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Frustrated transition-metal compounds in which spin-orbit coupling (SOC) and electron correlation work
together have attracted much attention recently. In the case of 5d transition metals, where SOC is large, jeff = 1/2
bands near the Fermi level are thought to encompass the essential physics of the material, potentially leading to
a concrete realization of exotic magnetic phases such as the Kitaev spin liquid. Here, we derive a spin model
on a triangular lattice based on jeff = 1/2 pseudospins that interact via antiferromagnetic Heisenberg (J ) and
Kitaev (K) exchanges, and crucially, an anisotropic (�) exchange. Our classical analysis of the spin model
reveals that, in addition to small regions of 120◦, Z2/dual-Z2 vortex crystal and nematic phases, the stripy
and ferromagnetic phases dominate the J -K-� phase diagram. We apply our model to the 5d transition-metal
compound, Ba3IrTi2O9, in which the Ir4+ ions form layered two-dimensional triangular lattices. We compute the
band structure and nearest-neighbor hopping parameters using ab initio calculations. By combining our ab initio
and classical analyses, we predict that Ba3IrTi2O9 has a stripy ordered magnetic ground state.

DOI: 10.1103/PhysRevB.92.165108 PACS number(s): 71.70.Ej, 71.20.Be, 71.70.Gm

I. INTRODUCTION

Transition-metal compounds in which electrons occupy
d orbitals have proven to be a vast playground for exotic
and interesting physics. The nontrivial combination of lattice
geometry, crystal field strength, spin-orbit coupling (SOC),
and Coulomb repulsion between electrons in transition metals
can conspire to produce novel phases, including magnetic
orders, topological states, and spin liquids [1,2]. One concrete
proposal [3] argues that transition-metal compounds with
strong SOC could possibly realize Kitaev’s exactly solvable
spin-1/2 model [4] and thus provide a route to such a
quantum spin liquid state. The discovery of examples of such
materials in the honeycomb iridates [5,6] has since drawn
much experimental [7–13] and theoretical [14–22] attention.

Recently, a generic model of the layered honeycomb
iridates was derived in which jeff = 1/2 states near the Fermi
level captured the essential physics [23,24]. Arising from
a combination of strong SOC and the octahedral crystal
field environment for each Ir4+ ion, these jeff = 1/2 states
effectively behave as spin-1/2 pseudospins. It was found
that a variety of magnetic ground states could be realized
depending on the competition between Heisenberg (J ), Kitaev
(K), and symmetric off-diagonal (�) spin exchanges at the
nearest-neighbor level. The general principles applied to the
honeycomb iridates can also be turned to triangular iridates
which can harbor similar spin anisotropy.

Spins on a triangular lattice are inherently frustrated—
potentially leading to new magnetic phases. It is therefore
important to study the interaction between jeff = 1/2 pseu-
dospins on a triangular lattice which have a microscopic
origin similar to that in the honeycomb iridates. Classical
and quantum studies of the Heisenberg-Kitaev (HK) model
have been performed on the triangular lattice [25–29], with
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possible applications to the triangular iridate Ba3IrTi2O9 [30].
It has been shown that the HK model hosts an interesting Z2

vortex crystal phase which could be realized in Ba3IrTi2O9;
moreover, the presence of the Kitaev exchange destabilizes the
120◦ ordered phase of the Heisenberg model on the trianglular
lattice. We will argue, however, that this model is incomplete
and does not describe the physics of Ba3IrTi2O9; a more
comprehensive approach is required.

In this paper, we derive a spin model that is generic to
layered triangular iridate compounds such as Ba3IrTi2O9. Our
derivation is founded upon the reasonable assumption that
electron interaction strength (U ) and Hund’s coupling (JH )
provide the largest energy scales in the system, with SOC being
the next largest energy scale, and electron hopping between
d orbitals as the smallest energy scale. In addition, we assume
that the symmetries of an ideal triangular lattice of octahedra
are respected in our derivation. From this foundation, we derive
a nearest-neighbor spin model with three spin exchanges:
Heisenberg (J ), Kitaev (K), and a symmetric off-diagonal
exchange (�). We map out the classical magnetic ground
state phase diagram through a combination of Luttinger-Tisza
[31] and classical Monte Carlo techniques and discuss its
intricacies.

We next apply our general model to the triangular iridate
Ba3IrTi2O9 by first performing ab initio calculations to
determine its band structure with and without SOC. We then
demonstrate that the states near the Fermi level are well
described by jeff = 1/2 states, and we further estimate the
nearest-neighbor tight-binding parameters. Consequently, we
can estimate the region of the phase diagram that pertains
to Ba3IrTi2O9 (with and without the effects of octahedral
distortion) and predict that it should exhibit stripy magnetic
order in its ground state. Finally, experimental methods to test
our prediction are also discussed.

Our paper is organized in the following manner. We derive
our general jeff = 1/2 spin model on a triangular lattice and
analyze its classical phase diagram in Sec. II. In Sec. III,
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we discuss the crystal structure of Ba3IrTi2O9, present the
results of our ab initio calculations, estimate the strengths of
the spin exchanges from ab initio tight-binding parameters,
and predict the ground state for Ba3IrTi2O9 using our model.
In Sec. IV, we examine the effects of octahedral distortion
in Ba3IrTi2O9 within our spin model. Finally, in Sec. V, we
discuss and summarize the ramifications of these results and
suggest possible experimental tests.

II. DERIVATION OF jeff = 1/2 SPIN MODEL ON A
TRIANGULAR LATTICE & LUTTINGER-TISZA AND

CLASSICAL MONTE CARLO ANALYSIS

We begin by constructing a model of a triangular lattice
of isolated Ir4+ ions which are surrounded by ideal oxygen
octahedra as in Fig. 1(a). The local octahedral crystal field
will split the Ir4+ 5d levels into t2g and eg states. The large
SOC of the Ir4+ ions will further split the t2g manifold into
completely filled jeff = 3/2 states and half-filled jeff = 1/2
states. Since the strong on-site Coulomb interactions localize
these jeff = 1/2 states, we can then consider the effective
physics to be captured by interacting jeff = 1/2 pseudospins.
To arrive at this picture concretely, we start from a micro-
scopic Hamiltonian which includes nearest-neighbor d-orbital
hoppings as perturbations on top of an on-site Kanamori
Hamiltonian [32] (see Appendix for more details). There are
two types of d-orbital hopping at the nearest-neighbor level as
shown in Fig. 1(a): direct overlap between d orbitals on Ir4+

sites (denoted by t1 and t3), and oxygen mediated hopping via
p orbitals (denoted by t2).

The nearest-neighbor spin model takes the form

H =
∑

αβ(γ )∈〈ij〉

[
JSi · Sj + KS

γ

i S
γ

j + �
(
Sα

i S
β

j + S
β

i Sα
j

)]
,

(1)

FIG. 1. (Color online) (a) The major nearest-neighbor hopping
channels in the limit of ideal octahedra. The parameters t1 and t3
describe two distinct d-orbital overlaps, while t2 includes both d-
orbital overlap and oxygen mediated hoppings. The green, blue, and
red dotted lines label the x, y, and z bond types according to the
convention αβ(γ ) in Eq. (1).

where i, j denote Ir4+ sites, and Si is a jeff = 1/2 spin
operator at a site with components Sα

i (α = x,y,z). The
exchanges J and K are Heisenberg and Kitaev exchanges,
respectively, while � is a symmetric off-diagonal exchange
(exact expressions can be found in Appendix). We identify
each bond as one of either yz(x), zx(y), or xy(z) bonds, labeled
by αβ(γ ). The spin components that interact on each bond
depend on the bond type αβ(γ ).

We studied the phase space of the spin model using a
combination of Luttinger-Tisza (LT) and classical Monte Carlo
(CMC) analyses in order to determine the ground state for
varying exchange parameters. We employed the simulated
annealing technique in our CMC calculations, whereby the
transition probability from state to state is determined by
a temperature parameter that is slowly lowered until there
is no improvement in the ground-state energy. The classical
approaches are considered simultaneously in Fig. 2. The LT
and CMC analyses were found to agree with each other in both
energy and spin configuration, except for small regions of the
phase diagram computed by CMC (bounded by the dotted
line toward the boundary), where LT could not identify the
exact classical ground state. The exchanges are parameterized
in spherical coordinates such that J = sin θ cos φ, K =
sin θ sin φ, and � = cos θ , where θ ∈ [0,π ], and φ ∈ [0,2π ).
The Heisenberg-Kitaev (HK) model is recovered in the limit in
which θ = π/2, where � = 0. We find six different magnetic
orderings: ferromagnet (FM), stripy (ST), 120◦ order (120),
nematic (N), Z2 vortex crystal, and dual-Z2 vortex crystal. We
depict the FM, ST, and 120 orders in the insets of Fig. 2, while
nematic, Z2 vortex crystal and dual-Z2 vortex crystal phases
are depicted in Appendix. A thorough description of Z2 and
dual-Z2 orders can be found in Refs. [25,27].

The boundaries of both phase diagrams in Fig. 2 coincide,
and show the classical ground states of the HK model [� = 0
in Eq. (1)]. We first highlight some special points. The
Heisenberg model (J = 1) hosts 120◦ order, agreeing with the
known ground state on a triangular lattice. We also find that
perturbing away from the Heisenberg model by adding K tends
to destabilize 120◦ order toward the previously discussed Z2

vortex crystal phase. The K = 1 point represents the Kitaev
model on the triangular lattice. Here we find that the spins
tend to order antiferromagnetically in chains along one of
the three principal directions of the triangular lattice, with
each chain decoupled from the rest. By flipping all the spins
in any of the chains, the energy remains the same and so
this state is highly degenerate—exponential in the size of the
system. This classical ground-state degeneracy has recently
been analyzed and has been shown to be lifted by quantum
fluctuations through an order-by-disorder mechanism, intro-
ducing a coupling between spins of next-nearest neighboring
antiferromagnetic chains [29]. Overall, the boundary of the
phase diagram is in agreement with the previous classical and
quantum studies of the HK model on the triangular lattice.

However, when adding �, whether positive or negative, to
the Heisenberg model, we find that 120◦ order emerges. For
positive �, we find that 120◦ order persists until the degenerate
� = 1 point, where 120◦, FM and ST orders meet. For the
Kitaev model, on the other hand, the introduction of small
|�| immediately gives ST order as the magnetic ground state.
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FIG. 2. (Color online) Combined Luttinger-Tisza (LT) and classical Monte Carlo (CMC) phase diagrams of the triangular lattice J -K-�
model for � > 0 (a) and � < 0 (b). The angles θ and φ denote the radial and azimuthal angles, respectively. There are six phases represented:
ferromagnet (FM), stripy (ST), 120 order (120), nematic (N), Z2 vortex (Z2), and dual-Z2 (dZ2). Real-space spin representations of FM, ST
and 120 orders are shown in the insets, while nematic, Z2 vortex crystal and dual-Z2 vortex crystal phases are shown in Appendix. Phases
bounded toward the edge (� = 0) by a dotted line are computed using CMC. The region marked by the white star is the relevant parameter
regime for Ba3IrTi2O9 predicted by our combined ab initio and classical analysis.

The majority of the phase diagram upon the inclusion of � is
dominated by stripy or ferromagnet phases.

III. APPLICATION TO Ba3IrTi2O9

Ba3IrTi2O9 has a layered triangular lattice structure com-
posed of Ir4+ ions with a d5 electron configuration surrounded
by oxygen octahedra. It belongs to spacegroup P 63mc,
possessing a mirror plane and a screw axis along the c

direction, connecting the top and bottom halves of the unit
cell. The bottom half of the unit cell is shown bounded by the
rectangular box in Fig. 3(a). The IrO2 layers are separated by
two TiO2 layers, with the Ir4+ ions face-sharing their octahedra
with the Ti4+ octahedra directly above them along the c-axis.
The Ba2+ ions populate the unit cell among the IrO2 and TiO2

layers. There are two Ir4+ ions belonging to the primitive unit
cell, each of which belongs to different IrO2 layers that form
a triangular lattice, shown in Fig. 3(b). The distortion of the
local octahedra, depicted in Fig. 3(c), is discussed in the next
section.

The local environment for the electrons at each site, with an
octahedral crystal field, and large SOC, is reminiscent of that
in Na2IrO3, Li2IrO3, and α-RuCl3. Therefore we may expect
that Ba3IrTi2O9 can be described by similar physical principles
involving pseudospin jeff = 1/2 states near the Fermi level.
Unlike in honeycomb iridates, however, Ba3IrTi2O9 forms
triangular lattice layers and the oxygen octahedra surrounding
the Ir4+ ions are not edge-shared. Here, we explain that the
jeff = 1/2 spin model derived in the previous section captures
the essential physics of Ba3IrTi2O9. To this end, we perform
a series of band structure calculations for Ba3IrTi2O9 and
determine the nature of the electronic states near the Fermi
level.

We used OPENMX [33], which implements the linear-
combination-of-pseudo-atomic-orbitals method, to compute

the band structure of Ba3IrTi2O9 with and without SOC. A
noncollinear DFT scheme and a fully relativistic j -dependent
pseudopotential are used to treat SOC, with the Perdew-Zunger
parametrization of the local density approximation (LDA)
chosen for the exchange-correlation functional [34]. We chose
an energy cutoff of 300 Ry for the real-space sampling and
used an 8 × 8 × 3 k grid for the Brillouin zone sampling.
We used the maximally localized Wannier orbitals method
[35] implemented in OPENMX [36] to obtain the tight-binding
Hamiltonian for Ir t2g orbitals.

The results of our calculation are shown in Fig. 4. The
calculated band structure without SOC is shown in Fig. 4(a)
alongside the projected density of states (PDOS). The bands
near the Fermi level are composed of p orbitals from
oxygen and t2g orbitals coming from the Ir4+ ions. A gap
of approximately 1 eV separates these bands from the empty
Ti d bands. We note that the bandwidth is relatively small,
reflecting the large distance between Ir4+ sites.

To understand the effects of SOC, we also computed the
band structure including SOC, shown in Fig. 4(b) with the
bands and PDOS projected onto the jeff = 1/2 and 3/2 states.
We find that the t2g bands are split by SOC into well-separated
jeff = 1/2 (pink) and 3/2 (teal) states. The five valence
electrons will serve to completely fill the jeff = 3/2 states
and half-fill the jeff = 1/2 states. We can therefore expect the
effective physics of Ba3IrTi2O9 to be well described by the
pseudospin jeff = 1/2 model derived in the previous section.

Having established the jeff = 1/2 nature of Ba3IrTi2O9, we
can further estimate the hopping parameters coming from the
major hopping channels depicted schematically in Fig. 1(a).
We again use the maximally localized Wannier orbital method
to estimate the nearest-neighbor hopping parameters. In the
limit of ideal local octahedra, we find that the nearest-neighbor
hopping parameters are t1 = 7.4 meV, t2 = −23.5 meV, and
t3 = −119 meV. All further neighbor hopping parameters are
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FIG. 3. (Color online) (a) Half of the Ba3IrTi2O9 primitive unit
cell (bounded by the rectangular box) translated once in the a direction
featuring Ba (pale green), Ti (blue), O (red), and Ir (yellow) atoms.
There are two Ir4+ ions in the unit cell, each belonging to different
layered triangular lattices as in (b), with each site surrounded by
oxygen octahedra. Nearest-neighbor Ir atoms belonging to different
unit cells are connected by the black double-arrowed line. The Ir4+

octahedra are face-shared with Ti4+ octahedra. (c) Representation of
distorted octahedra featuring two new hopping parameters, t2 and
t ′
2, leading to a Dzyaloshinksii-Moriya (DM) exchange interaction in

Eq. (2).

found to be small (�5 meV), therefore, a tight-binding model
including only nearest-neighbor parameters will aptly describe
the kinetic microscopics.

From our ab initio calculations, we can estimate the
strength of the exchanges knowing the strengths of the
nearest-neighbor tight-binding parameters. Taking the on-site
Coulomb repulsion to be U = 2.0 eV and fixing the ratio of
Hund’s coupling to U as JH /U = 0.2, we find J � 2 meV,
K � 4 meV, and � � −2 meV for Ba3IrTi2O9. Normal-
izing the exchange couplings by N = √

J 2 + K2 + �2 (so
that J 2 + K2 + �2 = 1), we equivalently find J/N � 0.36,
K/N � 0.86, and �/N = −0.36, with the Kitaev exchange
being the dominant exchange at the nearest-neighbor level.
We also point out that � is nonzero and negative. This area of

phase space is marked by the white star in Fig. 2, and falls into
the stripy region of magnetic order.

Our analysis has been performed under the most general
considerations imposed by the symmetries of the lattice and the
local electron environment at each site, arriving at the model
in Eq. (1). When � = 0, our model reduces to the HK model;
however, the HK model is insufficient to describe Ba3IrTi2O9

as seen in the significant � that is of the same strength as
the Heisenberg exchange J . Indeed, even a relatively small �

can act to unsettle the phases on the boundary of the phase
diagram. Moreover, all layered triangular systems of this kind
can be treated with our model and, barring fine tuning of the
tight-binding parameters, � is not zero in general.

IV. EFFECTS OF OCTAHEDRAL DISTORTION

We also investigated the presence of the distortion in the
oxygen octahedra, which breaks inversion symmetry about the
Ir-Ir bond center. Such a distortion will induce two inequivalent
oxygen mediated hoppings, t2 and t ′2 shown in Fig. 3(b), as well
as other potential hoppings. From our ab initio calculations, we
estimate that t2 = −13 meV and t ′2 = −32 meV. In the case of
Ba3IrTi2O9, we only consider these hopping parameters since
our ab initio calculations suggest that other hopping channels
created by the distortion have small amplitudes (less than half
of t2).

The main result of the nonideal local crystal environment
is to introduce a Dzyaloshinskii-Moriya (DM) exchange term
to the spin model. It also breaks apart the Heisenberg-Kitaev
exchanges into three anisotropic exchanges:

Hdistorted =
∑

αβ(γ )∈〈ij〉

[
J αSα

i Sα
j + J βS

β

i S
β

j + J γ S
γ

i S
γ

j

+�
(
Sα

i S
β

j + S
β

i Sα
) + D

(
Sα

i S
β

j − S
β

i Sα
j

)]
, (2)

where the bond labeling convention remains the same and
D denotes the DM exchange (see the Appendix for exchange
expressions). Estimating the strengths of these new exchanges,
we find J x � 2 meV, J y � 2 meV, J z � 6 meV, � � −2 meV,
and D � 2 meV. When we return to the ideal octahedra limit,
J z → J + K and J x,J y → J .

Using the above parameters to model the distortion effects,
the magnetic ground state is found to be stripy. We next
analyzed the effect of increasing |D| and |�| while keeping
J x , J y and J z fixed. Combining LT and CMC analyses, we
find that the DM exchange tends to stabilize stripy order.
Indeed, upon varying |D|/J z and |�|/J z independently in
the interval [−100,100] × [−100,100], we find only stripy
order. Therefore we predict that the ground state of Ba3IrTi2O9

harbors a stripy magnetic ordering pattern.

V. DISCUSSION AND CONCLUSION

In summary, we have derived a general jeff = 1/2 spin
model on a triangular lattice based on lattice symmetry
considerations and the interplay between strong electron
correlations, large SOC and a local octahedral crystal field
environment. By employing Luttinger-Tisza and classical
Monte Carlo methods, we have identified six distinct magnetic
ground states supported by our model. We then determined
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FIG. 4. (Color online) Band structure calculations of Ba3IrTi2O9 performed using OPENMX. (a) Band structure without SOC and projected
density of states including Ir t2g , Ti d , and O p orbitals. The bands near the Fermi level are composed of contributions from Ir4+ t2g orbitals
and O p orbitals. (b) Band structure with SOC and jeff projected density of states. The bands are projected onto jeff = 1/2 and 3/2 states using
maximally localized Wannier orbitals. The relative contribution of each state is represented by the intensity of the color. The t2g bands are well
separated into jeff = 1/2 (pink) and 3/2 (teal) bands.

the electronic band structure and nature of the states near the
Fermi level in the layered triangular compound Ba3IrTi2O9

from ab initio calculations, and found that it is well described
by the pseudospin jeff = 1/2 picture. Applying our ab initio
calculations to our general spin model, we predict that
Ba3IrTi2O9 hosts a stripy magnetic ground state near the Kitaev
limit. Our prediction for stripy order as the magnetic ground
state of Ba3IrTi2O9 can be verified by neutron scattering. A
magnetic peak at ordering wave vector M in the Brillouin zone
would correspond to stripy order according to our analysis.

A previous experimental study of Ba3IrTi2O9 [30] mea-
sured zero-field-cooled and field-cooled magnetic suscep-
tibility in the temperature range of 2–400 K, as well as
heat capacity measurements from 0.35295 K. No long-range
magnetic ordering was reported in this experimental study;
however, x-ray powder diffraction of Ba3IrTi2O9 at room
temperature revealed large site sharing between Ir4+ and Ti4+

ions of (37 ± 10)%. It is possible that the site sharing between
Ir4+ and Ti4+ ions could lead to a nonmagnetic dilution of the
triangular layers. Studies of nonmagnetic dilution have been
recently undertaken on the honeycomb iridates AIrO3 (A = Li
and Na) [37,38], with the observation of possible spin-glass
behavior. Further studies of nonmagnetic dilution on triangular
lattices, which may enhance frustration and induce a correlated
paramagnetic phase, can be important both in understanding
material properties and in realizing novel phases. Based on our
work, we expect that stripy magnetic ordering will be observed
in a pure sample.
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APPENDIX A: DERIVATION OF jeff = 1/2 SPIN MODEL
WITHOUT OCTAHEDRA DISTORTION

We derive the spin model in the limit of ideal octahedra
by performing a strong coupling expansion in the limit where
U,JH 
 λSO 
 t , with U being the strength of the Coulomb
interaction, JH is Hund’s coupling, λSO is the SOC strength,
and t are the tight-binding parameters. We start by considering
an on-site Kanamori Hamiltonian

H0 =
∑

i

(
U − 3JH

2
(Ni − 5)2 − 2JH S2

i − JH

2
L2

i

)
, (A1)

where i denotes the Ir4+ site index, and Ni, Si , and Li are the
total number, spin, and angular momentum operators on the
ith site.

To derive an effective spin Hamiltonian, we consider
electron hopping through major nearest-neighbor d-orbital
hopping channels as small perturbations on top of H0 within
the framework of second-order perturbation theory. The kinetic
part of the Hamiltonian (along a z bond for instance) takes the
general form

T z
ij + (

T z
ij

)† =
∑
σ,α,β

(d†
iασ T̃ z

αβdjβσ + d
†
jβσ (T̃ z)†αβdiασ ),

where d
†
iασ creates a d-orbital electron (α,β = yz,zx,xy) on

site i with spin σ , and T̃ z is the hopping matrix along the z

bond connecting the orbitals on the two nearest-neighbor sites.
In the ideal octahedra limit, the hopping matrix is restricted by
C2 rotation symmetry along the bond connecting the two sites
and C2z symmetry about the bond center to the form (in the
|yz〉,|zx〉,|xy〉 basis):

T̃ z =
⎛
⎝t1 t2 0

t2 t1 0
0 0 t3

⎞
⎠. (A2)

The resulting perturbed Hamiltonian is projected onto
the jeff = 1/2 subspace since the SOC is large. In terms
of the jeff = 1/2 spin operators, we arrive at the effective
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Hamiltonian

Hideal =
∑

αβ(γ )∈〈ij〉

(
JSi · Sj + KS

γ

i S
γ

j + �
(
Sα

i S
β

j + S
β

i Sα
j

))
,

(A3)

written in the main text, with

J = 4

27

(
6t1(t1 + 2t3)

U − 3JH

+ 2(t1 − t3)2

U − JH

+ (2t1 + t3)2

U + 2JH

)
, (A4)

K = 8JH

9

(
(t1 − t3)2 − 3t2

2

(U − 3JH )(U − JH )

)
, (A5)

� = 16JH

9

(
t2(t1 − t3)

(U − 3JH )(U − JH )

)
. (A6)

APPENDIX B: EXPRESSION FOR SPIN EXCHANGES
WHEN INCLUDING OCTAHEDRA DISTORTION EFFECTS

As discussed in the main text, the distorted octahedra add
two new hopping parameters t2 and t ′2. In terms of the hopping
matrix of the previous section, we have (in the |yz〉,|zx〉,|xy〉
basis):

T̃ z
distorted =

⎛
⎝t1 t2 0

t ′2 t1 0
0 0 t3

⎞
⎠. (B1)

This nonsymmetric hopping matrix introduces a
Dzyaloshinksii-Moriya exchange in the effective Hamiltonian
and also splits the Heisenberg and Kitaev exchanges found in
the ideal limit. Along a z bond (sites 1 and 2), the Hamiltonian
takes the form

Hz
distorted = JxS

x
1 Sx

2 + JyS
y

1 S
y

2 + JzS
z
1S

z
2

+D
(
Sx

1 S
y

2 − S
y

1 Sx
2

) + �
(
Sx

1 S
y

2 + S
y

1 Sx
2

)
, (B2)

with the new exchange parameters given by

Jx = 4

27

(
2t2

1 − 4t1t3 − 2t2
2 + t2t

′
2 + t ′22 + 2t2

3

U − JH

+ 3
(
2t2

1 + 4t1t3 + t2t
′
2 − t ′22

)
U − 3JH

− (−2t1 + t2 − t ′2 − t3)(2t1 + t2 − t ′2 + t3)

U + 2JH

)
,

Jy = 4

27

(
2t2

1 − 4t1t3 + t2
2 + t2t

′
2 − 2t ′22 + 2t2

3

U − JH

+ 3
(
2t2

1 + 4t1t3 − t2
2 + t2t

′
2

)
U − 3JH

− (−2t1 + t2 − t ′2 − t3)(2t1 + t2 − t ′2 + t3)

U + 2JH

)
,

Jz = 4

27

(−t2
1 + 2t1t3 + 2t2

2 + 5t2t
′
2 + 2t ′22 − t2

3

U − JH

−3
( − 3t2

1 − 2t1t3 + 3t2t
′
2 − t2

3

)
U − 3JH

+4t2
1 + 4t1t3 + t2

2 − 2t2t
′
2 + t ′22 + t2

3

U + 2JH

)
,

� = 8

9
JH

(t2 + t ′2)(t1 − t3)

(U − 3JH )(U − JH )
,

D = − 8

27
(t2 − t ′2)

(
3(t1 + t3)

U − 3JH

+ t1 − t3

U − JH

+ 2t1 + t3

U + 2JH

)
.

For Ba3IrTi2O9, we find the following tight-binding param-
eters from ab initio calculations: t1 = 7.4 meV, t2 = −13 meV,
t ′2 = −32 meV, and t3 = −119 meV. Taking the on-site
Coulomb repulsion to be U = 2.0 eV and fixing JH/U = 0.2,
we find J x � 2 meV, J y � 2 meV, J z � 6 meV, � � −2 meV,
and D � 2 meV. We return to the ideal octahedra limit when
t2 = t ′2 = −23.5 meV. In this limit, we find J � 2 meV,
K � 4 meV, and � � −2 meV.

APPENDIX C: REAL-SPACE SPIN
REPRESENTATION OF PHASES

Real space spin representations of nematic,Z2, and dual-Z2

phases from CMC are shown in Fig. 5. These phases are found
near the boundary of the phase diagrams in Fig. 2, where |�|
is small. The nematic phase, Fig. 5(a), is found near the Kitaev
limit, and characterized by uncorrelated antiferromagnetic
chains that point along one of the three principal directions of
the triangular lattice. The Z2 vortex crystal and dual-Z2 vortex

FIG. 5. (Color online) Real space spin configuration examples of nematic (a), Z2 vortex crystal (b), and dual-Z2 vortex crystal phases. The
orientation of each spin into (out of) the triangular plane is represented by the blueness (redness) of the color of the spins. The colored boundary
around each phase corresponds to the color used to label the phase in Fig. 2 of the main text.
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crystal phases are shown in Figs. 5(b) and 5(c), respectively,
and are discussed in Refs. [25,27]. The Z2 vortex crystal phase
is incommensurate and features large vortices that span the
lattice. It emerges upon perturbation of the Heisenberg model

on the triangular lattice with a small Kitaev term. The dual-Z2

vortex crystal phase is related to the Z2 vortex crystal phase
via Klein duality—a four-sublattice transformation of the spins
that maps J → −J and K → 2J + K .
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