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Supplementary Fig. 1. First, second and third nearest neighbours on the pyrochlore lattice: We show

the bonds corresponding to (a) the first nearest neighbours (J), (b) the second nearest neighbours (J2) and

(c) the colinear third nearest neighbours (J3a).
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Supplementary Fig. 2. Spin and charge correlation functions in spin slush: (a) Here we show correlation

function of the spin ice charges in the spin slush state for a system of 243 cubic unit cells. Liquid-like

correlations exist with characteristic wave-vector k∗. In contrast with the spin-spin correlation function, the

intensity of the sharp features are much more uniform. (b) Here we show the spin-spin correlation function

as defined in Supplementary Eq. (4) for a system of 243 cubic unit cells. Liquid-like correlations exist with

characteristic wave-vector k∗.
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Supplementary Fig. 3. Liquid-like charge correlations in spin slush: We illustrate the full structure of the

charge-charge correlations function S Q(k), defined in Supplementary Eq. (3), at T/J = 0.23 for a system of

243 cubic cells. The high intensity regions approximately follow a sphere of radius k∗ ∼ 0.5(2π/a) (shown

by white lines) centered about zero wave-vector, reminiscent of an isotropic liquid.

nc = 2 nc = 4 nc = 5

nc = 19

Supplementary Fig. 4. Large linear single-spin flip dynamical clusters: We illustrate generalizations

of the nc = 1 dynamical cluster discussed in the main text to arbitrary size nc. By flipping neighbouring

spins, the double-charge can hop along the length of these chains, rendering all the spins highlighted in gold

dynamical.
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nc = 24

I I I
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Supplementary Fig. 5. Large linear spin-exchange dynamical clusters: We illustrate a family of dynam-

ical clusters for spin-exchange dynamics with arbitrary size nc. By swapping pairs of neighbouring spins,

the single-charge at tetrahedron I attached to the chain can hop along the length of the chain, rendering all

the spins highlighted in gold dynamical.

≡ |1〉

≡ |2〉

≡ |3〉

≡ |4〉

Supplementary Fig. 6. States accessible by application in a transverse field: We show the four states of

an nc = 3 cluster that are linked by the application of a transverse field as shown in Supplementary Eq. (5).

The full cluster in shown on the left, while the three relevant dynamical spins are shown on the right. The

spins highlighted in gold in a given state are flippable.
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SUPPLEMENTARY NOTES

Supplementary Note 1

Ground states along extended spin ice line

In this section we sketch a proof that the ground states for 0 ≤ J′ < J/4 are the two-in/two-out
spin ice manifold. First recall the definition of J, J2 and J3a, as explicitly shown in Supplementary
Fig. 1. Consider the decomposition of H into contributions local to each pair of tetrahedra, i.e.
one writes the total energy as H ≡

∑
〈IJ〉HIJ(σ) where

HIJ(σ) =
J
4

∑
〈i j〉∈I

σiσ j +
∑
〈i j〉∈J

σiσ j

 + J2

∑
〈〈i j〉〉∈〈IJ〉

σiσ j + J3a

∑
〈〈〈i j〉〉〉∈〈IJ〉

σiσ j. (1)

Note that HIJ(σ) depends only on the seven spins that belong to the tetrahedron pair 〈IJ〉. For a
given choice of J, J2 and J3a we define the ground state energy of this seven site system as E∗0.
Now suppose we have some configuration of spins σ∗i that has the following property: each pair
of tetrahedra has minimum energy with respect to HIJ(σ), that is HIJ(σ∗) = E∗0 for all pairs 〈IJ〉.
Informally, this states that the two tetrahedron ground states can be tiled across the full lattice in a
consistent way. We then can infer that σ∗ is a ground state of the full model H. The argument is a
simple inequality; since HIJ(σ) ≥ E∗0 for all states σ by definition, we can say that

H =
∑
〈IJ〉

HIJ(σ) ≥
∑
〈IJ〉

E∗0 = E∗, (2)

where E∗ is the energy of the state σ∗. Thus H ≥ E∗ for all states σ and so σ∗ is part of the ground
state manifold. Enumerating the 27 states of the two tetrahedron system and minimizing HIJ(σ),
one can thus show that the QI = 0, SI states are the ground states for 0 ≤ J′ < J/4.

Supplementary Note 2

Spin and charge correlations in spin slush

Here we provide further evidence of the intermediate range correlations in the SS phase at
J′ = J/4 shown in Fig. 4 of the main text. In Supplementary Fig. 2 we show the charge-charge
correlation function

S Q(k) ≡
1

Nd

∑
IJ

eik·(RI−RJ)〈QIQJ〉, (3)

where Nd = N/2 is the number of dual diamond lattice sites and RI are the sites of the dual di-
amond lattice. The sharp, liquid-like features found in I(k) are present, but with a more uniform
intensity, consistent with the charges forming intermediate range structures due to the short-range
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attraction induces by J2 and J3a. A three-dimensional view, in the full [hkl] space is shown in Sup-
plementary Fig. 3. In Supplementary Fig. 2 we show the spin-spin correlation function, without
the complicating effects of the transverse projection or local axes for the moments. Explicitly, we
compute

S (k) ≡
1
N

∑
i j

〈σiσ j〉eik·(ri−r j). (4)

The same sharp, ring-like features are seen in each scattering plane, as in the transverse moment-
moment correlator shown in Fig. 4 of the main text.

Supplementary Note 3

Zoo of dynamical clusters

We illustrate some large dynamical clusters for single-spin flip dynamics that can be con-
structed directly from the SS rules. First, we consider a generalization of the nc = 1 cluster
shown in Fig. 6 of the main text. One can easily append further single charges to the cluster to
enlarge it. We show several of these larger linear clusters in Supplementary Fig. 4. For each, all of
the central spins (highlighted in gold) are dynamic, though not simultaneously. At any given point
in time, only the central spins that belong to the double charge tetrahedra can be flipped. This al-
lows the double charge to effectively hop randomly along the chain. We note that the topology of
these clusters is flexible; the linear geometry shown here is for illustration purposes, it can be bent
at any of the single charges. More complicated structures of this sort can be setup (trees, loops,
etc) that allow the double charge to hop. Similar clusters can be constructed for spin-exchange
dynamics, where two neighbouring spins are swapped. We illustrate one of these large clusters in
Supplementary Fig. 5. The protruding single-charge at tetrahedron I on the far left can hop along
the chain by swapping neighbouring pairs of spins.

Supplementary Note 4

Effect of transverse field

To gain some understanding of the quantum effects acting within the SS manifold, we consider
a simple, non-trivial cluster under the application of a transverse field at first order in perturbation
theory. Similar considerations apply for transverse exchange. We start with the interaction:

V ≡ −Γ
∑

i

σx
i , (5)

with Γ > 0. At first order we must diagonalize the interaction V projected into the SS manifold.
The connection to the single-spin flip dynamics is manifest here; the non-zero matrix elements at
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first-order in perturbation theory correspond to those spins that can be flipped while remaining in
the ground state manifold, i.e. the dynamical spins. We will ignore the rest of the lattice in this
analysis, treating only this one block of the projected interaction V describing a single dynamical
cluster. We take the cluster shown in Supplementary Fig. 6 where there are nc = 3 dynamical spins
and four accessible states. We define a projection into these four states as

P ≡
4∑

m=1

|m〉 〈m| . (6)

By inspection (see Supplementary Fig. 6), the matrix elements within this subspace are easily
found to be

PV |1〉 = −Γ |2〉 , PV |2〉 = −Γ (|1〉 + |3〉) ,

PV |3〉 = −Γ (|2〉 + |4〉) , PV |4〉 = −Γ |3〉 . (7)

More explicitly, the first-order correction to the energy in the cluster is obtained from diagonalizing
the matrix

PVP ≡ −Γ


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 . (8)

This can be done easily, with energy corrections

δE = ±Γ

1 −
√

5
2

 , ±Γ

1 +
√

5
2

 . (9)

The lowest energy configuration of this cluster corresponds to δE = −Γ(1+
√

5)/2 with eigenvector

|0〉 ∝ 2 (|1〉 + |4〉) + (1 +
√

5) (|2〉 + |3〉) . (10)

More generally, for such a linear cluster of nc spins, this is equivalent to a hopping problem on
nc + 1 sites with open boundary conditions. Since the non-zero off-diagonal elements are constant,
the eigenvalues and eigenvectors can be found recursively. The energies are given by

δEk = −2Γ cos
(
πk

nc + 2

)
, (11)

for k = 1, 2, . . . , nc + 1. The ground state corresponds to k = 1 and takes the form

|0〉 ∝
nc+1∑
m=1

sin
[

mπ
nc + 2

]
|m〉 . (12)

This state is delocalized across all the nc + 1 states, with more weight in the states away from the
end states |1〉 and |nc + 1〉. At large nc � 1 the energy gain due to the transverse field is thus

δE1 = −2Γ cos
(

π

nc + 2

)
≈ −2Γ + O(n−2

c ), (13)

or ∼ −2Γ/nc per dynamical site, as quoted in the main text. Periodic versions of these dynamical
clusters can also be constructed by connecting the ends and can be analyzed similarly.
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