far we have con-
sidered only ideal altermagnets where there is a residual
U (1) symmetry in the magnetically ordered state resulting in
magnon modes with well-defined chirality. In altermagnetic
materials, this symmetry is expected to hold to an excellent
approximation. Weak anisotropic couplings will inevitably
break this U (1) down to the crystalline symmetries via (e.g.)
the magnetostatic dipolar interaction or spin-orbit coupling.
How does this affect chirality as a signature of altermagnetic
magnons?

Start in the limit where the magnons are chiral and
degenerate—for example in a conventional Heisenberg anti-
ferromagnet or in an altermagnet at wave vectors where the
degeneracy is protected by spin-space symmetries—and thus
δAk = 0. Anisotropies breaking the U (1) symmetry modify
the spin wave Hamiltonian through the addition of a δMk of
the form

δMk =

⎛
⎜⎜⎜⎜⎜⎝

0 AAB
k BAA

k 0[
AAB

k

]∗
0 0 BBB

k[
BAA

k

]∗
0 0

[
AAB

k

]∗

0
[
BBB

k

]∗
AAB

k 0

⎞
⎟⎟⎟⎟⎟⎠.

We assume that the perturbation is non-altermagnetic in the
sense that it does not distinguish between the two sublattices
and thus does not contribute to δAk [31]. Any (perturbative)
changes to Ak, Bk will be absorbed into their definitions.

Projecting δMk into the subspace spanned by the eigenvec-
tors V k,1 and V k,2 we obtain the effective Hamiltonian(

0 teff

t∗
eff 0

)
,

where we have defined teff ≡ V †
k,1δMkV k,2. The corrected

eigenvectors are linear combinations of V k,1 and V k,2 of the
form

1√
2

(V k,1 ± e−iφV k,2),

where teff ≡ |teff |eiφ . Correspondingly we have the newAk,±
and the the polarization-dependent contribution is then pro-
portional to

iA⊥
k,± × [A⊥

k,±]∗ = ± 1
2 (ie−iφA⊥

k,2 × [A⊥
k,1]∗ − c.c.),
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since Ak,1 × [A⊥
k,1]∗ = −Ak,2 × [A⊥

k,2]∗. Then since we
have Ak,1 ∝ [A⊥

k,2]∗ their cross product vanishes. Thus
small U (1)-breaking anisotropies, absent a finite δAk, tend
to maximally mix the chiral modes leading to a vanishing
polarization-dependent part of the neutron scattering cross
section.

When both U (1)-breaking terms and δAk are finite but
small, the perturbative analysis follows standard first-order
degenerate perturbation theory leading to an avoided crossing
with splittings δεk,±= ± 2[h2

eff + |teff |2]1/2 where heff∝δAk.
The polarization of each mode is then given by ±heff/[h2

eff +
|teff |2]1/2, vanishing when heff = 0 and equal to ±1 when
teff = 0. For small teff we have polarizations ±(1 −
|teff |2/heff + · · · ) and thus the neutron polarization signatures
discussed in this work are perturbatively stable.

Conclusions. We have shown that polarized neutron
scattering has attractive features for the detection and charac-
terization of altermagnets. In particular, elastic scattering with
polarization analysis can be used to infer the domain compo-
sition of altermagnets. In samples that have been established
to have a majority domain, we have described how polarized
inelastic neutron scattering can provide a direct, unambiguous
experimental signature of the altermagnetic chirality splitting
of magnons. This could be used, for example, to reveal the
g-wave altermagnetism in MnTe. While we have focused on

local moment models of altermagnetism, we expect identical
polarization signatures from magnon scattering in itiner-
ant altermagnets. Potential future applications of such tools
could be in probing features arising from magnon-magnon or
magnon-electron interactions in altermagnets [32–34] through
their polarization response. Insights from polarized neutrons
can thus pave the way for the clear confirmation of altermag-
netism in candidate materials and promise to become a central
tool in this emerging field.

Note added. Recently, Ref. [35] appeared, reporting new
unpolarized inelastic neutron scattering results on MnF2 that
probe the non-high-symmetry directions where altermagnetic
splittings are allowed to appear. No resolvable splitting was
observed, in contrast to MnTe. This null result likely indi-
cates that the scale of the altermagnetic splitting, dictated by
J110 − J ′

110, is below the resolution of the CAMEA instrument
(at PSI), which is roughly 0.4 meV at an energy transfer of
6.9 meV.
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