
Anharmonic Collective Oscillations in Isotropic Spin Systems and their Spectroscopic Signatures

Anna Fancelli,1, 2 Matı́as G. Gonzalez,1, 2, 3 Subhankar Khatua,4, 5, 6 Bella
Lake,1, 7 Michel J. P. Gingras,4, 8 Jeffrey G. Rau,5 and Johannes Reuther1, 2

1Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
2Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

3Institute of Physics, University of Bonn, Nussallee 12, 53115 Bonn, Germany
4Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

5Department of Physics, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
6Institute for Theoretical Solid State Physics, IFW Dresden and Würzburg-Dresden

Cluster of Excellence ct.qmat, Helmholtzstr. 20, 01069 Dresden, Germany
7Institut für Festkörperforschung, Technische Universität Berlin, 10623 Berlin, Germany

8Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
(Dated: September 1, 2025)

Spin waves are the fundamental excitations in magnetically ordered spin systems and are ubiquitously ob-
served in magnetic materials. However, the standard understanding of spin waves as collective spin oscillations
in an effective harmonic potential does not consider the possibility of soft modes, such as those due to an effec-
tive quartic potential. In this work, we show that such quartic potentials arise under very general conditions in
a broad class of isotropic spin systems without a fine-tuning of the interaction parameters. Considering models
with spin spiral ground states in two and three spatial dimensions, we numerically demonstrate that quartic am-
plitude spin oscillations produce a fluctuation-induced spin-wave gap which grows with temperature according
to a characteristic power-law. In conjunction with a phenomenological theory, the present work provides a gen-
eral theoretical framework for describing soft spin modes, extending the previously discussed spin dynamics in
the presence of order-by-disorder, and highlighting the important role of finite-size effects. Our predictions of
a temperature-dependent gap in spiral spin systems could be tested in inelastic neutron scattering experiments,
providing direct spectroscopic evidence for thermal effects arising from soft spin modes in magnetic materials.

Introduction.— The notion of a quasiparticle is widely used
to describe collective excitations in many-body systems [1].
This term refers to a common situation in which, similarly to
fundamental particles in high-energy physics, a collective ex-
citation in a solid-state system can be described by character-
istic properties such as its effective mass or, more generally,
its dispersion relation. Well-known examples of quasiparti-
cles include phonons, which arise from collective lattice vi-
brations, and magnons, which result from collective spin pre-
cessions [2]. In both cases, the quasiparticles can be classi-
cally understood as oscillations in an effective harmonic po-
tential V (x) = αx2 with a frequency ω, and with the quantum
mechanical excitation energy, E, given by E = ℏω.

In this Letter, we address the fundamental question of
how the concept of a quasiparticle changes when the effec-
tive potential is softer than quadratic and how such anhar-
monicity can be exposed in experiments. For concreteness,
we specifically consider the case of quartic potentials where
V (x) ∝ x4. Such potentials and the associated collective ex-
citations are of relevance in quite distinct physical systems, in-
cluding trapped Bose-Einstein condensates [3, 4], chaotic sys-
tems [5, 6], soft phonons [7, 8], and, in high-energy physics,
in the context of the Higgs self-coupling [9–11]. Here, we
investigate quartic potentials in classical Heisenberg spin sys-
tems, which emerge under fairly general conditions and with-
out the need to fine-tune model parameters to eliminate the
harmonic αx2 component. Our starting point is a Heisen-
berg spin Hamiltonian that has several degenerate symmetry-
related planar spin spiral ground states. We show that in a sys-
tem exhibiting a planar spin-spiral long-range ordered state at
one of several symmetry-related ground-state ordering wave

vectors, an oscillation of the spin component perpendicular to
the spiral ordering plane, taken at the wave vector of a differ-
ent ground-state spiral, has a quartic dependence of the exci-
tation energy on the amplitude. We refer to this oscillation as
a quartic oscillation in the following.

Since a system with a purely quartic potential has a van-
ishing harmonic component (α = 0), one might naively ex-
pect it to display gapless excitations. While this is true in the
zero-temperature limit, our numerical simulations reveal that
thermal fluctuations dynamically generate a spin-wave gap
∆. This implies a remarkable situation in which the elemen-
tary properties of a quasiparticle, such as its effective mass,
are no longer determined by the system’s microscopic pa-
rameters, but instead become state-dependent, allowing them
to be modified by external parameters such as the tempera-
ture T . Our numerical simulations of finite size spin systems
in two and three spatial dimensions indicate a characteristic
scaling of this fluctuation-induced spin wave gap of the form
∆(T ) ∼ Tµ where µ = 1/4 (µ ≈ 1/2) at low (intermediate)
temperatures. We explain these results using a phenomeno-
logical theory that takes into account the quartic oscillations
and their coupling to other quadratic modes that inevitably ex-
ist in the system. Specifically, this theory reveals an intriguing
finite-size effect resulting from the small number [O(1)] of
quartic modes that couple to O(N) quadratic modes (where
N is the total number of spins). Consequently, although the
low-temperature gap scaling with µ = 1/4 is a direct conse-
quence of the quartic oscillation, the low-temperature regime
in which it occurs vanishes in the thermodynamic limit, leav-
ing only the thermally generated gap with µ = 1/2.

Through our detailed understanding of the gap scaling asso-
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FIG. 1. (a) Zero temperature phase diagram for the J1-J2-J3 Heisen-
berg model on the square lattice, with ferromagnetic J1 < 0. Four
different phases are present: ferromagnetic order with Q = (0, 0)
(purple region), stripe order with Q = (0, π), (π, 0) (light blue re-
gion), one dimensional spiral with Q = (0, Q0), (Q0, 0) (yellow
region), two dimensional spiral with Q = (Q0, Q0) (red region).
The red point corresponds to the specific values of J2 and J3 used
in this work; panels (b) and (c) refer to this point. (b) Energy dif-
ference per spin as a function of the wave vector q of the coplanar
spiral, e(qx, qy)− eGS, where eGS denotes the energy minimum. The
energy minima are at Q = (0,± 2π

5
) and Q = (± 2π

5
, 0). (c) Il-

lustration of the ground state configuration with the spiral along the
ŷ axis. This configuration corresponds to QB = (0,± 2π

5
) (the se-

lected order with associated Bragg peak).

ciated with quartic spin oscillations, we extend previous the-
oretical work on a related type of fluctuation-induced spin-
wave gap that has been predicted in the context of a thermal or
quantum order-by-disorder effect due to an exact but acciden-
tal ground-state zero mode, giving rise to a so-called pseudo-
Goldstone mode [12–15]. In the thermal classical case, the
spin-wave gap was found to scale with the same characteristic
exponent µ = 1/2 [14]. This implies that pseudo-Goldstone
modes do not require the existence of exact ground-state zero
modes, which are rarely found in real materials. Instead, they
can be observed under less stringent conditions in the pres-
ence of quartic potentials, which we demonstrate can occur
under rather general assumptions for isotropic spin systems.

On the experimental front, the dynamical gap generation
atop an anharmonic potential we study may have already been
detected in neutron scattering experiments on magnetic mate-
rials such as the pyrochlore helimagnet ZnCr2Se4 [16, 17] and
the half-Heusler compound GdPtBi [18]. Here, we provide
the theoretical basis for these observations by relating them to
quartic oscillations using a classical description to predict the
ensuing temperature dependence of the spin-wave gap.

Spin Systems and Quartic Perturbations.— To set the stage
for our study of anharmonic spin oscillations in isotropic
spin systems, we first consider a minimal two-dimensional
(2D) square lattice model that supports soft modes in a quar-
tic potential. Later, we will extend this analysis to a three-
dimensional (3D) cubic lattice to confirm that our results ap-
ply to a wider range of spin systems and the more common
3D situation. In the square lattice case, we consider a Heisen-
berg Hamiltonian with exchange couplings extending up to
third-nearest neighbors, with ferromagnetic J1 < 0 and anti-
ferromagnetic J2, J3 > 0 couplings:

H = J1
∑

⟨i<j⟩1

Si·Sj+J2
∑

⟨i<j⟩2

Si·Sj+J3
∑

⟨i<j⟩3

Si·Sj . (1)

Here, ⟨. . .⟩n indicates the sum over the nth-nearest neighbors,
and the spins are treated classically as three-dimensional vec-
tors with unitary norm |Si| = 1. The ground-state spin con-
figuration for Eq. (1) is a coplanar spiral [19],

SGS
i =

cos(Q · ri + ϕ)
sin(Q · ri + ϕ)

0

 , (2)

where Q = (Qx, Qy) is the spiral wave vector, ri is the po-
sition of site i, and ϕ ∈ [0, 2π) is a phase. Without loss of
generality, we assume the spiral to be in the x-y plane and
also set ϕ = 0. The wave vector Q is then determined by sub-
stituting the spiral spin configuration into the Hamiltonian and
identifying the Q that minimizes the system’s energy. We fix
J1 = −1, J2 = 0.476393205, and J3 = 1

2J2 −
1
5 , such that

the ground state is a one-dimensional spiral with two possible
commensurate wave vectors Q = (0,± 2π

5 ) and (± 2π
5 , 0), re-

lated by a π/2 lattice rotation (see Fig. 1). While the commen-
surability of the spiral is irrelevant to the physical properties
that we study herein, it tremendously simplifies the numerical
calculations as it enables periodic boundary conditions.

The continuous O(3) symmetry of the Hamiltonian cannot
be broken at finite temperatures in two dimensions, exclud-
ing a transition into a long-range magnetically ordered phase
[20]. However, the system undergoes a finite-temperature
Ising transition associated with the discrete Z2 symmetry be-
tween the two (energetically degenerate) spiral wave vector
directions [21]. Specifically, the one-dimensional spiral phase
breaks the square lattice’s fourfold rotational symmetry down
to a twofold symmetry, with the spiral oriented along either
of the Cartesian directions (see Fig. 1). The selected ordering
wave vector, QB, is responsible for the Bragg peaks of the
ground-state order, and we refer to the wave vector that is not
selected as QaB, where “aB” stands for anti-Bragg.

This system has two key properties that are essential in har-
boring the physics of anharmonic collective excitations that
we aim to explore. First, the system supports spin oscilla-
tions in an effective quartic potential which correspond to spin
fluctuations in the direction perpendicular to the planar spiral
ground state in Eq. (2) and characterized by the wave vector
QaB. Specifically, we consider Squartic

i as a perturbed state
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FIG. 2. (a) Normalized dynamical structure factor S(q, ω) at q =
QaB for different temperatures, obtained using sMD simulations for
L = 80 in the 2D case. The gray-dashed lines show Lorentzian
function fits. The position of the maximum indicates the gap ∆.
(b) Logarithm of the gap ∆ as a function of the logarithm of the
temperature in the 2D case. To guide the eye, we plot two reference
lines with slopes of 1/4 (blue line) and 1/2 (red line). The colored
points and the dashed lines correspond to the data (with error bars
defined in the SM [22]) and fitting function [Eq. (6)], respectively.
The vertical lines correspond to log10 T

∗ with T ∗ = 6λ/α2, where
the fitted function changes slope for the different sizes. The inset
shows the finite-size scaling analysis for this quantity. (c) The same
information for the 3D model.

about the long-range ordered ground state,

Squartic
i =

1

Ni

SGS
i + δ

 0
0

cos(QaB · ri + ϕ′)

 . (3)

Here δ is the perturbation amplitude, Ni is the site (i)-
dependent normalization to ensure |Squartic

i | = 1, and ϕ′ ∈
[0, 2π). We show in the Supplemental Material (SM) [22]
that such a perturbed non-coplanar state always has a van-
ishing δ2 term in the energy, regardless of the range of the
interactions, as long as the Hamiltonian conserves the C4,
reflection, and translation symmetries of the square lattice.
For our particular set of interactions, the energy per site is
e = eGS + 0.039δ4 + O(δ6) [22]. Second, aside from three
zero modes arising from perturbations with the wave vector
QB — which correspond to global spin rotations that preserve
the spiral order and would represent real Goldstone modes
at QB were the system magnetically long-range ordered at
T > 0 — the system does not exhibit any additional modes
softer than the quartic ones discussed above. In particular, the
system has no accidental ground-state degeneracies [23] lead-
ing to zero modes, such as occurs in the context of order-by-
disorder phenomena [14]. Therefore, the system considered
allows us to focus specifically on the effects of quartic modes,
which have heretofore attracted limited attention.

To further establish the general scope and quantitative va-
lidity of our findings, we extend our analysis to a 3D classical
Heisenberg model on a cubic lattice. As in the 2D case, we
consider a model with general spiral ground states. This is
achieved by using a Hamiltonian with the following interac-
tion parameters: J1 = −1, J2 = 4/[4(4 + 1.8 cos γ)], and
J4 = 1.8/[4(4 + 1.8 cos γ)], where Jn is the coupling be-
tween nth-nearest neighbors [16]. In this case, the ground
state is also given by a coplanar one-dimensional spiral given
by Eq. (2), but with ordering wave vectors Q = (0, 0,±γ),
(0,±γ, 0) or (±γ, 0, 0). We fix γ = 2π/5, yielding again a
five-site periodic spiral. Below a critical temperature Tc, one
of these three spiral configurations is selected, and the perpen-
dicular spin fluctuations with the not-selected wave vectors
correspond to quartic oscillations [22].

There are two main differences between this 3D model and
the 2D model discussed above. First, quartic oscillations can
now involve contributions from two wave vectors, correspond-
ing to the not-selected spirals in the ordered state. Second, in
3D, the SO(3) spin symmetry is explicitly broken in the or-
dered phase below Tc, giving rise to true magnetic long-range
order (we find that both types of symmetry breaking, lattice
rotation and spin rotation, occur at the same critical tempera-
ture Tc).

Numerical simulations.— To investigate the dynamic sig-
natures of quartic modes, we perform classical Monte Carlo
(cMC) [24] and spin molecular dynamics (sMD) [25] sim-
ulations on the models introduced above. Using equili-
brated states generated from cMC as initial configurations for
the sMD simulations, we compute the spin structure factor,
S(Q, ω), as a function of temperature [22]. Specifically, our
focus is on the determination of the excitation gap ∆ at the
wave vector q = QaB of the quartic perturbation in Eq. (3),
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which can be extracted by fitting the spectra with a Lorentzian
function [22].

In the 2D case, the cMC results show that at Tc = 0.071(3)
the system breaks the fourfold lattice rotation symmetry and
develops a one-dimensional spiral along the x̂ or ŷ direction.
Below Tc, S(QaB, ω) displays a peak at a finite frequency
that decreases with temperature [see Fig. 2(a)]. Extracting
the value of the gap for each temperature results in Fig. 2(b),
where we show the gap ∆ as a function of the temperature
in a log-log plot for several square systems with linear sizes
L = 20, 40, 60, and 80. This gap can be attributed to an anhar-
monic effect because linear spin wave theory would predict a
gapless mode at this point as it treats quartic oscillations as
zero modes [16].

In the 3D case, we use cubic systems with N = L3 spins
to compute S(QaB, ω). The cMC calculations show that at
Tc ≃ 0.17(1), the system orders in a one-dimensional spiral
along x̂, ŷ or ẑ. As expected, the dynamical structure factor
at q = QaB1

and q = QaB2
displays a peak at the same

frequency [22]. The results are shown in Fig. 2(c) for L = 10
and 15. The similarities between the results for the 2D and 3D
models show that the gap behavior is a characteristic property
of a system that possesses quartic perturbations.

Overall, our results can be summarized by three key obser-
vations, which we will explain in detail below

1. At low temperatures, the gap is well described by the
scaling ∆ ∼ T 1/4 for both the 2D and 3D models, as
can be seen in Fig. 2(b) and 2(c), respectively.

2. At higher temperatures, the gap increases faster than
∆ ∼ T 1/4. Remarkably, and maybe counter-intuitively,
the largest gap is found right below the phase transition,
although the order nearly vanishes in this regime. This
indicates that the gap at QaB is a robust feature of the
ordered phase.

3. Finite-size effects are more prominent at low T , where
∆ ∼ T 1/4, as seen in Fig. 2(b) and 2(c).

The T 1/4 behavior.— To explain the origin of the exponent
1/4 observed in Fig. 2 at low temperatures, we model the sys-
tem’s dynamics by a simple classical oscillation in a quartic
potential and in thermal equilibrium, described by the Hamil-
tonian

H4 =
p2

2m
+ λx4, (4)

where the first term is an effective kinetic term. Then, by a
straightforward dimensional analysis, one finds that the fre-
quency of the oscillation scales as ω ∼ λ1/4E1/4 for an ex-
citation of energy E. Associating the frequency with the gap,
∆ ∼ ω, and taking into account E ∼ T , we obtain ∆ ∼ T 1/4,
explaining our numerical observations (see End Matter for an
alternative numerical approach to the T 1/4 gap scaling). The
effective Hamiltonian H4 accounts only for the energetic con-
tribution of the quartic mode, and is therefore expected to be
accurate only at very low temperatures.

Entropic effects.— At moderate finite temperatures, the en-
tropic effects must be considered. These contributions can be

effectively modeled by including an additional ∼ Tx2 term
in Eq. (4), which arises from integrating out other spin-wave
modes that interact with the quartic mode. This leads to a
minimal modified effective Hamiltonian

Heff = H4 + αTx2 =
p2

2m
+ λx4 + αTx2. (5)

The additional term is negligible at very low temperatures,
but it becomes comparable to, and ultimately dominates over
the quartic term as temperature increases. To determine the
temperature dependence of the frequency of the oscillator
in Eq. (5), we perform a mean-field decoupling of the x4

term [22], yielding

∆ =

√
αT

m

(
1 +

√
1 +

2T ∗

T

)1/2

, (6)

where T ∗ ≡ 6λ/α2. This result has two interesting limits: i)
for T ≫ T ∗, where the entropic contribution dominates over
the quartic term, ∆ ∼

√
T , and ii) for T ≪ T ∗, where the

quartic term remains dominant, ∆ ∼ T 1/4. Thus, the temper-
ature T ∗ sets a rough crossover energy scale below which the
quartic mode gap scales as T 1/4 and above which it follows√
T . This result not only explains our observation that the gap

increases more rapidly at higher temperatures, but also pro-
vides a phenomenological equation that can be fitted to our
numerical simulations.

In Fig. 2(b) and 2(c), we fit our numerical results for the
2D and 3D models to the prediction of the phenomenological
theory of Eq. (6) [22]. For both models, we find a good agree-
ment between the simulations and the phenomenological the-
ory, especially at low temperatures. The region where the phe-
nomenological model predicts a ∼

√
T behavior is harder to

identify, but is still identifiable in our numerical data. Specif-
ically, the red line in Fig. 2(b) corresponds to a plain ∼

√
T

function demonstrating that in a small intermediate tempera-
ture regime, our results indeed follow this behavior approxi-
mately. The vertical lines in Fig. 2(b) and 2(c) show the char-
acteristic crossover temperature T ∗ obtained from our fits.

Finally, for both the 2D and 3D models, significant de-
viations between the simulations and the phenomenological
model occur near the critical temperature Tc. This is expected,
since the order parameter fluctuations become strong and the
fundamental underlying assumption of a state selection with
wave vector QB ceases to be fulfilled.

Finite-size effects.— As stated previously, finite-size effects
become important at low temperatures, which is also evident
from the L-dependent crossover temperatures T ∗ highlighted
in Fig. 2(b) and 2(c). To explain this, we formally derive here
the phenomenological model of Eq. (5) presented above based
on heuristic arguments. The first step consists of writing the
spins in terms of canonically conjugate variables {xi, pj} =
δij ,

Si =

√
1− 1

4
(x2

i + p2i )xi x̂i +

√
1− 1

4
(x2

i + p2i ) pi ŷi

+

[
1− 1

2
(x2

i + p2i )

]
ẑi, (7)
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where {x̂i, ŷi, ẑi} is any right-handed local orthogonal
frame. This is a faithful representation of spins since
{xi, pj} = δij ensures the canonical Poisson bracket rela-
tion for the components of Si. Inserting Eq. (7) into the spin
Hamiltonians above, with the local frame aligned with the
ground-state spiral ordering at wave vector QB, and Taylor
expanding in xi and pi, allows us to isolate the quartic mode
and derive the phenomenological model (see details in End
Matter). The key finding is that λ in Eq. (5) depends on the
system size as λ ∼ 1/N . This result can be traced back to a
prefactor 1/

√
N in the Fourier transform, and implies that the

crossover temperature behaves as T ∗ ∼ 1/N , which is con-
firmed by our numerical results [inset of Fig. 2(b)]. This also
affects the low-temperature regime, where the gap behaves as
∆ ∼ (T/N)1/4.

This result not only explains our observations in the nu-
merical calculations, but also provides important non-trivial
information about the approach to the thermodynamic limit
N → ∞. On one hand, the gap closes in the low-temperature
regime, ∆ → 0 for N → ∞. At the same time, the crossover
temperature T ∗ vanishes for N → ∞. This implies that only
the ∆ ∼

√
T regime arising from entropic effects survives

for large enough systems. Interestingly, this is the same result
that was previously found for order-by-thermal-disorder cases
with exact zero modes arising from continuous accidental de-
generacies [14].

Although the quartic term in the energy is suppressed by
a factor of 1/N for individual magnon excitations, it can re-
emerge in other settings. For example, in the presence of true
or accidental degeneracies, one can form wide domain walls
connecting states within the degenerate manifold at vanishing
(or nearly vanishing) cost [26]. In our case, however, domain
walls between the two symmetry-related incommensurate or-
ders cost O(J) because of the quartic potential. Relatedly,
interactions among parametrically pumped magnons in ferro-
magnets can overcome the same 1/N suppression when the
mode population is large, leading to a range of nonlinear dy-

namical phenomena [27].

Conclusion.— In this Letter, we demonstrated that quartic
potentials which generically arise in isotropic spiral spin sys-
tems lead to a distinctive spin-wave gap of the form ∆ ∼

√
T

in the thermodynamic limit. Interestingly, this gap scaling
does not result directly from spin oscillations in the quartic
potential, but rather from entropic effects that consider the
interaction between the quartic mode and the other (macro-
scopic number of) harmonic modes. The absence of direct
signatures of quartic oscillation (which lead to a gap scaling
∆ ∼ T 1/4) in the thermodynamic limit is a subtle finite-size
effect, as we showed using analytical and numerical methods.

The firm understanding of the role of quartic oscillations
developed here for classical spin systems paves the way for
future investigations of similar quantum effects at zero and
nonzero temperature [15]. By being controlled by the inverse
spin length 1/S, such effects are expected to conspire with
thermal fluctuations to again generate dynamical spin wave
gaps ∆. The ultimate goal of such studies will be to investi-
gate the impact of finite spin lengths 1/S > 0 on the tempera-
ture dependence ∆(T ) in isotropic spiral spin systems and, in
a parallel pursuit, seek to expose such behavior in real candi-
date materials such as ZnCr2Se4 [17].
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End Matter

Section A: Numerical simulation of the T 1/4 behavior.—
The quartic perturbation in Eq. (3) is energetically softer than
all other possible deformations of the ground state (apart from
global spin rotations). Therefore, we can alternatively access
the low-temperature behavior by initializing the system pre-
cisely in the exact perturbed state described by Eq. (3), and
then obtain its dynamics via sMD for varying perturbation
strengths δ. The sMD results for the 2D model then show
that the dynamical spin structure factor S(QaB, ω) at the anti-
Bragg point is gapped and the gap ∆ scales linearly with the
perturbation strength, ∆ ∼ δ (see Fig. E1). Based on this re-
sult, we can infer the temperature dependence of the gap by
considering that the energy for a quartic mode is E ∼ δ4, and
E ∼ T by the principle of equipartition. Thus, we find that
δ ∼ T 1/4 yields a gap that scales as ∆ ∼ T 1/4 in agreement
with the dimensional analysis presented in the main text.

Section B: Derivation of the phenomenological model.—
To derive the phenomenological quartic oscillator model from
the microscopic spin Hamiltonian, we start from a different
representation of the classical spins:

Si =

√
1− 1

4
(x2

i + p2i )xi x̂i +

√
1− 1

4
(x2

i + p2i ) pi ŷi

+

[
1− 1

2
(x2

i + p2i )

]
ẑi, (E1)

where the real variables xi, pi satisfy the Poisson bracket re-
lation {xi, pj} = δij , and {x̂i, ŷi, ẑi} is any right-handed
local orthogonal coordinate frame [35]. This representation,
together with the Poisson bracket relation of xi and pi re-
produces the canonical Poisson bracket for spin components
{Sη

i , S
ρ
j } = δij

∑
σ ϵηρσS

σ
i . We further choose the local
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https://doi.org/10.1103/PhysRevLett.62.2056
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FIG. E1. Gap computed as the maximum of S(QaB, ω) as a function
of the perturbation strength δ for the 2D model. The data are fitted
with a linear function (m ≈ 0.4).

frame {x̂i, ŷi, ẑi} to be aligned with the ground-state spiral
ordering at wave vector QB

x̂i = − sin(QB · ri) x̂+ cos(QB · ri) ŷ,
ŷi = ẑ,

ẑi = cos(QB · ri) x̂+ sin(QB · ri) ŷ, (E2)

where {x̂, ŷ, ẑ} are the Cartesian directions in the global co-
ordinate frame. Substituting Eqs. (E1) and (E2) into the mi-
croscopic spin Hamiltonians, Taylor expanding in xi, pi, and
keeping terms up to quadratic order, yields the energy

H2 =
1

2

∑
i,ν

Jν
[
cos(QB · ν)

(
xixi+ν − x2

i − p2i
)
+ pipi+ν

]
,

(E3)
where Jν denotes the coupling strength on the bond ν from
the lattice site i. Further, considering the Fourier transform

xi =
1√
N

∑
k

eik·rixk, pi =
1√
N

∑
k

eik·ripk, (E4)

with N being the number of spins in the system, we obtain

H2 =
1

2

∑
k

[Lk x−kxk +Mk p−kpk] , (E5)

where

Lk =
∑
ν

Jν cos(QB · ν)
(
eik·ν − 1

)
,

Mk =
∑
ν

Jν
(
eik·ν − cos(QB · ν)

)
. (E6)

In reciprocal space, we have the Poisson bracket {xk, pk′} =
δk+k′ which thus implies the conjugate variable to xk is p−k.
Therefore, the quadratic Hamiltonian in Eq. (E5) describes a
simple harmonic oscillator with frequency ωk =

√
LkMk.

Thus, a zero mode occurs when Lk = 0, Mk = 0, or both
are zero. We find L0 = 0 and MQB

= MQaB
= 0. To focus

on the mode at QaB, we retain only the wave vectors QaB and
−QaB in the Fourier expansion (as conjugate variables appear
at k and −k):

xi =
1√
N

(
eiQaB·rixQaB

+ e−iQaB·rix−QaB

)
,

pi =
1√
N

(
eiQaB·ripQaB

+ e−iQaB·rip−QaB

)
. (E7)

The real valuedness of xi and pi implies the complex conju-
gate x∗

−k = xk and p∗−k = pk for any k. Making use of these
conditions and the relation {xk, pk′} = δk+k′ , we rewrite the
Fourier components as the following

xQaB
= (X + iP̃ )/

√
2, x−QaB

= (X − iP̃ )/
√
2,

pQaB
= (P − iX̃)/

√
2, p−QaB

= (P + iX̃)/
√
2,(E8)

where X,P and X̃, P̃ satisfy the Poisson bracket relations
{X,P} = {X̃, P̃} = 1, and other Poisson brackets are zero.
Eq. (E7) then becomes

xi =

√
2

N

(
X cos(QaB · ri)− P̃ sin(QaB · ri)

)
,

pi =

√
2

N

(
P cos(QaB · ri) + X̃ sin(QaB · ri)

)
. (E9)

Substituting Eq. (E9) into Eq. (E1), Taylor expanding it up
to quartic order in X,P, X̃, P̃ , and then inserting the expan-
sion in the microscopic spin Hamiltonian yields an effective
quartic oscillator Hamiltonian, which includes several quartic
combinations of those four variables. Most importantly, these
quartic terms in the Hamiltonian have an explicit system-size
dependence, which is O(1/N); Eq. (E9) shows that each quar-
tic term is O(1/N2), with the microscopic spin Hamiltonian
having a sum over bonds, which gives a contribution of O(N)
– combining these contributions, we ultimately get a 1/N
coefficient for the quartic terms in the final effective quartic
Hamiltonian. We thus see that the prefactor of the quartic po-
tential term in Eq. (5) scales as λ ∼ 1/N .

With the proper N -dependent scaling of the effective quar-
tic Hamiltonian in reciprocal space at hand, proceeding next
with a mean-field decoupling of the quartic terms as done for
Eq. (5), yields an effective simple harmonic oscillator whose
frequency – and hence the gap ∆ – has the same form as in
Eq. (6), with the crossover temperature T ∗ ∼ 1/N . Thus, the
gap at low temperatures behaves as ∆ ∼ (T/N)1/4, while at
high temperatures, where the entropic contribution dominates,
∆ ∼

√
T — independent of the system size. Consequently,

in the thermodynamic limit (N → ∞), T ∗ → 0 and only one
scaling relation — ∆ ∼

√
T — remains.
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S1. Energy expansion of the quartic perturbation

In this section, we present the series expansion of the energy for a spiral state perturbed by a perpendicular perturbation with
wave vector QaB in both the square and cubic lattices, demonstrating the quartic dependence of the energy of such a state on the
perturbation amplitude.

1. Square lattice

To illustrate how quartic modes emerge in a spiral ground state perturbed by a perpendicular perturbation with a wave vector
corresponding to the non-selected spiral, QaB, we consider a generic spiral with period L. First, it is useful to rewrite the
perturbed state given in Eq. (3) of the main text as:

Squartic
i =

1√
1 + δ2 cos2

(
2π
L x
)
 cos

(
2π
L y
)

sin
(
2π
L y
)

δ cos
(
2π
L x
)
 , (S1)

where the position of site i is given by ri = (x, y) and we set QB = (0, 2π/L), QaB = (2π/L, 0). Furthermore, we have set
the arbitrary phases to be ϕ = ϕ′ = 0. Next, consider the energy term associated with the nth nearest-neighbor interactions:

Jn
∑
i

∑
j∈nth n.n of i

Si · Sj . (S2)

This term is proportional to the scalar product between the spin at site ri = (x, y) and its nth nearest neighbors, given by
rj = (x± a, y ± b) and (x± b, y ± a). To avoid double counting, we include only one term from each pair related by a global
minus sign: (x + a, y + b), (x − a, y + b), (x − b, y + a), and (x − b, y − a). These four terms form two pairs related by a
90◦ rotational symmetry around the ẑ axis. To show that the quadratic term vanishes, it is sufficient to consider one such pair,
summed over the entire lattice: ∑

x,y

S(x, y) · S(x+ a, y + b) + S(x, y) · S(x− b, y + a). (S3)

Expanding the scalar products in a series of δ, we obtain for the second-order terms the following expression:

∑
x,y

δ2 cos

(
2π

L
x

)[
cos

(
2π

L
(x+ a)

)
+ cos

(
2π

L
(x− b)

)]

− δ2

2
cos

(
2π

L
b

)[
cos2

(
2π

L
(x+ a)

)
+ cos2

(
2π

L
x

)]
− δ2

2
cos

(
2π

L
a

)[
cos2

(
2π

L
(x− b)

)
+ cos2

(
2π

L
x

)]
.

(S4)
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Using algebraic manipulations and the fact that summing over the entire lattice causes terms proportional to cos
(
2π
L x
)

and
sin
(
2π
L x
)
, or equivalent expressions for y, to vanish, we arrive at:∑

x,y

δ2

2
cos

(
4π

L
x

)[
cos

(
2π

L
b

)
sin2

(
2π

L
a

)
+ sin

(
2π

L
b

)
cos2

(
2π

L
a

)]
= 0. (S5)

This final expression vanishes when summing over the entire lattice. Therefore, while the existence of a spiral ground state
depends on the Hamiltonian, the quartic nature of the mode involving a perpendicular perturbation with the wave vector of the
non-selected spiral is a general property of the spiral ground state, independent of the specific Hamiltonian. The same argument
also applies to two-dimensional spirals.

The energy expansion up to the fourth order for the state in Eq. (S1), specific to the square lattice discussed in the main text,
is given by

e(δ) =

3∑
i=1

ei(δ) ≈ −1.00729 + 0.03906δ4 +O(δ6), (S6)

where ei with i = 1, 2, 3 are the energy contributions from the different lattice bonds with couplings J1, J2, J3, respectively.

2. Cubic lattice

To compute the energy expansion, we consider a state similar to the one in Eq. (S1), generalized to the equal superposition of
the two quartic perturbations Sz

i ∼ δ[cos(QaB1
· ri) + cos(QaB2

· ri)]. We rewrite the state as:

Squartic
i =

1√
1 + δ2(cos2 ( 2πL x) + cos2 ( 2πL z))

 cos ( 2πL y)
sin ( 2πL y)

δ(cos ( 2πL x) + cos ( 2πL z))

 , (S7)

where ri = (x, y, z), QB = (0, 2π
L , 0), QaB1 = ( 2πL , 0, 0), and QaB2 = (0, 0, 2π

L ). To show that the terms proportional to δ2 in
the expression in Eq. (S2) vanish, the procedure is analogous to the one presented for the square lattice. The only difference in the
cubic lattice case is that we must consider three contributions, as the perturbation consists of two terms. Specifically, the scalar
product is taken between the spin at site ri = (x, y, z) and three of its nth nearest neighbors: (1) the spin at (x+ a, y+ b, z+ c)
(2) the spin at (x− b, y + a, z + c) obtained by a 90◦ rotation around the ẑ-axis (3) the spin at (x+ a, y − c, z + b) obtained by
a 90◦ rotation around the x̂-axis.

The energy expansion up to the fourth order for the state in Eq. (S7), specific to the cubic lattice discussed in the main text, is
given by

e(δ) = e1(δ) + e2(δ) + e4(δ) ≈ −1.48114 + 0.153863δ4 +O(δ6). (S8)

S2. Details on the Monte Carlo simulations

To generate the spin configurations needed for the spin Molecular Dynamics (sMD) simulations, we perform classical Monte
Carlo (cMC) calculations on the square and cubic lattices. We use a particular version of the single-spin update algorithm called
the adaptive Gaussian step algorithm, which allows for a controlled and fixed 50% acceptance ratio at all temperatures [S1].
Additionally, for each spin-update trial, we perform two over-relaxation steps. Then, at a given temperature, we perform 5×105

cMC steps consisting each of N single-spin update trials and 2N over-relaxation steps, where N is the number of spins in the
system. Data for measurements is collected during the second half of the cMC steps.

For both lattices, we perform two types of simulations: cooling down and heating, both with logarithmic temperature steps.
For the cooling-down simulations, we do 120 temperature steps from T/J = 2 down to T/J = 0.01, where J is the largest
coupling. Then we perform an extra 31 steps down to T/J = 10−12. For the heating simulations, we depart from a ground-state
configuration and perform 34 logarithmic steps from T/J = 10−12 up to 10−1 (16 steps in the cubic case). We save the last
configuration at each temperature as a benchmark point.

From each configuration at a desired temperature, we generate 120 new spin configurations for the Molecular Dynamics
simulations. This is done by performing 5 × 105 cMC steps between spin configurations, implying 60 million cMC steps
between the first and last spin configurations at a given temperature.

In the case of the square lattice, we do this for N = L2 lattices with L = 20, 40, 60, and 80. In the case of the cubic lattice,
we do this for N = L3 lattices with L = 5, 10, 15, and 20. In both cases, we use periodical boundary conditions, which do not
frustrate the 5-site spiral ground state.
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FIG. S1. Classical Monte Carlo calculations for the specific heat cv(T ). The data from the cooling down simulations is shown in a continuous
line, while the results from heating up are shown by the full dots. The temperature is shown in T/J , where J is the largest coupling in each
case. Panels (a) and (b) correspond to the square and cubic lattice models, respectively.

For completeness, we show in Fig. S1 the specific heat cv(T ) from the cMC calculations; in panel (a) for the square lattice
model and in panel (b) for the cubic lattice. In both cases, the lines indicate the calculations for the cooling down simulations,
while the dots are the results for the heating up simulations, noting an excellent agreement between both. Also, both calculations
find evidence for only a single phase transition into a spiral phase.

S3. Details on the spin Molecular Dynamics simulations

In this section, we explain how the spin Molecular Dynamics (sMD) simulations are performed and how the dynamical
structure factor is computed within this framework.

1. Overview of the method and numerical details

The sMD simulations consist of numerically integrating the classical equations of motion for the spins:

dSi

dt
= Si × hi, (S1)

where hi = − ∂H
∂Si

is the local effective field acting on Si, arising from interactions with neighboring spins. These equations
correspond to the Landau-Lifshitz equations without the damping term [S2]. The numerical integration is carried out using the
Runge-Kutta Cash-Karp method, implemented through the Boost C++ Library [S3].

2. Computing the dynamical structure factor

The central quantity of our study is the dynamical structure factor

S(q, ω) = 1

2πN

N∑
i,j=1

∫ ∞

−∞
eiωte−iq(ri−rj)⟨Si(0) · Sj(t)⟩dt (S2)

evaluated at q = QaB. To compute S(QaB, ω), we follow the approach of Ref. [S4]. Specifically, the spin Fourier transform for
each spin component is computed during the simulation. At the end of the time evolution, S(QaB, ω) is obtained by multiplying
the Fourier transform by its complex conjugate and summing over the components. For the calculation of S(QaB, ω) at finite
temperature, the results are obtained by averaging over 120 simulations. Each simulation starts from an independent, equilibrated
MC configuration, which is obtained by heating up the system starting from zero temperature.
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S4. Fitting procedures

In this section, we describe the fitting procedures used in this work. First, we explain how the gap value is extracted from the
dynamical structure factor. Then, we discuss how these extracted values are fitted using the function in Eq. (6) of the main text,
which is derived from the phenomenological model. The results of the second fit are shown in Figs. 2(b) and 2(c).

1. Gap extraction from the dynamical structure factor

The value of the gap at q = QaB is obtained by fitting S(QaB, ω) with a Lorentzian function multiplied by a scaling factor
A:

f(x) = A
γ

π[γ2 + (x− x0)2]
. (S1)

The value of the gap corresponds to the position of the maximum, given by x0. For each linear size and temperature, we compute
the difference between the gap value extracted from the fit and the position of the maximum of S(QaB, ω). Since all observed
differences lie within 3γ/4 (square lattice) and γ/2 (cubic lattice), we adopt these values as estimates of the error.

2. Fitting the simulated gaps

The gap values are fitted using the function in Eq. (6) of the main text, which describes the gap behavior derived from the
phenomenological model. At low temperatures, this function predicts ∆ ∼ T 1/4. This scaling is confirmed by the linear fit
of log T versus log∆, shown by the blue line in Fig. 2(b) for the square lattice and the blue line in Fig. 2(c) for the cubic
lattice. Thus, we verify that the function in Eq. (6) provides a good fit to the data at low temperatures. Starting from the
lowest temperatures, we gradually increase the number of data points used in the fit. For each step, we compute χ2/df, where
df = n − 2 is the number of degrees of freedom (with n being the number of points used, minus two since the fit depends on
two parameters). We then compare χ2/df with the chi-squared critical value at a 95% confidence level, denoted as χ2

0.05/df.
The computed χ2/df values and corresponding critical values for the two lattices are shown in Fig. S2. The fits presented in
Figs. 2(b) and 2(c) correspond to the maximum number of points where χ2/df remains below the critical threshold across all
linear system sizes. This results in n = 19 for the square lattice and n = 8 for the cubic lattice.

FIG. S2. (a) The reduced chi-squared per degree of freedom, χ2/df, as a function of n, the number of points used to fit the gap values with
the function in Eq. (6), for the square lattice with L = 20, 40, 60, 80. Since this function depends on two parameters, the degrees of freedom
are given by n − 2. The black squares represent the critical value χ2

0.05/df. The yellow region highlights the maximum number of points
for which χ2/df remains below the critical chi-squared value for all system sizes. These selected points, starting from the lowest-temperature
point, are those used in the fit shown in Fig. 2(b) of the main text. (b) Same as (a) for the cubic lattice, with L = 10, 15.
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S5. Additional data for the cubic lattice

In this section, we present additional data for the cubic lattice. Specifically, the energy gap as a function of the perturbation
strength, and the gap as a function of temperature at the two anti-Bragg wave vectors.

1. Dynamical gap as a function of the perturbation strength

Similarly to the square lattice discussed in the End Matter, we compute S(QaB, ω), starting from a configuration in which the
quartic modes are excited directly, using the expression in Eq. (S7). The sMD simulations show that S(QaB1

, ω) and S(QaB2
, ω)

display a peak at the same frequency, that scales linearly with δ, see Fig. S3.

FIG. S3. (a) Normalized dynamical structure factor S(q, ω) at q = QaB for different values of the perturbation strength δ, obtained from
sMD simulations for L = 15. The calculation is performed at both QaB1 and QaB2 , and since the resulting curves are identical, we use the
notation QaB in the plot to represent both points. (b) Gap ∆ at q = QaB1 , equal to the one at q = QaB2 , as a function of the perturbation
strength δ. The data are fitted with a linear function (m ≈ 0.32).

2. Equivalence of the gap at the anti-Bragg points

As explained in the main text, the cubic lattice exhibits quartic modes at the two not-selected spiral wave vectors denoted as
QaB1

and QaB2
. As shown in Fig. S4, the gap at QaB1

and QaB2
is the same, which agrees with the equivalence of these points.

This agreement further confirms that the initial configurations are equilibrated correctly. In Fig. 2(c) of the main text, the gap
values are obtained from the average of the gaps at the two anti-Bragg points.

S6. Frequency of the quartic oscillator in the presence of the entropic term

We consider a phenomenological model of a quartic oscillator with an additional entropic contribution, described by the
effective Hamiltonian

Heff =
p2

2m
+ λx4 + αTx2, (S1)

where the first two terms are energetic contributions and the last term arises from entropy (see the main text). To estimate the
frequency of this oscillator, we apply a mean-field decoupling of the quartic term as x4 ≈ 6 ⟨x2⟩x2, where ⟨· · ·⟩ denotes thermal
average, assuming thermal equilibrium at temperature T . The factor of 6 comes from the number of ways to contract x4 into a
product involving ⟨x2⟩x2. This decoupling leads to an effective quadratic Hamiltonian

Hquad ≈ p2

2m
+
(
6λ⟨x2⟩+ αT

)
x2. (S2)
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FIG. S4. Values of the gap ∆ as a function of temperature, extracted respectively from S(QaB1 , ω) and S(QaB2 , ω), for the cubic system
with linear size L = 15.

For such a quadratic Hamiltonian, the thermal average

⟨x2⟩ = T

mω2
=

T

2 (6λ⟨x2⟩+ αT )
. (S3)

This equation can be solved self-consistently for ⟨x2⟩ to find the frequency ω or, alternatively, one may rewrite Eq. (S3) as

mω2

2
=

6λT

mω2
+ αT. (S4)

This is a quadratic equation in ω, giving

ω =

√
αT

m

(
1 +

√
1 +

2T ∗

T

)1/2

, (S5)

where T ∗ = 6λ/α2. This frequency is identified as the thermal gap ∆ of the quartic mode at temperature T .
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