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We present an experimental and theoretical study of the anisotropic pyrochlore phase diagram. Inelastic
field-dependent neutron scattering on Yb2Ti2O7 shows intrinsic broadening and a flat low-energy magnon mode
which is partially captured by interacting magnon models. Exact diagonalization reveals the existence of an
emergent quantum phase between ferromagnetism and antiferromagnetism, in which Yb2Ti2O7 Hamiltonian
potentially resides. This behavior matches the phenomenology of quantum criticality in heavy fermion systems,
and shows Yb2Ti2O7 is a clean system which can be field-tuned from well-defined magnons to a nontrivial
quantum ground state. This suggests that quantum criticality is a generic feature of the dipolar phase diagram.

I. INTRODUCTION

Quasiparticles are one of the foundational concepts of con-
densed matter physics. They successfully explain many dif-
ferent kinds of materials behaviors, from bulk properties to
spectral responses [1]. A frontier in condensed matter then is
where quasiparticle picture breaks down. Trivially, this occurs
in disordered systems which can no longer be described as a
smoothly varying quantum field. However, a more interesting
scenario is when quasiparticle breakdown occurs in a system
without extrinsic disorder [2, 3]. It includes the fractional-
ization of conventional quasiparticles into qualitatively differ-
ent ones [4–6], characteristic features of novel phases such as
quantum spin liquid, and also the cases where quasiparticles
disappear entirely, as in quantum critical metals [7–11].

In this context, we revisit a well-studied material Yb2Ti2O7.
This compound has effective J = 1/2 magnetic Yb3+ ions ar-
ranged in a highly frustrated pyrochlore lattice of corner shar-
ing tetrahedra [12–14] (see Fig. 1). The cleanest crystals show
ferromagnetic order at Tc = 270 mK [15–20] (although ∼ 2%
crystalline disorder suppresses the magnetic order [21–28]).
And yet, even in clean samples with robust magnetic order,
the zero-field neutron spectrum (which measures the dynamic
spin correlations) shows a diffuse continuum [29–32] instead
of sharp magnon modes typically seen in well-ordered mag-
nets [33]. Furthermore, above the magnetic ordering tran-
sition there is anomalous thermal conductivity [34, 35] and
quantum-critical-like scaling in the dynamic structure factor
[36], indicating non-trivial physics at play.

For a time, the strange behavior of Yb2Ti2O7 was inter-
preted as evidence for a quantum spin ice state [30, 38–42],

∗ szhang57@utk.edu
† hchanglani@fsu.edu
‡ scheie@lanl.gov

(a)

1 0 1
| |

1

0

1

|
|

/FM

(b)

= .
= .

Classical

1 0 1
| |

/FM

(c) Quantum

J =

 J2 J4 J4

−J4 J1 J3

−J4 J3 J1



Figure 1. (a) Pyrochlore unit cell of corner sharing tetrahedra, with
the nearest neighbor exchange matrix [30]. (b) Classical phase dia-
gram [37]. (c) Quantum phase diagram from this study, where the
white stars indicate phase boundaries from exact diagonalization.
White regions are the emergent quantum phases surrounding clas-
sical degeneracies.

but refinements of its spin exchange Hamiltonian [31, 32, 43]
and clear evidence of ferromagnetism [18–20] have refuted
this idea. The refined spin exchange Hamiltonian is extremely
close to a phase boundary between ferromagnetism (FM) and
antiferromagnetism (AFM) [31, 32, 36, 37, 43, 44], suggest-
ing that its exotic behavior is caused (in a manner not com-
pletely clear) by “multiple phase competition” [37, 45]. Ac-
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cordingly, it was previously suggested that the diffuse spec-
tral features were from a coexistence of FM and AFM in
Yb2Ti2O7, perhaps within antiferromagnetic domain walls
[32].

To test these ideas, we study high-purity single crystal
Yb2Ti2O7 with inelastic neutron spectroscopy in a magnetic
field to suppress the magnetic domains. We also compare the
inelastic data to models of interacting magnons. We finally
use exact diagonalization calculations to map the quantum py-
rochlore phase diagram and put Yb2Ti2O7 in context, to guide
research into other dipolar pyrochlore systems. We find that
at low fields, the broadened magnon modes are intrinsic to
Yb2Ti2O7, and not the result of domains or phase coexistence.
We also observe flattened magnon bands at low energy driven
by quantum effects. Our phase diagram calculations show an
extended region of emergent quantum phase, which explains
the breakdown of magnon physics in Yb2Ti2O7, and bears and
strong resemblance to quantum criticality.

II. METHODS

We now briefly summarize the experimental and theoreti-
cal methods that were used in the paper. More details about
these procedures can be found in the Supplemental Informa-
tion [46].

A. Neutron Experiments

We measured the single crystal neutron spectrum of
Yb2Ti2O7 using the CNCS spectrometer [47] at Oak Ridge
National Laboratory’s Spallation Neutron Source. Two crys-
tals (the same as those used in Refs. [19, 32, 36] grown
with the traveling solvent floating zone technique [28]) were
coaligned in the (hk0) scattering plane and mounted in a dilu-
tion refrigerator in a vertical [001] magnetic field. (The [001]
magnetic field was measured previously, but in a sample with
some “stuffing” disorder [31] which introduces some extrinsic
broadening from defects. Here we study a cleaner sample to
reveal the intrinsic behavior [17, 28].) Further details on ex-
perimental methods are in Appendix A. The data are shown in
Fig. 2.

B. Effective low-energy S = 1/2 dipolar Hamiltonian and
parameters

Following previous literature [14, 30, 48] (and references
therein), the spin-1/2 low-energy effective Hamiltonian on
the pyrochlore lattice for dipolar spins, with nearest neigh-
bor interactions and Zeeman coupling to an external field
h = (hx, hy, hz) is given by

H =
1
2

∑
i j

Jµνi j S µi S νj − µBhµ
∑

i

gµνi S νi , (1)

where i, j are nearest neighbors and µ, ν refer to x, y, z, S µi re-
fer to the spin-1/2 components at site i, and Ji j and gi are bond

and site dependent spin-exchange interactions and coupling
matrices respectively (whose components have been explic-
itly written out in the SM). For example, for [1,1,0] bonds we
have,

J =

 J1 J3 J4
J3 J1 J4
−J4 −J4 J2

 , (2)

where J1, J2, J3, J4 are used to parameterize the coupling
matrices. Ref. [31] determined J1 = −0.028 meV, J2 =

−0.326 meV, J3 = −0.272 meV, J4 = 0.049 meV and g-tensor
gxy = 4.17, gz = 2.14. Although other parameter sets have
been proposed [30, 32, 43], this set was fitted to the largest
amount of data and at fields high enough to avoid nonlinear
magnon effects which occur below 2 T [44]. While we have
associated this specific parameter set with Yb2Ti2O7, we have
also carried out an extensive scan of other Hamiltonian param-
eters with multiple theoretical techniques (discussed below).

C. Interacting Magnons: Nonlinear spin wave theory and
truncated Hilbert space exact diagonalization

We simulated the Yb2Ti2O7 inelastic neutron spectrum us-
ing non-interacting linear spin wave theory (LSWT), perturba-
tively interacting nonlinear spin wave theory (NLSWT) and a
non-perturbative “truncated Hilbert space exact diagonaliza-
tion” (THED) technique where magnon-magnon interactions
are treated up to infinite order. The results of these calcula-
tions are shown in Fig. 2.

The LSWT calculations, which neglect magnon-magnon
interactions, were performed using SpinW [49] on top of
a canted ferromagnetic ground state. The NLSWT calcu-
lations include magnon-magnon interactions perturbatively
to next to leading order in 1/S . Details of these calcu-
lations for Yb2Ti2O7 can be found in Ref. [44]. These
magnon-interaction corrections include the static “tadpole”
and “Hartree” diagrams as well as the dynamical “bubble” that
can describe spontaneous magnon decay [50]. For additional
details, see the Supplemental Information [46] (in which is
cited [51]).

To capture strong interaction effects beyond perturbation
theory, we employ a non-perturbative semiclassical approach
that projects the full spin Hamiltonian onto a truncated Hilbert
space containing at most two magnons, followed by exact
diagonalization of this reduced Hamiltonian. We refer to
this method as truncated Hilbert-space exact diagonalization
(THED) [52, 53]. This approach is well justified when the
single-magnon excitation possesses a finite energy gap much
larger than the magnon-magnon interaction energy, ensuring
that states with three or more magnons make negligible con-
tributions to the low-energy sector. In Yb2Ti2O7, this con-
dition holds under sufficiently strong external fields (≳ 1 T)
but breaks down near zero field, where the single-magnon gap
becomes small.

To make contact with NLSWT, the “single-magnon states”
in the above construction correspond to those defined within
LSWT, while the “two-magnon states” are their product states
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Figure 2. Yb2Ti2O7 inelastic neutron scattering along high symmetry directions Γ(000) → K(220) → X(200) → Γ at T = 0.15 K at various
fields between 0 T and 2 T along [001]. Panels (a)-(g) show experimental data. At 0 T the excitations are very broad and are most intense
around K, but the smallest field completely suppresses the K-point low-energy scattering. As field increases, the modes gradually become
sharper and less diffuse. Panels (h)-(n) show linear spin wave theory (LSWT) calculations of the inelastic spectrum using the Hamiltonian
in Ref. [31]. Panels (o)-(u) show nonlinear spin wave theory (NLSWT) calculations using the same Hamiltonian (the zero field calculations
around the K-point are unstable, and are shown by a grey region). Panels (v)-(bb) show the THED calculations with the same Hamiltonian. At
zero field the THED calculations are unstable, but at finite fields they show a significant amount of broadening.

in Fock space. The one- and two-magnon sectors are cou-
pled via the cubic interaction vertex, responsible for the en-
ergy renormalization and finite lifetime of single-magnon ex-
citations in NLSWT. Meanwhile, interactions among two-
magnon states are mediated by the quartic vertex, which in
perturbative treatments leads to Hartree-Fock corrections to
the single-magnon dispersion. Within THED, however, the
quartic vertex is treated non-perturbatively, allowing for the
emergence of bound or resonant states and redistribution of
spectral weight within the energy window of an excitation
continuum [52, 53].

D. Exact Diagonalization Phase Diagram Calculations

In both the NLSWT and THED procedures discussed
above, the starting point is a classical spin-ordered state on
top of which additional quantum fluctuations are incorporated.
While this works well for many ordered magnets, it is inade-
quate for capturing exotic physics where either long-range or-
der is absent or the notion of well-defined quasiparticles com-
pletely breaks down.

With this motivation, we have carried out Lanczos ex-
act diagonalization (ED) calculations on the Hamiltonian in
Eq. (S1) to avoid the above restrictions. The major limitation
is the accessible system sizes, in this work we have carried
out calculations on N = 16 and N = 32 sites, with a major-
ity of our assertions based on the latter. (More details about
the geometry and the use of translational symmetry have been
discussed in the Supplemental Information [46] and in previ-
ous work [54].) We computed the equal-time spin correlations
S (Q) across the nearest-neighbor exchange phase diagram,
varying the elements of the nearest-neighbor exchange matrix
in Eq. (2). Specifically, we varied J1 and J2 while keeping
J3 and J4 fixed to J3 = −0.272 meV and J4 = 0.049 meV,
corresponding to the Yb2Ti2O7 Hamiltonian reported in Ref.
[31]. (In the Supplemental Information [46], we show the cal-
culations repeated for J3 = −0.3 meV and J4 = 0.0.)

From the ED calculations, we used correlation analysis to
build a phase diagram. Choosing a representative structure
factor S (Q) in the (hhℓ) scattering plane from deep inside each
of the three ordered phases (FM, Ψ4, and Ψ3/Ψ2 [37]), we
built a phase diagram by using the Pearson R coefficient to
compute the pixel-by-pixel correlation with each of these rep-
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resentative phase S (Q) (see the Supplemental Information for
details [46] in which is cited Ref. [55]). We also computed the
relative strength of the magnetic order (corresponding to the
size of the static ordered moment) via the covariance between
the calculated S (Q) and the representative S (Q). The results
are shown in Fig. 3. Because the ED calculations are com-
putationally expensive, we only calculated S (Q) for ∼ 450
parameter sets, concentrating more calculations around the
phase boundaries, interpolating between the computed points.

From the ED results we also calculated the ground state
energies across the phase diagram to define the phase bound-
aries. We calculated three line scans across the three phase
boundaries with densely spaced points (two varying J1, and
one varying J2), allowing us to calculate the first and second
derivatives with respect to the exchange parameters. These
results are shown in Fig. 4, and reveal phase boundaries by
discontinuities in the first or second derivatives of the energy.

III. RESULTS

The results of the inelastic neutron experiment are striking.
The spectrum in Fig. 2 smoothly evolves from a very dif-
fuse spectrum at zero field to a sharp, well-defined magnon
spectrum at 2 T. Such behavior has been reported before
[30, 31], but here we observe it using high-purity samples,
where defects and disorder are negligible. The fact that sig-
nificant broadening exists at 0.15 T (where a ferromagnetic
monodomain is stabilized [20]) falsifies the hypothesis that
the broadening is from phase coexistence or domain effects.
Rather, the broadening is intrinsic to the ferromagnetic ground
state. What is more, these results indicate that a [001] mag-
netic field smoothly tunes Yb2Ti2O7 from a regime with well-
defined magnons to one where the magnon picture breaks
down.

At 2 T, the experimental data and all the theoretical simu-
lations are in excellent agreement (though perhaps a slightly
better description is found in NLSWT than LSWT), showing
that magnon interactions are perturbative and that spin wave
theory offers an accurate description at high fields. However,
as the field decreases, the experimental data increasingly de-
viate from LSWT predictions. The primary discrepancies are
(i) significant broadening of the magnon modes, and (ii) the
magnon band between X and Γ is much flatter and much lower
energy in experiment than in LSWT. NLSWT successfully ac-
counts for the flattening of the X → Γ magnon mode and
the magnon peak broadening. However, there are still impor-
tant differences with experiment. Namely, (i) the low-field
experimental spectrum has much less spectral weight in the
magnon branches and much more weight in the continuum,
(ii) broadening at low-fields spans nearly the entire single-
magnon spectrum, and (iii) at zero-field the NLSWT predicts
sharp low-energy magnon modes whereas none are observed
in experiment (although the zero-field calculation is weakly
unstable near the K wavevector, see Appendix F). Clearly,
Yb2Ti2O7 low-field magnetism cannot be fully modeled with
perturbative corrections.

This conclusion is bolstered by comparison with the non-

perturbative THED spin-wave calculations in Fig. 2. At mag-
netic fields (B ≳ 1 T), THED reproduces both the high-energy
magnon damping and the flattening of the lowest magnon
band, consistent with the success of perturbative NLSWT
in this regime. As the field decreases, however, the sharp
magnon spectral features progressively lose intensity, which is
transferred to the two-magnon continuum. This intensity re-
distribution, characterized by diminished single-magnon sig-
nals and enhanced two-magnon spectral weight, aligns very
well with experimental observations. However, the match is
still imperfect. In particular, (i) the intense flat feature at K is
missing in the low-field THED simulations [Fig. 2(w)], and
(ii) below 1 T the simulated low-energy magnon bands at all
wavevectors are lower energy than experiment [Fig. 2(w)-(z)].
This discrepancy can be attributed to our calculation’s trun-
cated Hilbert space limited to one- and two-magnon states,
which means only the single-magnon energies experience a
downward renormalization, while the two-magnon energies
do not. Consequently, the lowest magnon modes remain out-
side the two-magnon continuum at all fields and remain sharp,
unlike in experiment.

Including three-magnon states in the truncated Hilbert
space would correct this discrepancy by renormalizing the
two-magnon continuum downward. In particular, the emer-
gence of a nearly flat band at low energies is expected to gen-
erate a renormalized two-magnon continuum across a wide
energy range, covering the full energy scale of the single-
magnon modes and thereby enabling the kinematic condi-
tions for magnon decay observed experimentally across all
energies. However, substantial contribution of three-magnon
states is highly unconventional and such a calculation is be-
yond the scope of the present work. To go beyond the magnon
picture entirely, we turn to ED simulations.

The ED simulated phase diagram in Fig. 3 makes situa-
tion even more interesting. Figure 3(a) shows the phase cor-
relations with the classical phase boundaries (from Ref. [37])
superimposed. For the most part, the phases follow the classi-
cal bounds, although there are some differences. Interestingly,
the Ref. [31] Yb2Ti2O7 Hamiltonian is in the FM phase classi-
cally, but appears to be in the Ψ3/Ψ2 phase quantum mechan-
ically. (This is consistent with previous semi-classical [45],
series expansion [45], exact-diagonalization [45], nonlinear
spin wave calculations [44], and more recent pseudo-fermion
functional renormalization group (pf-FRG) calculations [56]
showing that quantum effects move the boundary from the
classical values.)

However, a striking departure from the classical phase di-
agram is the strength of the magnetic order in Fig. 3(b).
This reveals significant static moment suppression along the
boundary between FM and AFM order (both Ψ3/Ψ2 and Ψ4).
Classical simulations show a first-order boundary between the
FM and Ψ3/Ψ2 phases [36, 43] rather than a regime of sup-
pressed order.

The line scans in Fig. 4 reveal more details about the phase
boundaries. These calculations show that the phase bound-
aries between the FM and AFM phases split into two, with
a double minimum in the second derivative in energy. In
the case of the FM-Ψ3/Ψ2 boundary (left column), it appears
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that one boundary is second-order and one is weakly first-
order, with a slight discontinuity visible in the first deriva-
tive. For the FM-Ψ4 boundary (right column), both transitions
appear to be continuous and second-order. (Meanwhile the
Ψ4-Ψ3/Ψ2 transition is sharp, discontinuous, and clearly first-
order.) Examining the phase correlations (Fig. 4 top row),
one can see the discontinuities in the phase correlations them-

selves, and the intermediate region between the two phase
boundaries has strongly suppressed phase correlation. This
indicates a finite phase without magnetic order on the bound-
ary between FM and AFM.

This extensive phase diagram allows us to go beyond
merely describing Yb2Ti2O7. These calculations reveal the
onset of the quantum phase near the Heisenberg limit J1 =
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J2 > |J3| [upper right corner of Fig. 3(b)]. The Heisen-
berg S = 1/2 pyrochlore model is known to have a non-
magnetically-ordered ground state (though the precise ground
state is debated [57–63]). However the largest region of quan-
tum disorder is the FM-AFM phase boundary, which has a
distinct emergent quantum phase.

IV. DISCUSSION

Our results shed light on the Yb2Ti2O7 spectrum and pose
some intriguing puzzles. At high fields, the Yb2Ti2O7 spin
dynamics are well described by a weakly interacting magnon
picture, but near zero field even the infinite-order two-magnon
simulations fail to describe the data. The need for magnon in-
teractions to infinite order and beyond two-magnons makes
one question whether it is meaningful to be talking about
magnons at all in zero-field Yb2Ti2O7. The magnon picture
appears to completely break down in low-field.

Accompanying this magnon breakdown at low fields is the
flat X → Γ magnon mode whose energy progressively de-
creases as the field decreases to zero. Figure 5 shows the field
evolution of this quasi-flat mode’s energy compared with the
theoretical calculations. The experimental data for Yb2Ti2O7
shows a linear dependence but with a positive energy intercept
after linearly extrapolating to zero field. In comparison, the
LSWT predicts a higher energy band, which is pushed down
to a lower energy when magnon-magnon interaction is taken
into account, as revealed by both NLSWT and THED calcula-
tions. The NLSWT has a remarkable agreement with the data,
while THED overestimates the downward energy renormal-
izaiton. This mismatch arises from different treatment of the
anomalous self-energy corrections between the two theoreti-
cal frameworks. This analysis suggests that Yb2Ti2O7 seems
to be immune to the potential instability induced by the soft-
ening of the quasi-flat band. However, in zero field spectrum
(Fig. 2) the flat band has vanished—either because it has no
intensity, has broadened beyond detection, or collapsed into
the elastic line.

In general, low-energy flat bands are harbingers of strong
correlations and exotic physics [64, 65], and the presence of
a quasi-flat band here provides the necessary kinematic con-
dition for the intrinsic broadening of magnon excitations at
the full energy scales. In the pyrochlores, the low-energy
X → Γ flat magnon mode indicates proximity to an extensive
degeneracy. Classically, a “pinch-line” spin liquid exists at
the meeting point of the FM and two AFM pyrochlore phases
[37, 66], and a “spin-nematic” phase exists on the boundary
between the FM and Ψ4 phases [67, 68] where the magnon
energies go to zero along certain reciprocal space directions
[56, 67]. To clarify the situation at zero field, we adopted a
fully quantum treatment, the ED study of the ground state.

The ED simulations show that quantum effects create an
emergent quantum phase on the boundary with FM order with
suppressed magnetic order. (This is reminiscent of the 2D
triangular quantum spin liquid, where a sharp boundary be-
tween competing classical orders becomes an extended spin
liquid phase in the quantum limit [69–75].) A similar inter-
mediate phase on the pyrochlore phase diagram was indepen-
dently found with pf-FRG calculations (both on the FM-AFM
boundary [56] and elsewhere on the pyrochlore phase diagram
[76]), which strongly suggests that our conclusions persist be-
yond the 32-site system we calculated. We also see evidence
of similarities for most parts of the phase diagram with smaller
system sizes as well, see Appendix D.

The obvious next question is: what is the nature of the
emergent quantum phase? The analysis here is insufficient to
distinguish a quantum spin liquid from other forms of quan-
tum non-magnetic-order (like valence bond crystals [77]).
However, we note that the intermediate phase displays the
“rods” of scattering along {111} reciprocal space directions,
shown in Fig. S.7 (and in further detail in the Supplemental
Information [46]).

Diffuse {111} scattering rods, similar to what is calculated
here, have been measured in previous neutron experiments on
Yb2Ti2O7 [16, 27, 29, 36, 78, 79] which indicate reduced di-
mensional correlations to 2D Kagome planes within the py-
rochlore lattice. This suggests a long-range collective effect
rather than short-range singlets. (Note that these intermedi-
ate quantum phases are far from the quantum spin ice region,
which is at J1 = −J2 = J3 = J4 < 0 [30].) Furthermore, the
intermediate quantum phase is continuously connected to the
center degenerate point, which is a classical spin liquid [66]
and exhibits symmetry-breaking “nematic” disorder in classi-
cal spin simulations [67].

Intriguingly, the most comprehensive spin Hamiltonian fit
[31] (J1 = −0.028 meV, J2 = −0.326 meV) puts Yb2Ti2O7
within the emergent quantum phase (Fig. 4). Of course
experimental uncertainty and finite size calculations may
change the precise location of the phase boundaries and the
Yb2Ti2O7 Hamiltonian. Indeed, experiments unambiguously
demonstrate that our samples possess a ferromagnetic ground
state [28, 32]. Taken together, our study suggests two possible
scenarios. First, the emergent quantum phase retains vestiges
of ferromagnetism. Notably, the experimental 0.1 K energy-
integrated (hk0) scattering in Fig. S.7 shows a striking agree-
ment with the ED calculated S (Q) within this intermediate
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Figure 6. Evolution of S (Q) tuning across the FM - Ψ3/Ψ2 phase boundary with J2 = −0.326, J3 = −0.272, J4 = 0.049 (from the fitted
Yb2Ti2O7 exchange Hamiltonian [31]). Panels (a)-(g) show the (hk0) scattering plane, while panels (h)-(n) show the (hhℓ) scattering plane.
(Note the asymmetric elongation in the (hk0) structure factor is due to the ED supercell geometry, see Supplemental Information [46].) Panel
(o) shows the experimental energy-integrated zero-field Yb2Ti2O7 spectrum at 0.1 K, which resembles the scattering pattern intermediate to
the two phases.

phase. Alternatively, Yb2Ti2O7 may lie firmly within the FM
phase but in close proximity to the emergent phase revealed
by ED. Such proximity could be sufficient to induce emergent
phenomena at finite energy scales, even within an ordered fer-
romagnetic ground state [80].

The picture emerging from this study begins to explain
many things about Yb2Ti2O7, and suggests a new view of py-
rochlore physics. Yb2Ti2O7 magnon broadening is intrinsic
to its Hamiltonian rather than an extrinsic effect of domains.
It appears to be associated with very low energy flat bands in
the spectrum. This in turn creates a phase diagram remarkably
similar to quantum critical electronic phases, in five respects.
First, the competition between the FM and AFM phases sup-
presses the order parameters, producing an extended zero tem-
perature phase (analogous to unconventional superconductiv-
ity [81]). Second, extensive degeneracy in the ground state
is present with flat bands near zero energy, closely parallel-
ing the physics of heavy-fermion materials [82, 83]. Third,
scale-free fluctuations are observed at finite temperatures [36].
Fourth, dimensional reduction (witnessed by rods of scat-
tering) occurs near the phase boundary (c.f. CeCu6 [84]).
Fifth, the magnon quasiparticle picture seems to break down
[31, 32]. These five features show striking resemblance to
correlated electron quantum criticality. Importantly for exper-
imental studies, Yb2Ti2O7 can be continuously tuned with a
modest magnetic field from semiclassical physics to its non-
trivial quantum ground state.

The emergent quantum phase here is unusual, because
quantum fluctuations typically lift degeneracies by order-by-
disorder [85]. Here we observe quantum fluctuations doing
the opposite: stabilizing a degeneracy at a first-order phase
boundary, and creating quantum critical behavior [86].

Our experiments focused on only one model system,
Yb2Ti2O7. However, this dipolar phase diagram covers many
other pyrochlore materials as well [87–90]. Furthermore, sim-
ilar systematic calculations may also be useful for multipo-
lar magnets like the cerium-based pyrochlores [91–98], which
also have a rich phase diagram [95]. This offers an opportunity
to study exotic phases of many-body systems with a precisely-

known underlying Hamiltonian—a luxury not always avail-
able for other quantum critical systems like unconventional
superconductors.

V. CONCLUSIONS

We have experimentally and theoretically explored the
quantum limit of the anisotropic S = 1/2 pyrochlore model,
showing an emergent quantum disordered phase on the bound-
ary between the FM phase and the two AFM phases. In this
phase the magnetic order is strongly suppressed and scatter-
ing rods emerge which indicate reduced dimensional corre-
lations. The scattering pattern computed from theory (ED)
in this phase strongly resembles the experimental Yb2Ti2O7
scattering pattern, which according to the spin wave model
may lie within this the emergent quantum phase.

The results of this study strongly suggest that the phe-
nomenology of quantum criticality applies to Yb2Ti2O7, as an
insulating system with scale-free fluctuations and quasiparti-
cle breakdown. This offers a remarkable opportunity to con-
tinuously tune from well-defined magnons to magnon break-
down in a well-understood and clean system. Our study stim-
ulates the further exploration of the nature of quantum critical-
ity along the FM/AFM phase boundary. The theoretical meth-
ods employed in this work each have unique limitations which
restricts the extent to which we can reproduce the experimen-
tal low-field Yb2Ti2O7 spectrum. However, we believe this
system could be a benchmark for many-body quantum simu-
lation methods (including quantum computers) [99].

The most important result of this study is placing Yb2Ti2O7
in context: in fact there are many regions where such exotic
physics can be expected from pyrochlores, along the entire
phase boundary between FM and AFM order. This puts for-
ward the pyrochlore lattice generically (and Yb2Ti2O7 specif-
ically) as a case where emergent physics— potentially insu-
lating quantum criticality—can be studied in a system with a
well-understood underlying Hamiltonian.
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Appendix A: Neutron experiment details

The sample used for this experiment, shown in Fig. 7, was
the same crystals as was used in ref. [32] reoriented so that
[001] is vertical. Total sample mass was 4.8 g. Data were
measured rotating over 180◦ in 0.5◦ steps. We collected data
using Ei = 3.32 meV neutrons (disc chopper frequency 300
Hz, for an elastic line energy resolution ∆ℏω = 0.11 meV,
taken from the FWHM of the experimental data) at several
magnetic fields between 0 T and 2 T. We also briefly collected
data with Ei = 2.49 meV neutrons (disc chopper frequency
240 Hz, for an elastic line energy resolution ∆ℏω = 0.05 meV
from the FWHM of experimental data) at angles around (220)
in order to measure the gap at (220).

Data were background-subtracted by a measured 12 K
Yb2Ti2O7 background. Prior to subtraction, inelastic 12 K
data (above 0.15 meV) were subtracted by the median 12 K in-
tensity in the scattering plane, which empirically works well
in removing artifacts whilst preserving the magnetic scatter-
ing features. In the high-symmetry cuts plotted in Fig. 2, the
out-of-plane binning was ±0.1 reciprocal lattice units (RLU)
along [001] and ±0.05 RLU along the transverse in-plane di-
rection.

The higher resolution data around the (220) wavevector
with Ei = 2.49 meV are shown in Fig.8 (for full colormaps,

Figure 7. Yb2Ti2O7 sample used in the CNCS experiment: two
coaligned crystals wrapped in copper foil and tied to a copper sample
holder.
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Figure 8. Yb2Ti2O7 scattering measured with Ei = 2.49 meV neu-
trons at (220), with a 2 T background subtracted. Here we show
the highest measured and the lowest measured temperatures in this
configuration, which clearly reveals the presence of a 0.11 meV res-
onance at 0.15 K. The grey region indicates an oversubtraction from
the 2T background data, which has nonzero Bragg intensity at (220).

see the Supplemental Information [46]). These data have a
noisier signal than Ei = 3.32 meV due to the lower flux, but
the resonance at 0.11 meV is visible and outside error bars at
the lowest temperatures.

Appendix B: Absolute unit conversion and entanglement

We are able to calculate the Quantum Fisher Information
(QFI) of Yb2Ti2O7 by normalizing the inelastic scattering to
be in absolute units using the intensity of the 2 T spin wave
modes. This is done by integrating over the inelastic scattering
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Figure 9. Quantum Fisher Information (QFI) of Yb2Ti2O7 at 0.1 K as
a function of magnetic [001] field. The reported values are the maxi-
mal QFI along the high-symmetry cuts. At B = 0 QFI is maximal at
K, but at nonzero fields QFI is maximal at the midpoint between K
and Γ.

via

nQFI[Q, T ] =
1

2S 2

∫ ∞

0
d(ℏω)

[
tanh

(
ℏω

2kBT

)
(
1 − e−ℏω/kBT

)
S̃ (Q, ω)

] (B1)

where S is the quantum spin number (here we normalize the
Yb3+ effective crystal field doublet to S = 1/2), T is temper-
ature, and S̃ (Q, ω) is the unpolarized neutron structure factor
[100, 101]. nQFI provides a lower bound to entanglement
depth such that nQFI > m indicates a system with at least
m + 1 partite entanglement [102, 103]. The calculated nQFI
versus field is shown in Fig. 9.

At B = 0 the largest intensity (and correspondingly the
largest QFI) is concentrated around K, giving nQFI = 1.9 ±
0.4. This witnesses at least bipartite entanglement per spin,
consistent with a nontrivial quantum state. This value is al-
most certainly an underestimate, for three reasons. First, due
to large uncertainties near the elastic line, we excluded all
scattering below 0.07 meV, which would otherwise partici-
pate in the integral in Eq. (B1). Second resolution effects
are probably at play, which tends to broaden signals and sup-
press QFI values [101]. Third, in Eq. (B1) we have as-
sumed the isotropic approximation S xx(Q, ω) = S yy(Q, ω) =
S zz(Q, ω) = 1

2 S̃ (Q, ω), however the linear spin wave model
shows that this approximation suppresses QFI by 36% (see
Fig. 10).

The inelastic scattering data were normalized to absolute
units by the integrated intensity of the 2 T magnons at the K
point to LSWT calculations (similar to how phonon intensities
are used in Ref. [104]). Rather than normalizing to µB/meV
(for a M = g · S model where g is the g-tensor), we normal-
ized to meV−1 for an effective S = 1/2 model such that the
sum rule

∫
BZ dqdωS (q, ω) = S (S + 1) is satisfied. This is nec-

essary in order to apply the quantum entanglement measures
that have been defined for S = 1/2 [101].

Aside from an overall scale factor, the differences between
the LSWT simulations are minor: mainly that the weaker
modes have more intensity with the g-tensor included (see
Supplemental Information [46] for more plots). Thus we con-
fidently use the 2 T simulations to normalize the experimental
data to the S = 1/2 model. (This normalization comes with
a statistical uncertainty of 22%, which is a typical value for
absolute unit conversion [104]).

Normalized QFI (nQFI) of the experimental and simulated
scattering is calculated via Eq. (6) of Ref. [101]. Because the
polarized scattering S αα was not measured, we have assumed
the isotropic approximation

S αα =
1
2

S̃ (B2)

to get Eq. (B1).
As noted above, we have assumed the isotropic S approxi-

mation for the QFI calculation as the most conservative way to
estimate QFI from unpolarized scattering data. Although we
cannot separate the experimental polarization components, we
can use LSWT to estimate the influence of the different polar-
ization channels. Figure 10 shows the effect in LSWT of the
different polarization channels. In this model, the S zz channel
would have given an nQFI over 50% higher than the unpo-
larized S̃ data. Taking this as an estimate for experimental
polarization correction (like Ref. [105]) gives an estimated
experimental B = 0 QFI ≥ 2.9(6), witnessing ≥ 3-partite en-
tanglement in Yb2Ti2O7. We suspect that in the real Yb2Ti2O7
polarization factor correction would be even greater, as the
gap in Yb2Ti2O7 is much smaller than in LSWT and intensi-
ties tend to diverge as gaps close.

Appendix C: Entropy from specific heat

Figure 11 shows the integrated entropy from zero-field spe-
cific heat reported in Ref. [28]. The entropy of the short-
ranged correlated phase just above Tc = 270 mK goes below
the spin ice Pauling entropy of R/2 ln(3/2) [106] and reaches
R/4 ln(2). There is not a clear saturation of entropy, but this
value is consistent with decoupled 2D kagome planes on the
pyrochlore lattice wherein 1/4 of the spins are disordered and
fluctuating.

Appendix D: Effects of Finite Size

In order to assess the effects of finite system size, we have
evaluated the ground-state energy with ED, by using two sys-
tem sizes, N = 16×13 = 16 sites (cubic unit cell with a 16 site
basis) and N = 4× 23 = 32 (FCC unit cell with a 4 site basis).
These geometries have been employed in previous work on
pyrochlore magnets [54], and have been further discussed in
the Supplemental Information [46]. We used the energies to
numerically compute their derivatives and second derivatives
with respect to varying a parameter in the Hamiltonian.

Fig. 12(a)-(i) shows our ED results for both sizes for three
different line scans (see also Fig. 4). We find that the energy
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Figure 11. Yb2Ti2O7 entropy from zero-field heat capacity. From
the paramagnetic phase to Tc = 270 mK, the specific heat recovers
3/4R ln(2) entropy, in accord with ordered 2D kagome planes with
intervening disordered spins.

per site agree reasonably well with each other for all the three
line scans. We also observed than the N = 16 system (like the
N = 32 site cluster) captures the first order phase transition
at the Ψ4 and Ψ3/Ψ2 boundary. However, the smaller sized
system does not show any signature of any phase transition
near the FM andΨ3/Ψ2 boundary when moving along the line
with J2 fixed at -0.326, see Fig. 12(g). As mentioned in the
main text, the N = 32 site cluster shows a transition in the
form of a second order transition near this boundary.

Appendix E: S (Q) across phase boundaries

In this section we show the computed S (Q) along and
across the phase boundaries in the phase diagram. Figure 13
shows the structure factor along the line scans explored in the
main text, showing the onset of rod-like scattering at the phase
boundary. Figure 14 shows the evolution of the structure fac-
tor along the entire FM-AFM phase boundary, showing the
universality of the rod-like features—although they are the
clearest and most rod-like nearest the degenerate point at the
middle. That said, the scattering right at the degenerate point
is less rod-like, and is more of a superposition of the Heisen-
berg QSL scattering and the FM-AFM rods.

Appendix F: NLSWT stability

As noted in the main text the NLSWT calculations are un-
stable around the K wavevector at B = 0, at least for the pa-
rameters in Ref. [31]. In Fig. 15, we modify the Hamiltonian
by tuning J1 further into the FM phase. We find that a tiny
modification allows numerical stability, and also gaps the ex-
citations at K. This gap does not reproduce the intense flat
mode shown in Fig. 8 or in Ref. [107], so there are still clear
deficiencies in the NLSWT calculation even with parameters
tuned so the FM phase is stable.
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Figure 15. Zero-field nonlinear spin wave theory (NLSWT) calculations of the Yb2Ti2O7 Hamiltonian from Ref. [31], where J1 is tuned
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SUPPLEMENTAL INFORMATION FOR INTRINSIC
QUANTUM DISORDER IN YB2TI2O7 AND THE QUANTUM

S = 1/2 PYROCHLORE PHASE DIAGRAM

I. PYROCHLORE GEOMETRY AND EFFECTIVE SPIN-1/2
DIPOLAR HAMILTONIAN

We summarize here some key details of the pyrochlore ge-
ometry and low-energy effective spin-1/2 dipolar Hamilto-
nian. Some of these details overlap with what has been re-
ported in previous work (for example, see Refs. [19, 30, 32,
37, 54]) – we restate them here for completeness.

The pyrochlore lattice has four sublattices, which we la-
bel as 0, 1, 2, 3, and we take the relative locations of the
sites on a single tetrahedron to be, (in units of lattice con-
stant a) r0 = (1/8, 1/8, 1/8), r1 = (1/8,−1/8,−1/8), r2 =

(−1/8, 1/8,−1/8) and r3 = (−1/8,−1/8, 1/8). The centers of
each such tetrahedron lie on the vertices of a FCC lattice. Thus
a finite size cluster would have 4L3 sites where L corresponds
to the number of translations along each of the primitive lat-
tice vectors. Our 32 site system corresponds to L = 2, see
Fig. S.1. Alternatively, the sites of a pyrochlore lattice can be

Figure S.1. 32 site cluster used in the ED calculations.

thought of as those derived from a simple cubic lattice with a
16 site unit cell. A simple cubic lattice with edge length L has
16L3 sites, and thus our 16 site system corresponds to the case
of L = 1. Periodic boundary conditions along the directions of
the primitive lattice vectors of the underlying Bravais lattice
are considered in both cases.

As mentioned in the main text, the spin 1/2 low-energy
effective Hamiltonian on the pyrochlore lattice, with near-
est neighbor interactions and Zeeman coupling to an external
field (h = (hx, hy, hz)) is given by,

H =
1
2

∑
i j

Jµνi j S µi S νj − µBhµ
∑

i

gµνi S νi (S1)

where i, j are nearest neighbors and µ, ν refer to x, y, z, S µi re-
fer to the spin-1/2 components at site i, and Ji j and gi are bond

and site dependent interactions and coupling matrices respec-
tively. Symmetry considerations dictate that Ji j and gi are
completely described by four (J1, J2, J3, J4) and two (gxy,gz)
scalars respectively. Ji j depends only on the sublattices that
i, j belong to, similarly gi depends only on the sublattice of
site i, and thus we use the notation in terms of i, j = 0, 1, 2, 3.
Also, since Ji j = JT

ji, we write out only the i < j matrices. The
Ji j matrices are,

J01 ≡

 J2 J4 J4
−J4 J1 J3
−J4 J3 J1

 , J02 ≡

 J1 −J4 J3
J4 J2 J4
J3 −J4 J1

 ,
J03 ≡

 J1 J3 −J4
J3 J1 −J4
J4 J4 J2

 , J12 ≡

 J1 −J3 J4
−J3 J1 −J4
−J4 J4 J2

 ,
J13 ≡

 J1 J4 −J3
−J4 J2 J4
−J3 −J4 J1

 , J23 ≡

 J2 −J4 J4
J4 J1 −J3
−J4 −J3 J1

 .
Defining g+ = 1

3 (2gxy + gz) and g− = 1
3 (gxy − gz), the gi

matrices read as,

g0 ≡

 g+ −g− −g−
−g− g+ −g−
−g− −g− g+

 , g1 ≡

 g+ g− g−
g− g+ −g−
g− −g− g+

 ,
g2 ≡

 g+ g− −g−
g− g+ g−
−g− g− g+

 , g3 ≡

 g+ −g− g−
−g− g+ g−
g− g− g+

 .

II. ADDITIONAL NEUTRON SCATTERING DATA

The scattering data shown in the main text are cuts along
high-symmetry directions in reciprocal space. In Fig. S.2 we
plot the full [hk0] scattering plane of data. The higher reso-
lution data with Ei = 2.49 meV along the hh0 direction are
shown in Fig. S.3. Even in the colormap plots, the resonance
at 0.11 meV is distinctly visible at low temperatures.

In Appendix B we compute the Quantum Fisher Informa-
tion (QFI) of Yb2Ti2O7 as a function of magnetic field. QFI is
a wavevector-dependent quantity [101], and in Figure S.4 we
plot the nQFI [normalized QFI, main text Eq. (B1)] along the
high symmetry directions. Interestingly, the peak QFI is dif-
ferent between zero field and the finite field data. In Appendix
B, we plot the maximal QFI across the Brillouin zone to give
the most stringent bound on multipartite entanglement.

An important part of the absolute unit conversion to S =
1/2 (and thus being able to compute nQFI) is normalizing
the g-tensor, as discussed in Appendix B. Figure S.5 shows
the data compared to LSWT calculations with and without the
anisotropic g-tensor gxx = gyy = gxy = 4.17, gzz = gz = 2.14
[31] included in the intensity calculation. To a rough approx-
imation, the LSWT without a g-tensor is a simple intensity
rescaling (though some details differ, particularly the visibil-
ity of the weak low-energy modes).
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Figure S.2. Constant energy slices of (hk0) scattering in Yb2Ti2O7. The rows show the seven measured fields from 0 T to 2 T, and the columns
indicate different constant energy ranges, with a bin width ℏω ± 0.05 meV. A 12 K background was subtracted, as described in main text
Appendix A.
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Figure S.3. Yb2Ti2O7 scattering measured with Ei = 2.49 meV neutrons at temperatures between 0.15 K and 0.35 K, with 2 T scattering
subtracted as a background. Note the resonance at 0.11 meV below Tc = 0.27 K which disappears above the phase transition. Line cuts of this
feature are shown in main text Fig. 8.

III. DETAILS OF NONLINEAR SPIN WAVE THEORY
(NLSWT) CALCULATIONS

Our NLSWT calculations are carried out in the basis of
the original Holstein-Primakoff bosons with both the nor-
mal and anomalous parts of the Green’s functions kept at
each stage of the calculation. For the dynamical struc-
ture factor the nonlinear spin-wave corrections both renor-
malize the transverse-transverse spin-spin correlation func-
tion that appears in linear spin-wave theory, but also provide

contributions to the longitudinal-longitudinal and transverse-
longitudinal spin-spin correlation functions [51]. We calcu-
lated the field-dependent spectra for a wavevector grid cor-
responding to a finite system of size N = 4L3 with L = 32,
with the self-energy and other dynamical correlation functions
discretized on a dense frequency grid. The relevant matrix
Green’s functions are computed directly with a very small ar-
tificial broadening and the final dynamical structure factor is
then convolved with a Gaussian of width comparable to the
experimental energy resolution.
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Figure S.4. Quantum Fisher Information versus wavevector along high symmetry cuts. Panels (a)-(g) show the inelastic intensity normalized
to S = 1/2, and panels (h)-(n) show the calculated QFI of Yb2Ti2O7 compared to different theoretical models.

IV. DETAILS OF THE EXACT DIAGONALIZATION
CALCULATIONS

As stated in the main text, we have carried out Lanczos
exact diagonalization (ED) calculations on two system sizes,
N = 16 and N = 32 sites (see Sec. F), with our main conclu-
sions based on the latter. For N = 32 = 4×23, our ED calcula-
tions used translational symmetry, that block diagonalized the
Hamiltonian into 8 sectors, each with a Hilbert space dimen-
sion of approximately 536 million. The sectors are labeled
according to three dimensional momenta (k1, k2, k3), where
ki = 0, π.

We work with the effective spin-1/2 nearest neighbor
Hamiltonian (see main text and Sec. F) and simulate approx-
imately 450 parameter sets, sampling more points near phase
boundaries. For all the parameter sets considered in this study,
we find the ground state from ED to be in the (0, 0, 0) sector.

Expectation values of spin operators (static spin correlations)
were computed in the ground state for each parameter set.
These correlations were processed by utilizing the relation-
ship between magnetic moments and spins (dipoles) given by,

M(i)
µ =

∑
ρ

g(i)
µ,ρS

(i)
ρ (S2)

where i is a site label and µ, ν refer to x, y, z (in the global
frame). This yields,

⟨M(i)
µ M( j)

ν ⟩ =
∑
ρ,γ

g(i)
µ,ρg

( j)
ν,γ⟨S (i)

ρ S ( j)
γ ⟩ (S3)

where ⟨...⟩ indicates expectation values computed in the
ground state. Note that even though our ED based theoret-
ical phase diagram was constructed for the case of zero ex-
ternal field, the g matrices are required for the transformation
between spins to magnetic moments.
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Figure S.5. Comparison of the inelastic spectrum of Yb2Ti2O7 experiment (a)-(d), with the g-tensor (e)-(h), and without the g-tensor (i)-(l).
(The simulations with the g-tensor were plotted with intensity divided by a factor of 13 to keep all plots on the same color scale.) At all fields
there are only minor differences between the LSWT calculations, and so we normalize the 2 T neutron scattering to the LSWT calculation in
panel (l).

These correlations were then Fourier transformed to com-
pare our results with the measurements of energy-integrated
neutron scattering.

S (Q) =
1
N

∑
µ,ν

(
δµν −

QµQν
Q2

)
eiQ·(ri−r j)⟨M(i)

µ M( j)
ν ⟩ (S4)

V. CORRELATION ANALYSIS

We construct the phase diagram from the calculated S (Q)
structure factors by computing correlation statistics with char-
acteristic S (Q) as shown in Fig. S.6. The method is as fol-
lows: we select a “characteristic structure factor” from each
phase deep inside the phase as defined by the classical phase
boundaries found in Ref. [37]. We then create a 1D vector
of pixel intensities of each structure factor S (Q), and compute
the correlation with each of the characteristic spectra using
the covariance and Pearson R statistic (as implemented in the
Scipy package [55]).

From this, we build a phase diagram by assigning the Pear-
son R correlation with Ψ3/Ψ2, Ψ4, and FM as red, green, and
blue values respectively. By plotting the colors on a grid,
the phase diagram naturally emerges. We then interpolate
between the calculated points to fill out the phase diagram
(the Ψ3/Ψ2 phase appears as orange because there is nonzero
correlation with Ψ4 antiferromagnetism even deep inside the
phase).

The only assumption we have made in this analysis is that
there are three phases, but the boundaries between them are

very clear. The weakness of this approach is also that we have
assumed only three phases. The existence of a small region
in the center of the phase diagram where no phase seems to
be stabilized is an indication of a quantum disordered phase,
as is the Heisenberg spin liquid region in the upper right hand
side of the phase diagram.

An alternative view of this data is plotting the covariance,
which takes into account not only the correlation between dif-
ferent S (Q), but the relative intensities of the correlated fea-
tures. As such, this is an approximate way to estimate the
strength of the ordered moment. From this, we see the dra-
matic moment reduction along the FM/AFM phase boundary
discussed in the main text.

Figure S.7 shows the correlation analysis of the Yb2Ti2O7
phase diagram including a colormap of the energy land-
scape. Figure S.8 shows the same phase diagram with J3 =

−0.3 meV, J4 = 0.0 instead of the Yb2Ti2O7 values. This is
very similar to the Yb2Ti2O7 phase diagram, although here the
difference between the classical and quantum phase bound-
aries is slightly greater.
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Classical phase boundaries

Overtop the phase diagram computed from ED, we also plot
the phase boundaries derived in Ref. [37]:

J2 = J1 − 2J4

J2 =
−J1J3 + 2J1J4 − 2J3J4 + 2J2

4

J3 − 2J4

J2 =
4J2

1 − 5J1J3 − 2J1J4 + 2J3J4

4J1 − J3 − 2J4

where the degenerate point at the center of the phase diagram
is at J1 = J2

4/(2J4 − J3).

VI. ADDITIONAL LINE SCANS FOR TRACKING THE
INTERMEDIATE PHASE

Figure 1 of the main text shows our phase diagram with
multiple boundaries; these were determined by analyses of the
type shown in Fig. 3 and 4, and Fig.S.9. Here we build on the
observation that the second derivative of the energy with J1,
for fixed J2=-0.326 meV, shows a spike near the FM/AFM
phase boundary. [The magnitude of the spike is largely con-
trolled by the size of the spacing of the parameter grid cho-
sen.] Importantly, its presence indicates an additional inter-
mediate phase between FM and AFM (Ψ3/Ψ2).
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Figure S.8. Calculated pyrochlore phase diagram assuming J3 = −0.3 meV, J4 = 0.0. Panel (a) shows the phases determined by Pearson R
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the phase boundaries are shifted more from the classical values.
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Figure S.9. Energy scans used to identify phase boundaries in main text Fig. 1. Energy and its derivatives are plotted against J1 for six different
J2 values. The boundary itself is identified by fitting the minimum in the second derivative with a Lorentzian lineshape. All energy units are
in meV.

To build confidence in the numerical results, we have car-
ried out additional line scans with J1 at other fixed values of
J2 (-0.29 meV,-0.31 meV,-0.33 meV and -0.35 meV). The J1
values for each of these J2 were varied from 0 to -0.02 meV
in increments of 0.001 meV. Our results for the ground state
energy, and its first and second derivatives with J1 are shown
in Fig. S.10 and clearly demonstrate that such spikes are also
present at other values of J2 near the FM/AFM phase bound-
ary. We note that lowering J2 from −0.29 to −0.35 meV leads

to a movement of this feature to lower (more negative) val-
ues of J1, consistent with the shape of the intermediate/AFM
phase boundary shown in Fig. 1 of the main text.

VII. CLASSICAL SPIN LIQUIDS

It is natural to ask whether the X → Γ flat band ob-
served at 0.15 T in Yb2Ti2O7 can be reproduced by any of



21

(a)

(c)

(b)

(d)

Figure S.10. Ground state energy and its first and second derivative with J1, as a function of J1/|J3| for J2 values fixed at (a)
−0.29 meV,(b)−0.31 meV, (c) −0.33 meV and (d) −0.35 meV. J3 = −0.272 meV and J4 = 0.049 meV, which correspond to the Yb2Ti2O7

Hamiltonian, were kept fixed. All energy units are in meV.

the highly degenerate points in the pyrochlore phase diagram
[67, 68, 108]. In Fig. S.11 we plot the LSWT calculated spec-
tra of the nine classical spin liquids (CSLs) from Ref. [108]
in a µ0H = 0.15 T field along [001]. Although there are many
intense flat bands near zero energy which correpond to ex-
tensive degeneracies, none of them match precisely the flat
modes observed in Yb2Ti2O7. Therefore, despite the fact that
the extended quantum phase is continuously connected to the
“pinch-line” spin liquid (CSL 7 in Fig. S.11) it is not possible
to simplistically associate these features with this particular
spin liquid.

It is also worth asking whether one of the line-degeneracies
(specifically the line where J2 = −J1) reproduces the flat
Γ → X mode. In Fig. S.12 we tune along this J2 = −J1
“nematic phase” boundary [67, 68] connecting the CSL 3 to
CSL 7 (pinch line) spin liquids [108], but do not find a clear
region where the flat Γ→ X mode is reproduced.

The failure of this exercise is not surprising as LSWT ne-
glects interactions between magnons. Nevertheless, it would
have been useful to know whether tuning to a known classi-
cal degeneracy would have reproduced the flat modes which
seem to be driving the Yb2Ti2O7 to its exotic behaviors.
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Figure S.11. LSWT calculations of the nine classical spin liquids in Ref. [108] in a µ0H = 0.15 T field along the c axis. The Hamiltonians of
each are listed in the upper right in the global basis JG = [Jzz, J±±, Jz±, J±] local basis JL = [J1, J2, J3, J4]. None of these spectra resemble the
experimental Yb2Ti2O7 spectra where an intense flat band runs from X to Γ.
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Figure S.12. LSWT calculations in a µ0H = 0.15 T field along c tuning from Ref. [108] Classical Spin Liquid (CSL) 3 to CSL 7 (Fig. S.11).
None of the simulations reproduce the flat Γ→ X mode noted in Yb2Ti2O7 and the interacting-magnon simulations.
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