
ARTICLE

Received 11 Jan 2016 | Accepted 14 Jun 2016 | Published 29 Jul 2016

Spin slush in an extended spin ice model
Jeffrey G. Rau1 & Michel J.P. Gingras1,2,3

We present a new classical spin liquid on the pyrochlore lattice by extending spin ice with

further neighbour interactions. We find that this disorder-free spin model exhibits a form of

dynamical heterogeneity with extremely slow relaxation for some spins, while others

fluctuate quickly down to zero temperature. We thus call this state spin slush, in analogy to

the heterogeneous mixture of solid and liquid water. This behaviour is driven by the structure

of the ground-state manifold which extends the celebrated two-in/two-out ice states to

include branching structures built from three-in/one-out, three-out/one-in and all-in/all-out

tetrahedra defects. Distinctive liquid-like patterns in the magnetic correlations serve as a

signature of this intermediate range order. Possible applications to materials as well the

effects of quantum tunnelling are discussed.
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T
he physics of glasses plays an important role in many types
of physical systems; from its origins in the physics of
liquids1 further realizations have been found in disordered

magnets2, superconductors3 and metals4 through to soft-
condensed matter5 and even biophysics6. While ubiquitous, a
complete understanding of glasses remains an important open
problem in condensed matter physics. Connections between these
vastly different contexts have proven fruitful in making progress.
For example, studying conceptually and computationally simpler
spin models, may inform the physics of super-cooled liquids and
structural glasses1. However, there are complications—while spin
glasses are driven by the combination of random quenched
disorder and frustration2, glass-forming liquids are intrinsically
disorder-free1. Finding a disorder-free spin model that realizes
the diverse range of phenomena observed in glass formers, such
as the dramatic slowing down of relaxation and emergence of
spatially heterogeneous dynamics, is a serious challenge. Some
examples of disorder-free spin models with strong freezing have
been proposed7–12. Each of these proposals has some limitations,
be it the lack of heterogeneous dynamics, the need for multi-spin
interactions, the use of uncontrolled approximations or the
introduction of non-local dynamics.

In this article, we introduce a cooperative paramagnet that we
call spin slush (SS) which appears in an extended spin ice (ESI)
model. This classical SS model is disorder-free and includes only
first-, second- and third-neighbour Ising bilinear exchange
interactions and thus lacks the shortcomings discussed above.
We start from spin ice (SI), a well-studied magnetic analogue of
common water ice13, magnetic moments pointing in or out of the
corner-shared tetrahedra of the pyrochlore lattice embody the
proton displacements of water ice14. Similar to water ice, SI
displays an extensive ground-state degeneracy, and thus an
associated extensive residual entropy, characterized by the
two-in/two-out ice rule condition on each tetrahedron13. In SS,
we find that the ground-state manifold of SS is larger than that
of SI and contains a far richer set of states. In addition to the
two-in/two-out tetrahedra of the SI ground-state manifold,
there are spatially extended structures assembled from
three-in/one-out, three-out/one-in and all-in/all-out tetrahedra.
Built from SI defects, these structures are not simply loops or
strings, but include branching tree-like objects. After
characterizing the static thermodynamic and magnetic
properties of SS, we turn to dynamics. Approaching zero
temperature, we find freezing, as in SI15,16, with an
exponentially increasing average relaxation time. However,
unlike in SI where all of the spins freeze uniformly as
the temperature is lowered, the spins in the SS exhibit highly
heterogeneous dynamics reminiscent of glass formers17. While
many of the spins strongly freeze with an extremely
slow relaxation rate, a fraction of the spins, organized into
spatially local clusters, remain completely dynamic, relaxing
almost immediately. Since this model is disorder-free, the
random distribution of these dynamical spins derives solely
from the overall freezing behaviour. This dynamical heterogeneity
in SS at low temperatures motivates the name SS, in analogy
to slush where liquid water and solid ice coexist as a mixture.
Finally, we speculate on the behaviour of quantum SS as well
as possible experimental relevance in frustrated pyrochlore
magnets.

Results
Model. We start with a review of some key results for the nearest-
neighbour SI model18 to establish our notation and motivate the
SS model. The SI model is a nearest-neighbour Ising
antiferromagnet on the pyrochlore lattice, with Hamiltonian

J
P
hiji sisj, where si¼±1 are the Ising spins. This can be

reformulated in terms of ice rule defects, or charges, defined on
each tetrahedron. With each tetrahedron identified with a dual
diamond lattice site I, one defines the charge
QI � 1

2 ð� 1ÞI
P

i2I si, where (� 1)I is a sign reflecting the
sublattice of I. In this language, the nearest-neighbour SI
Hamiltonian simply penalizes non-zero charges, taking the form
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The ground states of this model are those with QI¼ 0 for
all tetrahedra, i.e., the celebrated two-in/two-out states of
the ice manifold. This manifold is macroscopically degenerate
with a residual entropy given approximately by
SSI�ðNkB=2Þlogð3=2Þ� 0:202NkB (ref. 13). Because of this
extensive ground-state degeneracy, addition of small
perturbations will generically select an ordered state from this
manifold at low temperatures13.

To explore the effects of such perturbations, we consider the
addition of second- and third-neighbour Ising exchanges of the
form

H � J
X
hiji

sisjþ J2

X
hhijii

sisjþ J3a

X
hhhijiiia

sisj: ð3Þ

For third-neighbour exchange, we include only those that are
composed of two nearest-neighbour steps, as illustrated in Fig. 1
and Supplementary Fig. 1. For many mechanisms that generate
such interactions in real materials, for example super-exchange or
through virtual crystal field excitations, one expects the interac-
tions J2 and J3a to be generated on equal footing. The other third-
neighbour exchange, J3b, spanning the hexagons of the pyrochlore
lattice, is only generated at higher order. Significant second- and

J

J2

J3a

J3b

Figure 1 | Example of spin slush ground state. A spin slush ground state

that includes all instances of the rules discussed in the main text. The first

(J), second (J2) and third (J3a, J3b) neighbour exchange paths are indicated.

The colours indicate si¼±1 (black, white) for the pyrochlore sites, and the

charge QI for the dual lattice with QI¼0 (grey), QI¼±1 (red, blue) and

QI¼±2 (dark red, dark blue). The arrow passes through the location of the

minority spin for a single charge. This state contains branching lines of

charge of both signs, a charge loop and a double-charge tetrahedron.
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third-neighbour exchange can be present in real materials either
intrinsically19,20, or via a partial cancellation of the leading
terms21. One can show that for any SI state,

X
hhijii

sisjþ
X
hhhijiiia

sisj ¼ const: ð4Þ

We thus see that two terms are not independent and when
J2¼ J3a�J0, they effectively cancel each other when in the SI
manifold. Moving along the J2¼ J3a line, the model moves away
from the nearest-neighbour SI regime, but without lifting the
degeneracy of the SI manifold. While SI persists as the ground
state at low temperature for sufficiently small J0/J, eventually it
gives way when another set of states crosses the SI manifold. This
line of degeneracy also exists for analogous models with
N-components spins, although how the termination manifests
depends on the precise value of N. We thus refer to the model
along this line as ESI. It will prove useful to write this model in
terms of the charges QI as

HESI ¼ 2ðJ � 2J 0Þ
X

I

Q2
I � 4J 0

X
hIJi

QIQJ �NðJ � J 0Þ: ð5Þ

We see that J040 generates an attraction between nearest-
neighbour charges of the same sign. This short-range attraction
between charges will play a central role in understanding the
ground and excited states of ESI .

One can show (see Supplementary Note 1) that the SI manifold
persists until J0 ¼ J/4 for J040 and to J0 ¼ � J/2 for J0o0. Going
along the J2¼ J3a line towards negative values (away from the SS)
in our model, the end point has a similar manifold of states
(distinct from the SS states) to that studied in ref. 22. Specifically,
at J0 ¼ � J/2, the ground states include all configurations with
staggered charge QI¼Q0(� 1)I. These are the ice states (Q0¼ 0),
the single-charge states (Q0¼ 1)) and the all-in, all-out states
(Q0¼ 2). The collapse of excited states when approaching J0 ¼ J/4
is illustrated in Fig. 2. We show only the simplest examples that
cross the ice manifold, but as we shall see, there are an infinite set
of such states. We focus on the end point at J0 ¼ J/4 which we
refer to as the SS model. At this special point, one can write the

model (Eq. 4) as
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In this form, one notes a strong similarity to the SI model of
equations (2), except with the fundamental unit now being a pair
of tetrahedra, indicated by BþBþ , rather than a single tetrahedron.

Ground-state manifold. The ground-state manifold of SS is most
easily characterized in terms of the variables

Pi �
1
2

X
j2 2

i
2

sj: ð8Þ

Following equations (7), any state with Pi¼±½ for all sites has
the minimal energy � 3NJ/4 and is in the ground-state manifold.
Alternatively, we can write this in terms of the SI charges; asso-
ciating each site i of the pyrochlore lattice with a nearest-neigh-
bour bond hIJi of the dual diamond lattice, one has
Pi¼ (� 1)I(QI�QJ)� si/2. From this expression for Pi in terms
of the SI charges, it is clear that any SI state with QI¼ 0 for all
sites also belongs to the SS manifold. In addition to the familiar SI
states, many more states satisfy Pi¼±½. A naive enumeration of
states for an isolated pair of tetrahedra shows that beyond the 18
ice states, there are an additional 52 states, 70 in total, that belong
to the SS manifold. We caution that a Pauling-like estimate
severely underestimates the degeneracy of the SS manifold. Given
that the number of tetrahedron pairs is equal to the number
of sites, one would estimate a residual entropy of NkB(log 2þ log
(70/27))B0.0896NkB. This reflects that the constraints provided
by Pi¼±½ are much less independent than in SI where
Pauling’s estimate is accurate. These additional states include
configurations with both single-charge (QI¼±1) and double-
charge (QI¼±2) defects. The influence of the nearest-neighbour
attraction of charges manifests here; pairs of like single charges
can appear together, while double charges only appear with
accompanying single charges of the same sign. One finds from
equation (5) that the energy cost of having a charge can be
compensated by the energy gain of having two neighbouring
charges of the same sign.

From these observations, we formulate rules for constructing
states that satisfy Pi¼±½. We formulate these rules from the
perspective of specifying non-ice tetrahedra (QIa0) states first,
then populating the remaining tetrahedra with any compatible ice
states afterward. The first rule for placing the non-ice, charged
tetrahedra, is the single-charge rule: this states that the minority
spin of a single charge, QI¼±1, must be connected to a
tetrahedron carrying a single or double charge of the same sign.
The second rule, the double-charge rule, states that a double
charge QI¼±2 must have its four nearest-neighbour tetrahedra
occupied by single charges of the same sign. Finally the neighbour
rule requires that a single charge, QI¼±1, cannot have any
single charges of opposite sign as nearest neighbours. Once single
and double charges have been placed such that they satisfy the
above three rules, one can assign the remaining tetrahedra any
allowed ice rule, QI¼ 0, states. The first rule allows the single-
charge tetrahedra to form branching tree-like structures where
the minority spin of a given charge also belongs to the next charge
in the structure. Each branch must terminate in some way
compatible with the rules, so the minority spin must end up on
another single charge. The possibilities for terminating a branch
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Figure 2 | Collapse of excitations in extended spin ice. We sketch the

structure of the excited states of the model of equation (3) along the

J2¼ J3a�J0 line. When J0 is non-zero, the highly degenerate bands of single-

and double-charge states are split due to the nearest-neighbour attraction

embodied in the second term in equation (5). For the low lying bands, we

illustrate the charge arrangements that are favoured and those that are

disfavoured by J0. Near the spin slush at J0/JB1/4, an infinite set of excited

states collapse to zero energy. We have illustrated two of the simplest

examples, built from twelve charges, with energy shown by red lines.
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include looping back to itself, ending on a different branch or on
one of the single charges attached to a double charge. Note that
these single- and double-charge structures must exist for both
signs of the charge to satisfy the global neutrality requirement

P
I

QI¼ 0. The third rule implies that charge structures of opposite
sign must be separated by at least one ice rule obeying
tetrahedron. An illustration of an SS state incorporating all of
these features, restricted to a single [111] kagomé plane, is shown
in Fig. 1.

Thermodynamic and magnetic properties. With the ground
states of SS identified, we now explore its finite temperature
properties via classical Monte Carlo simulations using single-
spin-flip dynamics, augmented with parallel tempering when
appropriate. Basic thermodynamic quantities are shown in Fig. 3.
The specific heat exhibits a broad peak at T*B0.3J, reminiscent of
the peak seen in SI. This peak signals the release of entropy as one
begins to enter the SS ground-state manifold. This can be seen
explicitly in the entropy in Fig. 3 where, below T*, the entropy
approaches the constant value SSSB0.266NkB. As expected from
the rules derived in the previous section, this is significantly
higher than SSIB0.202NkB found in SI. At these low temperatures
severe freezing is encountered, preventing the simulations from
reaching equilibrium below TB0.15J. It is not obvious how to
construct a non-local move that would sample the SS manifold
efficiently. Including the SI loop move does aid equilibriation, but
it is only effective in regions where no single- and double-charge
defects are present, leaving the freezing problem for future work.
The frozen states belong to the SS manifold and exhibit the
single- and double-charge structures discussed in the previous
section. We found no evidence of ordering in any of our simu-
lations, be it conventional or via an order-by-disorder mechan-
ism. Further, the specific heat and entropy are somewhat immune
to this freezing problem, showing consistent behaviour between
simulations. The magnetic properties are however more sensitive.

The simplest probe of the magnetic behaviour is the uniform
susceptibility, w, shown in Fig. 4, for the moments mi � siẑi
pointing in/out of the tetrahedra along the local [111] direction ẑi.
At both low and high temperatures, one finds Curie-like
behaviour, with 3wT constant, separated by a broad peak at
TBO(J). The constant approached as T-0 depends on the
details of how the system freezes. This varies between simulations,
taking on a distribution of values clustered around 3wTB1,
reflected in the large error bars in Fig. 4. A more detailed probe of
the magnetic structure are the spin–spin correlations, as can be
investigated via neutron scattering. Recall that in SI the
appearance of sharp pinch-points23 in the transverse moment–
moment correlation function

IðkÞ � 1
N

X
ij

eik�ðri � rjÞ½ẑi � ẑj�ðẑi � k̂Þðẑj � k̂Þ�hsisji; ð9Þ

signals the development of long-range dipolar spin–spin
correlations. In SS, one finds sharp features in I(k) distinct
from such pinch points. As shown in Fig. 4, below T* I(k)
develops into sharp rings centred on zone centres in a given plane
of reciprocal space. In the full [hkl] space, these features lie
approximately on spheres, reminiscent of an isotropic liquid.
As discussed in Supplementary Note 2, this analogy is even
more striking in the structure factor of the SI charges QI

where the intensity is approximately uniform across the sphere,
as shown in Supplementary Figs 2 and 3. The wave-vector
jkj � 0:5ð2p=aÞ � k�, where a is the size of the conventional
cubic unit cell, indicates these correlations have a characteristic
length of two cubic cells and thus represent intermediate scale
correlations. These correlations are consistent with the typical size
of the charged structures that appear in the ESI manifold. Indeed,
as seen in Fig. 1, even the smallest of these structures can span
several cubic unit cells.

These simulations confirm that the SS model does not order
and the SS manifold shows all the rich charge structures at
intermediate length scales implied by the SS rules. Indeed, at low
temperatures, a significant fraction of tetrahedra, B30–35%,
carry single charges, while a smaller but finite fraction, a per cent
or so, carry double charges. Similar to the susceptibility, the
amount of single and double charges present at low temperatures
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Figure 3 | Specific heat and entropy of extended spin ice. Finite

temperature (a) specific heat, C, and (b) entropy, S, of the spin slush model

for a system of 103 conventional cubic cells of the pyrochlore lattice.

Entrance into the spin slush manifold is signalled by the peak in the specific

heat at T*B0.3J. Residual entropy as T-0 is SB0.266NkB. Freezing

becomes apparent below TB0.15J, as indicated by the shaded region.
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Figure 4 | Magnetic properties of extended spin ice. (a) Finite

temperature susceptibility w of the spin slush model for a system of 103

cubic cells. The susceptibility passes through maximum near TB0.6J

before settling into a Curie-like regime with 3wTB1. Freezing becomes

apparent below TB0.15J, with the susceptibility depending on the detailed

spin configuration of the frozen state. (b) Transverse moment–moment

correlation function I(k) defined in equation (9), for the spin slush model at

T¼0.23J for a system of 243 cubic cells. Cuts in the [hhl] and [h0l] planes

are shown. Correlations are peaked on spherical surfaces of radius

k*B0.5(2p/a) where a is the size of a cubic unit cell. These spheres are

centred on the locations of the pinch-points in spin ice.
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varies somewhat from run to run, a consequence of the severe
freezing problem. To better understand this issue, we now look
more closely at the low-temperature dynamics of SS.

Dynamics and spin slush. To reflect the physics of real systems
with local dynamics, we employ only single-spin flip,
Metropolis dynamics, although we expect any local dynamics
to give qualitatively the same behaviour. We primarily
consider the site-resolved auto-correlation functions, defining
Ai(t)�hsi(t0)si(t0þ t)i, where si(t) is the Ising spin at a given
Monte Carlo sweep t at site i, averaging over many initial
times t0. Generically, one would expect exponential relaxation
AiðtÞ� e� t=ti with a characteristic relaxation time ti. Indeed
this is found in SI, with the relaxation time being site-
independent, with tiBt and increasing exponentially as
temperature is lowered16.

In contrast to SI, the dynamics in SS vary strongly from site to
site. As temperature is lowered, most of the sites freeze, with their
relaxation times becoming very long, similar to what is found in
SI15,16. This can be seen in the site-averaged auto-correlation
function �AðtÞ shown in Fig. 5. However, there are clear
differences, namely in the initial decrease and plateau in �AðtÞ at
short times as well as in the larger site to site variance in Ai(t) at
low temperatures. We can understand this behaviour by looking
at the T-0 limit; one finds that a fraction of sites remain highly
dynamic down to very low temperatures. This is illustrated in
Fig. 5, where the site-resolved auto-correlation functions are

shown for T¼ 10� 4J. The frozen spins have Ai(t)¼ 1 at all times,
while the unfrozen spins have Ai(t) relaxing in 101–102 Monte
Carlo sweeps to a constant value limt-NAi(t)�Ai(N)o1. To be
precise, for the long-time limit limt-NAi(t), we mean tc1 but
still much smaller than the slow timescale BO(eJ/T). A non-zero
value of Ai(N)o1 indicates that, while fluctuating, on average
more time is spent in one of the states si¼±1 than the other.
For example, if si is sampling uniformly from values s(1),y, s(m)

as a function of time, then Aið1Þ� ð 1
m

Pm
n¼1 s

ðnÞÞ2 at long times.
Figure 5 shows that the long-time values Ai(N) cluster about the
squares of rational numbers, as would be expected from the above
discussion. In these annealed simulations, the frozen spins make
up the bulk of the system, while the number of unfrozen, dynamic
spins is on the order of a few per cent.

To better understand these dynamic spins, we examine their
real space structure. We find that these spins are spatially
correlated, forming clusters of varying size nc. A dynamical
cluster is defined by a set of spins, where limt-NAi(t)o1 and
each spin is connected by a first, second or third neighbour bond
to another spin in the cluster. The SS state at low temperature is
thus a mixture where regions of frozen and unfrozen spins
coexist. Dynamical clusters built from a small number of sites can
be identified directly from the SS rules. Figure 6 shows an SS
ground state containing several of these dynamical clusters. For
example, one has a single site that can be flipped while preserving
all of the SS rules, representing an nc¼ 1 dynamical cluster. A
larger nc¼ 2 cluster is also shown, where two spins can be flipped,
though not independently. For both these examples we note that
a large number of surrounding frozen spins are needed to
construct these dynamical clusters. A naive counting for the
nc¼ 1 case yields a fraction of unfrozen to frozen spins of B1/
25B4%, comparable to the few per cent average of unfrozen
spins observed in our annealed simulations. These examples
represent only a small subset of the possible dynamical clusters
that can be constructed in the SS manifold. As described in
Supplementary Note 3, there are several ways to construct
dynamical clusters of arbitrary size (see Supplementary Fig. 4)
as well as illustrations of the time evolution of dynamical clusters
in simulations of small systems. The presence of such
dynamical clusters is not specific to the single-spin-flip dynamics
used; for example, analogous dynamical clusters can be
constructed for spin-exchange dynamics, as illustrated in
Supplementary Fig. 5, and we expect the same holds true for
any local dynamics.

Discussion
Outside of any pure theoretical interest, one may be concerned
with the fine-tuning required to reach the SS phase. As in SI13,
though the precise point in phase space may be difficult to reach
in a material realization, the nearby regions in phase space may be
controlled primarily by the SS physics. Understanding the SS
manifold then allows one to understand the surrounding phases
and their higher temperature properties as perturbations to the SS
model. Here we discuss two types of such perturbations:
deviations from the J2¼ J3a ESI line and quantum terms, such
as transverse field or exchange.

While the effects of finite second- and third-neighbour
exchange on similar models has been studied extensively24–28,
the regime along the ESI line and near the SS point remains
largely unexplored. We find four neighbouring phases; the
simplest are a (½, ½, ½) ordered phase expected from the
J3a-þN limit that appears for J3a4J/4 and a ferromagnetic
SI state expected from the J3a-�N limit that appears for
J3aoJ/4. For J2oJ/4 one finds a set of layered states (These are
related to, but not identical to the layered states discussed for
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Figure 5 | Auto-correlation functions in extended spin ice. (a) Site-

averaged auto-correlation function �A tð Þ at various temperatures for a

system of 83 cubic cells. As we approach low temperatures, the relaxation

time grows exponentially. Short-time dynamics is apparent in the initial

decrease of �A tð Þ for tt102. The thin curves show a sample of the individual
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heterogeneity for TtT*. (b) Site-resolved auto-correlation functions Ai(t)

at the very low temperature T¼ 10�4J. We show two distinct annealed

runs of a system of 83 cubic cells. Aside from essentially frozen spins with

Ai(t)¼ 1, one finds many spins that relax over time scales of 101 or 102

sweeps. At long times the auto-correlation functions reach constant values

Ai(N) that are clustered about the squares of simple, rational numbers

(see text).
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the J-J2 classical Heisenberg model of ref. 26). with sub-
extensive degeneracy B2L. For J24J/4, one finds a complex
incommensurate ordering with wave-vector along [h00] or
equivalents. The SS manifold ties these phases together, all of
which are drawn from the SS ground-state manifold, with
Pi¼±½ for all pairs of tetrahedra, and extend over large
regions of parameter space. We leave the detailed investigation
of these neighbouring phases and other perturbations (such as
J3b, dipolar interactions and so on) for future studies.

The effect of quantum non-Ising interactions on SS is
potentially much richer than in SI. In the latter, the addition of
transverse exchange or transverse field induces tunnelling within
the SI manifold yielding a U(1) quantum spin liquid29–32.
This quantum spin liquid is described by an emergent
electrodynamics, complete with a gapless photon excitation29.
However, the associated energy scale of the quantum spin liquid
is very small, due to tunnelling only appearing at high order in
perturbation theory, confining its effects to very low temperatures
and close proximity to the SI point30,33. In the SS, quantum
dynamics appear at first order in perturbation theory (see
Supplementary Note 4), and thus we expect them to be more
significant than in SI. The presence of these first-order matrix
elements is a direct reflection of the single-spin-flip and spin-
exchange dynamics of the SS manifold. Even with such mixing,
when the perturbed Hamiltonian is projected into the SS
manifold it still breaks up into infinitely many disconnected
blocks, representing sets of states reachable by such local moves.
The simplest blocks correspond to a small number of dynamical
clusters well-separated by frozen regions. For example, there can
be many nc¼ 1 clusters as in Fig. 6, each with two states,
corresponding to the freely flippable spin j "i and j #i for each
cluster. Application of a transverse field � �G

P
i s

x
i mixes the

two states and gives a ground state of ðj "iþ j #iÞ=
ffiffiffi
2
p

with
energy gain of �G per dynamical spin. Other blocks correspond
to more complicated dynamical clusters with more spatially
extended structures. For example, for the large linear clusters
discussed in Supplementary Note 3, the energy gain per
dynamical spin is smaller, approaching approximately � 2G/nc

for clusters of size nc (see Supplementary Note 4 and
Supplementary Fig. 6 for an explicit example of this). More
exotically, one can even construct states where a single dynamical
cluster of size ncBO(N) encompasses nearly all of the spins
in the system. Examples of such larger and more complex
dynamical clusters are illustrated in Supplementary Movies

1 and 2. Similar considerations apply for transverse exchange
� J?

P
hijiðsþi s�j þ s�i sþj Þ. A key difference is that odd-sized

dynamical clusters are guaranteed to have degenerate ground
states due to Kramers’ theorem. In the exchange case, the nc¼ 1
clusters thus contain free spins and gain no energy.

We thus conclude that for quantum SS, the ground states
favoured at first order in perturbation theory will depend on the
ground-state energies of this zoo of clusters as well as their
effective packing fractions. We leave the detailed resolution of
these non-trivial questions to future work. As this model is free of
the sign problem, some of these questions should be addressable
through quantum Monte Carlo simulations for both a ferromag-
netic transverse exchange (J±40) or an arbitrary transverse field.
The physics of the above dynamical clusters and the hetero-
geneous freezing could potentially enlighten our understanding of
the phenomena of persistent dynamics in highly frustrated
magnets34. In a more concrete setting, one may speculate that the
SS could be connected to the physics observed in the quantum
spin liquid candidate Tb2Ti2O7. A tantalizing clue are the short-
range correlations35 at wave-vector (½, ½, ½) seen in Tb2Ti2O7

and the (½, ½, ½) phase obtained by perturbing SS .
In summary, we have identified SS, a cooperative paramagnet

on the pyrochlore lattice found by extending SI with further
neighbour exchanges. This classical Ising model serves as a simple
example of freezing and dynamical heterogeneity in a clean,
disorder-free system. The features present in the magnetic
correlations and the unusual low-temperature dynamics could
prove useful in understanding such physics in real materials. We
note that during the review of this article ref. 36, which also
studies the ESI model and the SS point, appeared.

Methods
Monte Carlo simulations. For all Monte Carlo simulations, we used the standard
Metropolis updating scheme with single-spin flip moves. For thermodynamic
quantities, we simulated systems of N¼ 16L3 spins in L3 conventional cubic unit
cells of the pyrochlore lattice under periodic boundary conditions with linear size
up to L¼ 10. Typically, we used O(106) sweeps to anneal the system to each
temperature and thermalize, then an additional O(106) sweeps were used to
compute observables. Error estimates were computed via the bootstrap method.
For spin–spin and charge–charge correlation functions, we simulated larger sys-
tems of size up to L¼ 24, but only O(105) sweeps were needed to obtain accurate
results. In both cases, we also used parallel tempering moves after each sweep to aid
equilibriation. Longer simulations on smaller system sizes, with O(107) to O(108)
sweeps produce results consistent with the shorter simulations on the larger sys-
tems. For dynamical quantities, a comparable number of sweeps and system sizes
were used, except without the use of parallel tempering. To access the very low-

σi → −σi

i

Ai (∞) = 0

Ai (∞) = Aj (∞) = (1/3)2

σ j→
−σ jσ

i →
−σ

i i

nc = 1

nc = 2

ba

c

j

Figure 6 | Dynamical clusters in spin slush. We illustrate some of the dynamical clusters that can appear in the spin slush ground-state manifold.

In (a) we show an example of part of a state with two such clusters, one containing a single dynamical spin (nc¼ 1) and the other containing two dynamical

spins (nc¼ 2), with the dynamical spins and the surrounding charges highlighted in gold. In (b) we show the accessible states of an nc¼ 1 dynamical cluster

where the two states yield an average spin of zero and thus Ai(N)¼0. In (c) we show the nc¼ 2 case, where one finds three accessible states with an

average spin of ±1/3 and thus Ai(N)¼Aj(N)¼ (1/3)2. In (b,c) the flippable spins for each state are highlighted in gold.
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temperature auto-correlation function, we first slowly annealed the system to
T/J¼ 10� 4, guaranteeing that an SS ground state was reached, then followed the
same protocol as the higher temperature simulations. This was repeated many
times; two of these simulations are described in the main text.

Data availability. Raw data for any of the results reported in the text are available
from the authors upon request.
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