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We consider the structure of anisotropic exchange interactions in ytterbium-based insulating rare-earth magnets
built from edge-sharing octahedra. We argue the features of trivalent ytterbium and this structural configuration
allow for a semiquantitative determination of the different anisotropic exchange regimes that may manifest
themselves in such compounds. The validity of such superexchange calculations is tested through comparison
to the well-characterized breathing pyrochlore compound Ba3Yb2Zn5O11. With this in hand, we then consider
applications to three-dimensional pyrochlore spinels as well as two-dimensional honeycomb and triangular lattice
systems built from such edge-sharing octahedra. We find an extended regime of robust emergent weak anisotropy
with dominant antiferromagnetic Heisenberg interactions as well as smaller regions with strong anisotropy.
We discuss the implications of our results for known compounds with the above structures, such as the spinels
AYb2X4 (A = Cd, Mg, X = S, Se) and the triangular compound YbMgGaO4, which have recently been put forth
as promising candidates for exploring unconventional magnetic phenomena. Finally, we speculate on implications
of our calculations for the R2M2O7 pyrochlore compounds and some honeycomb ytterbium magnets.
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I. INTRODUCTION

Frustration generated by anisotropic exchange interactions
has attracted a significant amount of attention recently [1,2].
Induced by strong spin-orbit coupling [2–4], this kind of
frustration is distinct from the usual geometric type [5], as
it does not solely rely on the structure of the underlying
crystal lattice. Instead, different types of competing anisotropic
exchange interactions compatible with the discrete symmetries
of the crystal need to be tuned to induce strong frustration.

A noteworthy example of this kind of physics is the recent
development of “Kitaev magnetism” in Mott insulators with
strong spin-orbit coupling [1–3]. The canonical example of this
physics is found in iridium oxides [6], or iridates, where the
relevant atomic states are a spin-orbital mixed Jeff = 1

2 doublet
[7]. As pointed out in the pioneering work of Jackeli and
Khaliullin [6], by building such an iridate out of edge-sharing
IrO6 octahedra, one can realize dominant bond-dependent
Ising interactions [8]. If arranged in a honeycomb [8] or
honeycomblike [9] lattice, this bond-dependent interaction
realizes the exactly solvable spin- 1

2 model first studied by
Kitaev [8]. This model has a number of intriguing features but,
foremost, has attracted significant attention [2,4,10] because it
hosts a concrete example of a Z2 spin liquid with its associated
fractionalized excitations [8]. These systems represent an
exchange regime distinct from the usual Heisenberg, Ising, or
XY-type models, one that only appears in the limit of very
strong spin-orbit coupling.

In this paper, we explore this anisotropic exchange physics
from a somewhat different perspective, asking what kind of
well-defined (anisotropic) exchange regimes can we find in
rare-earth magnets? We argue that such regimes do exist and,

further, that they can shed light on the physics of known
ytterbium-based magnets as well as suggest promising new
materials to explore. There are many inherent advantages of
rare-earth over transition metal magnets: the most prominent
of these is in being much stronger Mott insulators as well
as having very large spin-orbit coupling. The issues of direct
orbital overlap and of further neighbor interactions (that can
complicate some transition metal magnets) are thus strongly
suppressed, as are any notions of itinerant or “weak” Mott insu-
lator behavior. Further, given the somewhat uniform chemistry
of the rare-earths, substitution of one rare-earth magnet for
another is significantly less disruptive than in transition metal
compounds. This affords numerous opportunities in synthe-
sizing new compounds, as well as doping or diluting a given
compound to probe its physics. However, there are also down-
sides, most notably the much smaller energy scales inherent
to rare-earth magnets. Typically, one should expect exchange
interactions to be roughly two orders of magnitude smaller than
in transition metal magnets with similar interatomic distances.
Theoretically, there is also the issue of the more complex
atomic and superexchange [11–14] physics in rare-earth mag-
nets. This, combined with the small energy scales, can make
reliable determination of the exchange interactions difficult. To
circumvent these difficulties, one usually relies on extracting
the possible symmetry-allowed exchange parameters through
direct fitting to some manageable experimental limit, such
as through high-temperature expansions [15–18], spin-wave
spectra in high magnetic fields [19–22], or through various
local probes [23]. Even with extensive data and a controlled
theoretical regime, this approach can still fail to determine the
exchange parameters uniquely [19,21,22].
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We argue in this paper that some of the theoretical complica-
tions discussed above are absent in ytterbium-based rare-earth
magnets which have the same edge-sharing structure that is
found in Kitaev materials. First, due to the (nearly filled) f 13

electronic configuration, the atomic states are less complex
than in a typical rare-earth ion. The single low-lying f 14

state and the (relative) simplicity of the higher-lying f 12

states enables some simplifications of the computation of the
magnetic interactions. Second, the crystal-field energy scale in
ytterbium compounds is typically large, yielding little effect
from virtual crystal-field excitations [12,24,25]. Third, the
equivalence of the two ligand exchange paths in this edge-
shared configuration leads to fewer orbital overlap parameters
than in cases with two inequivalent exchange paths, such
as in the R2M2O7 pyrochlores [11]. Fourth, due to the low
angular momentum (J = 7

2 ), one expects that, irrespective
of the composition of the crystal-field ground doublet, the
interactions between Yb3+ ions are generically quantum [13],
with all of the symmetry-allowed exchanges being potentially
significant. Rather importantly, this edge-sharing structure is
realized in many material contexts: most notably in rare-earth
pyrochlore chalcogenide spinels [26,27] of the form AYb2X4

where A = Cd, Mg and X = S, Se. It also appears in the recent
spin liquid candidate YbMgGaO4 [23] as well as potentially in
several heretofore little studied honeycomb compounds such as
YbCl3 [28]. A theoretical approach to explore possible regimes
of anisotropic exchange in a wide range of materials with a
diverse set of lattice geometries would be therefore appear to
be broadly useful.

Our primary goal is calculating the exchanges in such
ytterbium-based magnets. Given the approximate nature of
these calculations, it is important that we can validate our
approach. Thankfully, we are furnished with an excellent test
case for this line of attack: the recently well-characterized
“breathing” pyrochlore compound Ba3Yb2Zn5O11 [29,30].
In this compound, the full anisotropic exchange interactions
can be determined quite precisely [31–33] through a direct
comparison to thermodynamic and inelastic neutron scattering
data, thanks to its nature as a few-body problem. Somewhat
surprisingly, these interactions carry significant structure; there
is a dominant antiferromagnetic Heisenberg exchange, large
Dzyaloshinskii-Moriya (DM) interaction, and very small sym-
metric anisotropies [31–33]. We show that a direct calculation
of the superexchange processes can capture precisely this
physics: by tuning the composition of the crystalline electric
field ground doublet, there exists a robust regime of parameter
space with these characteristics.

Emboldened by this agreement, we then consider these
calculations for idealizations of the pyrochlore spinels, of
the triangular lattice compounds, and for the little studied
honeycomb rare-earth magnets. We find that there are well-
defined regimes in these parameter spaces; that is, limits
where certain interaction channels strongly dominate over the
others. Most prominently, we find a robust regime with strong
antiferromagnetic Heisenberg interactions and subdominant
DM interactions, as found for Ba3Yb2Zn5O11 [31]. This is
analogous to the kind of emergent, “weak” anisotropy that can
appear in transition metal oxides with strong spin-orbit cou-
pling [2] formed of corner-sharing octahedra. We further find
smaller, more fragile regions with dominant Kitaev and other

anisotropic exchange interactions. Our work is thus a “proof
of principle” that intrinsically anisotropic exchange regimes,
such as that found in transition metal Kitaev materials, can
also be found in rare-earth magnets. Further, these calculations
provide a concrete example of how single-ion and exchange
anisotropies can be independent when spin-orbit coupling is
strong. We further consider the robustness of our choice of
microscopic parameters, specifically the Slater-Koster overlap
parameters and the atomic energy scales, arguing that they do
not qualitatively affect much of our results.

Next, we discuss applications of our results to real materials.
In the AYb2X4 spinels, where the crystal-field parameters can
be estimated, we compute the exchange interactions and specu-
late on possible implications for their physics. In particular, we
find that the weak anisotropy regime found in Ba3Yb2Zn5O11

also appears in these compounds with a dominant antiferro-
magnetic Heisenberg exchange and subdominant indirect DM
interaction [34]. For the full nonbreathing pyrochlore lattice,
this is a classical phase boundary between two ordered states,
a ferromagnet and an antiferromagnet with an accidental U(1)
degeneracy. We find that the small symmetric anisotropies push
the spinels into the antiferromagnetic phase with the U(1)
degeneracy resolved by quantum order by disorder. Finally,
we argue that this parameter regime and its proximity to this
phase boundary has a direct analog in the pyrochlore Yb2M2O7

family (whereM =Ti, Ge, Sn), and that the spinels may exhibit
the same unusual dynamics found in these compounds [35].
For YbMgGaO4, we investigate the possible effects of Mg/Ga
disorder on the exchanges, both through changes in the crystal
field and in the ligand bond angles. Finally, we provide some
outlook as to what one may learn more broadly from these
calculations about ytterbium-based magnets; explicitly, from
the fact that there exist these well-defined limits at all in what
would have naïvely been expected to be a somewhat arbitrary
parametrization. We also identify a region in parameter space
that is highly sensitive to the details of the atomic physics
and ligand environment. We argue this sensitivity may be
relevant to the exchange physics in ytterbium pyrochlores of
the form Yb2M2O7. We hope the possibilities suggested here
may lead to further work to characterize rare-earth magnetism
and other unusual exchange regimes on a wider variety of
material contexts and to discover new interesting states of
matter in insulating ytterbium-based magnets.

This paper is structured as follows: in Sec. II, we give
an overview of the atomic physics of Yb3+. In Sec. III,
we introduce the relevant symmetry-allowed anisotropic ex-
change models, before discussing the superexchange processes
relevant for edge-shared Yb ions in Sec. IV. The quali-
tative correctness of this methodology is benchmarked for
Ba3Yb2Zn5O11 in Sec. V. We then explore the cubic crystal-
field limits as detailed in Sec. VI, before discussing the general
crystal-field results in Sec. VII. We distinguish two cases: those
without local frames for the crystal fields, such as the triangular
and honeycomb lattices and those with local frames, such as
the spinel and breathing pyrochlore lattices. With these results
in hand, we discuss applications to real materials in Sec. VIII,
specifically the pyrochlore spinels AYb2X4 (Sec. VIII A) and
the triangular compound YbMgGaO4 (Sec. VIII B). Finally, in
Sec. IX, we hypothesize on the properties of possible rare-earth
magnets that may realize the honeycomb (or hyperhoneycomb)
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(a) (b) (c)

FIG. 1. Crystal structures built from edge-shared octahedra. We show (a) pyrochlore, (b) triangular, and (c) honeycomb structures. The
ligands sit between nearest-neighbor sites forming 90◦ bonds for the ideal case shown. For each lattice type, the three symmetry-related bond
types are denoted as x, y, and z, shown in red, green, and blue.

structure and present a more general outlook for rare-earth
magnetism.

II. SINGLE-ION PHYSICS

We begin by determining the effective interactions between
Yb3+ ions in the edge-sharing structures discussed in the
Introduction. These kinds of lattices have been studied in detail
in the context of transition metal spin-orbit Mott insulators,
such as iridium oxides [2]. There are a large number of
structures one can form this way; these include honeycomb,
triangular, pyrochlore lattices (illustrated in Fig. 1) as well
as more baroque lattices such as hyperhoneycomb [36], the
harmonic-honeycomb series [37], the hyperoctagon [38], and
the hyperkagome structures [39]. We refer the reader to
Refs. [40,41] for a more complete catalog of these lattices. In
all cases of interest, we consider the common Yb3+ valence.

Since Yb3+ has an f 13 electronic configuration, we can
consider only the low-lying 2F7/2 multiplet with J = 7

2 , L = 3,
and S = 1

2 . The eightfold degeneracy of these levels is lifted in
a crystal environment. In the compounds of interest, the Yb3+

ion is surrounded by an approximately octahedral cage of lig-
ands. Naïvely, we may then expect the dominant contributions
to the crystalline electric field to have full cubic symmetry. If
this is so, the 2F7/2 states split into two doublets of types �6

and �7 and a quartet of type �8 [42]. Typically for the kind
of octahedral cage of interest here, both experimentally and
theoretically [42], the ground state is of type �6 and is separated
from the other two states by a large energy gap, of order
∼30–50 meV [27,30,43–45]. For example, in the ytterbium
spinels one obtains values for this gap of order ∼20 meV
[27,43,44]. In the breathing pyrochlore Ba3Yb2Zn5O11, one
finds a gap of ∼38 meV [30] and in the triangular compound
YbMgGaO4 the gap is ∼38 meV [45]. In the related pyrochlore
compounds Yb2M2O7 (M = Ti, Sn, Ge) an even larger gap of
∼50–80 meV [46–48] is observed. As this large energy scale
stems from the atomic physics of Yb3+, we expect similar
crystal-field energy scales in any ytterbium-based honeycomb
compounds.

While the local environment is approximately cubic, the
full site symmetry of the Yb3+ ion is generally lower, being

only D3d or C3v (depending on the specific material consid-
ered). This lowering of symmetry splits the aforementioned
octahedral �8 quartet into a trigonal �4 doublet and a trigonal
�5 ⊕ �6 doublet of one-dimensional irreducible representa-
tions connected by time-reversal symmetry [49]. Given the
approximate local cubic symmetry in all of the compounds of
interest, we will assume a well-isolated �4 ground doublet,
|±〉, taking the form

|±〉 = sin η[cos ζ |±7/2〉 ± sin ζ |±1/2〉] + cos η|∓5/2〉,
(1)

where we have chosen the quantization axis ẑ along the
local threefold symmetry axis. In the spinel and breathing
pyrochlore compounds, the local threefold axis is different
from site to site, while in the triangular (such as YbMgGaO4)
or honeycomb compounds, it points uniformly perpendicular
to the two-dimensional plane. This form [Eq. (1)] encompasses
both the octahedral �6 and �7 doublets, but they do not remain
distinct when the symmetry is lowered to trigonal. We note that
the angles (η,ζ ) are somewhat redundant; mapping (η,ζ ) →
(π − η,π + ζ ) only gives a redefinition |±〉 → −|±〉 and thus
does not change any of the physics. We can thus restrict both
η and ζ to lie between 0 and π without any loss of generality.

If we consider general values of (η,ζ ), there are two notable
limits with high symmetry corresponding to the octahedral �6

and �7 doublets. The �6 doublet [42], in the notation of Eq. (1),
corresponds to

η�6 = cos−1

(
1

3

√
35

6

)
, ζ�6 = π − tan−1

(√
14

5

)
. (2)

The �7 doublet [42] corresponds to the parameters

η�7 = π − cos−1

(
1

3

√
1

2

)
, ζ�7 = tan−1

(√
10

7

)
. (3)

Note that in the case of transition metals such as the iridates
or ruthenates, the Jeff = 1

2 states [7] transform as the �7

representation [50], not the �6. For the 2F7/2 manifold of
interest here, the �7 doublet (i.e., the analog of the Jeff = 1

2
doublet) is the ground doublet if the ligands form a cube
[42]. Such a cube of ligands is approximately realized in
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pyrochlore compounds with structural parameter x close to the
ideal xc = 3

8 [51]. Typically, rare-earth pyrochlores have x ∼
0.32–0.34 < xc [51], but have ground doublets adiabatically
connected to the �7 state. We note that for the case of edge-
sharing perfect cubes (as opposed to octahedra), there are two
equivalent ligand paths (as in the octahedral, 90◦ case), but the
bond angle is the tetrahedral angle θt ≡ cos−1(− 1

3 ) ∼ 109.47◦
and the orientation of the ligands relative to the local axes is
slightly different. We will return to this case briefly in Sec. IX.

We also note that there is another high-symmetry limit
(somewhat) relevant for the pyrochlore compounds, with struc-
tural parameter x = 1

4 . This corresponds to a configuration
with accidental sixfold symmetry, a hexagon of ligands, with
the remaining two ligands along the threefold symmetry
axis. In a point charge calculation, this gives a pure |± 1

2 〉
ground state. This composition is somewhat stable, as the
sixfold symmetry forbids mixing these states with the others
of the 2F7/2 manifold. This corresponds to the crystal-field
parameters ηhex = ζhex = π/2 in Eq. (1).

Since, as discussed above, the crystal-field scale is very
large, we can consider only a bare projection of the microscopic
ion-ion interactions into these doublets. Such a model is best
formulated directly in terms of the pseudospins

Sz
i ≡ 1

2 (|+〉i〈+|i − |−〉i〈−|i), S±
i ≡ |±〉i〈∓|i , (4)

where the doublets |±〉i are defined at each lattice site i. Under
crystal symmetries, the pseudospin operators Si transform in
the same way as spin- 1

2 operators. They are directly related to
the magnetic moment μi of the Yb3+ ion, projected into the
ground doublets, through the two g factors gz and g±, defined
as

μi ≡ −gJ μBP J iP = −μB

[
g±

(
x̂iS

x
i + ŷiS

y

i

) + gz ẑiS
z
i

]
,

(5)

where (x̂i , ŷi , ẑi) defines a local frame with ẑi being the
threefold symmetry axis, J i is the total angular momentum,
and P projects into the ground doublet. The ŷi axis (perpen-
dicular to ẑ i ) is defined to be along the local twofold axis
for D3d or perpendicular to the mirror plane for C3v , and
ẑ i = ŷi × x̂ i . The explicit convention for these local axes is
given in Appendix A. These g factors are determined by the
crystal-field parameters (η,ζ ) of Eq. (1) via

g± = gJ [
√

7 cos ζ sin(2η) − 4 sin2 ζ sin2 η], (6a)

gz = gJ [[3 cos(2ζ ) + 4] sin2 η − 5 cos2 η], (6b)

where gJ = 8
7 is the Landé g factor for Yb3+ within the 2F7/2

manifold. Note that there are nontrivial bounds on the g factors;
from Eq. (6) one can show that

−40/7 � gz � +8, (7a)

−32/7 � g± � +8/
√

7. (7b)

In the octahedral limit (�6 doublet) defined by Eq. (2), these
g factors are equal, with g± = gz = − 8

3 , both negative. For the
limit of a cube of ligands (�7 doublet) defined by Eq. (3), the g

factors are given by −g± = gz = 24
7 . Note that both g factors

can be both made positive (separately) by a redefinition of the
doublet states. Given these kind of ambiguities in defining g

factors, it can be useful to consider quantities invariant under
transformations of the doublet basis, such as det g = g2

±gz.
This gives a clear discriminant between the two cases: �6 has
g2

±gz < 0 while the �7 has g2
±gz > 0. One can use this quantity,

sgn(g2
±gz) = ±1, more generally to give an idea whether a

general doublet is closer to the �6 or to the �7 doublet. As an
example, for the hexagonal case mentioned above, the g factors
areg± = − 32

7 andgz = + 8
7 , corresponding to the same “class,”

in the sense defined above, as the cubic �7 doublet [52].
We should note that the two g factors do not uniquely

determine the composition (η,ζ ). Since the angular momentum
J i is only a rank-one multipole operator, the g factors are not
sensitive to the phases between components of the doublet
separated by more than a single unit of angular momentum.
This manifests in the invariance of the g factors, Eq. (6), under
the transformation (η,ζ ) → (π − η,π − ζ ). This transforma-
tion changes the sign of the |± 7

2 〉 and |∓ 5
2 〉 components of

the ground doublet [Eq. (1)], but not the |± 1
2 〉 component.

This invariance does not carry over to the two-ion exchange
processes. Indeed, we will see that crystal fields with the same
g factors can yield entirely different interactions, due to the
higher-rank multipoles that are generated by the exchange
processes [13,14,25].

III. TWO-ION PHYSICS

We now consider the two-ion physics of the exchange
interactions. As in the one-ion case, symmetries also strongly
constrain the allowed interactions between the pseudospins
Si defined in Eq. (4). For all the lattices of interest, at the
nearest-neighbor level, such a pseudospin model must have
the form (due to the bond symmetries)

Heff ≡
∑
〈ij〉

Sᵀ
i J ij Sj ,

Sᵀ
i J ij Sj = JzzS

z
i S

z
j − J±(S+

i S−
j + S−

i S+
j )

+ J±±(γijS
+
i S+

j + H.c.)

+ Jz±
(
ζij

[
Sz

i S
+
j + S+

i Sz
j

] + H.c.
)
, (8)

where γij and ζij are bond-dependent phases. This was shown
for the pyrochlore case first in Ref. [53], and we adopt the
notation introduced in Ref. [19]. In each case, there are three
types of bonds in the local frames, labeled x, y, and z in Fig. 1.
The relevant phases factors γij and ζij for these three bond
types are

γx = −ζ ∗
x = 1, γy = −ζ ∗

y = ω, γz = −ζ ∗
z = ω2, (9)

where ω = e2πi/3.
Our primary goal in this work is to estimate the four

exchanges Jzz, J±, J±±, and Jz± in Eq. (8) from microscopic
considerations. However, there are several equivalent ways
to present the anisotropic exchange model of Eq. (8), with
each presentation offering different insights into the basic
features of the model. Further, there are several dualities that
map between different exchange parameter sets that are more
physically transparent in one formulation over another. We
thus next catalog these different representations, unifying the
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FIG. 2. Illustration of the Yb-X-X-Yb bond geometry and local
environments. In this ideal case the angle θ along each Yb-X-Yb path
is 90◦. We have indicated the (a) local frames for each Yb site relevant
for the pyrochlore lattices and (b) the common frames relevant for the
triangular and honeycomb lattices.

parametrizations used in both the quantum spin ice [54] and
Kitaev spin liquid contexts [2].

A. Local axes

We first consider the case where the high-symmetry axes
vary from site to site. Specifically, we consider the threefold
axes ẑi on nearest-neighbor sites to be at an angle of θt ∼
109.47◦ relative to each other, as is relevant to both the
pyrochlore and breathing pyrochlore lattices shown in Fig. 2.
There are two alternative parametrizations of this model that
will prove useful to us. The first is the global basis, where we
undo the effects of the different local frames to define an overall
quantization axis. We denote these global effective spins as S̄i ,
given in terms of the local pseudospins as

S̄i ≡ x̂iS
x
i + ŷiS

y

i + ẑiS
z
i , (10)

where (x̂i , ŷi , ẑi) is the local frame at site i (see Appendix A
for our conventions). Note that, due to the g factors, these
global pseudospins S̄i are not simply the magnetic moments
μi due to the nontrivial g factors. Translated into this basis, the
symmetry-allowed model (8) becomes

H =
∑
〈ij〉

S̄ᵀ
i J̄ ij S̄j , (11)

where the global exchange matrices J̄ ij are defined as

J̄12 =

⎛
⎜⎝

J + K + D√
2

+ D√
2

− D√
2

J �

− D√
2

� J

⎞
⎟⎠,

J̄13 =

⎛
⎜⎝

J − D√
2

�

+ D√
2

J + K + D√
2

� − D√
2

J

⎞
⎟⎠,

J̄14 =

⎛
⎜⎝

J � − D√
2

� J − D√
2

+ D√
2

+ D√
2

J + K

⎞
⎟⎠,

J̄23 =

⎛
⎜⎝

J −� + D√
2

−� J − D√
2

− D√
2

+ D√
2

J + K

⎞
⎟⎠,

J̄24 =

⎛
⎜⎝

J + D√
2

−�

− D√
2

J + K + D√
2

−� − D√
2

J

⎞
⎟⎠,

J̄34 =

⎛
⎜⎝

J + K − D√
2

+ D√
2

+ D√
2

J −�

− D√
2

−� J

⎞
⎟⎠,

where J̄ab denotes the exchange matrix between sites with
sublattices a and b. The local parametrization of Eq. (8) and
this global parametrization are related as [19]

J = 1

3
(+4J± + 2J±± + 2

√
2Jz± − Jzz),

K = 2

3
(−4J± + J±± +

√
2Jz± + Jzz),

� = 1

3
(−2J± − 4J±± + 2

√
2Jz± − Jzz),

D =
√

2

3
(−2J± + 2J±± −

√
2Jz± − Jzz). (12)

Here, we have used a parametrization in terms of Heisenberg
exchange J , Kitaev interaction K , symmetric off-diagonal
exchange �, and DM interaction D [55]. There is also a
duality in this parametrization. One notes that performing a
rotation by π about ẑi maps S±

i → −S±
i and Sz

i → +Sz
i , we

map the local exchange parameters as (Jzz,J±,J±±,Jz±) →
(Jzz,J±,J±±,−Jz±). In the global basis, this strongly mixes
the four exchange constants; after such a transformation we
have a new dual set of global exchanges

J̃ = 1
9 (J − 4K − 4� + 2

√
2D),

K̃ = 1
9 (−8J + 5K − 4� + 2

√
2D),

�̃ = 1
9 (−8J − 4K + 5� + 2

√
2D),

D̃ = 1
9 (2

√
2[2J + K + �] + 7D). (13)

We thus see that there exist nonobvious dual realizations of the
various limits, Heisenberg, Kitaev, and so forth that are hidden
in the original global representation of Eq. (11). For example,
the point (J,K,�,D) = (−1,−8,−8,4

√
2) maps to a dual

Heisenberg antiferromagnet, with (J̃ ,K̃,�̃,D̃) ∝ (1,0,0,0). If
we further transform the g factors as (g̃z,g̃±) = (gz,−g±),
then the moment defined in Eq. (5) remains invariant. Since
essentially all probes of the low-energy physics in these
compounds are through some coupling to the moment μ, we
see that the dual theory defined by Eq. (13) can be regarded
as physically equivalent to the original for most practical
purposes. One can thus usually only determine the relative sign
of g± and Jz± from measurements at low energy (i.e. when not
probing the high-energy crystal-field levels).

We note that there is also a generalized Klein duality [56]
that is relevant in the limit of only Heisenberg and Kitaev
exchange interactions [57]. By combining this with the above
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dualities, one can expose more Heisenberg ferromagnetic and
antiferromagnetic limits [58]. We will not pursue this here,
except to note that the Klein duals of the global Heisen-
berg ferromagnets and antiferromagnets are simply the local
Heisenberg ferromagnets and antiferromagnets with Jzz =
−2J± and J±± = Jz± = 0.

B. Uniform axes

The case where there is a uniform, global, threefold axis
is relevant to two-dimensional structures such as honeycomb
or triangular lattices built from edge-sharing octahedra (see
Fig. 1). Here, the frames can be chosen to be the same from site
to site, as the threefold symmetry axis is perpendicular to the
two-dimensional plane. This basis for the exchange parameters
[Eq. (8)] has so far not been used extensively [59] in the litera-
ture on honeycomb or triangular Kitaev materials [2]. However,
a local basis very similar (but not identical) to that of Eq. (8)
has been used to describe YbMgGaO4 [23,60]. In the more
commonly used basis [61], one has the three exchange matrices

Jx ≡
⎛
⎝J + K �′ �′

�′ J �

�′ � J

⎞
⎠,

Jy ≡
⎛
⎝J �′ �

�′ J + K �′
� �′ J

⎞
⎠,

J z ≡
⎛
⎝J � �′

� J �′
�′ �′ J + K

⎞
⎠. (14)

Note that there are no DM interactions for the triangular and
honeycomb cases due to the inversion symmetry about the
bond centers. This symmetry is present in the full (nonideal)
crystal structures of the materials of interest (we will return to
the role of structural disorder in YbMgGaO4 in Sec. VIII B).
The more commonly used parameters are related to the
exchanges defined in Eq. (8) by

J = 1
3 (Jzz − 4J± − 2J±± − 2

√
2Jz±),

K = 2(J±± +
√

2Jz±),

� = 1
3 (Jzz + 2J± + 4J±± − 2

√
2Jz±),

�′ = 1
3 (Jzz + 2J± − 2J±± +

√
2Jz±). (15)

As in the case with local frames discussed in Sec. III A, one
can obtain a duality by rotating about the threefold axis by
π . This was first introduced in Ref. [58] in the context of the
honeycomb iridates. This maps the exchanges (J,K,�,�′) to
the dual exchanges

J̃ = J + 1
9

(
4K − 4� + 4�′),

K̃ = 1
3

(−K + 4� − 4�′),
�̃ = 1

9

(
4K + 5� + 4�′),

�̃′ = 1
9

(−2K + 2� + 7�′). (16)

Note that, since the frames are the same from site to site, the
pure Heisenberg limit is unaffected by this transformation
(in contrast to the case with local frames). As before, this

duality exposes a number of simple hidden regimes that are
not manifest in the original parametrization [58]. For example,
the dual of the pure Kitaev limit presents itself as combination
of J , K , �, of �′ of nearly equal magnitude. As in the case of
local frames, we will not explore the implications of the Klein
dualities that exist for these lattices in the Heisenberg-Kitaev
limit [58].

IV. SUPEREXCHANGE

Through the results of Secs. II and III, we have outlined
the generic one- and two-ion physics of these materials. Our
goal now is to present a microscopic theoretical framework
for computing the two-ion anisotropic exchange interactions,
given knowledge of the single-ion crystal-field ground state
defined in Eq. (1).

To this end, we consider a pair of rare-earth ions, which we
denote as 1 and 2, and two bridging ligands, which we denote
as A and B. This exchange geometry is illustrated in Fig. 2.
We will assume that superexchange processes are driven by
pathways that proceed between the rare-earth ions through the
ligands. We are thus ignoring processes that involve any direct
exchange between the rare-earth 4f orbitals (assumed to be
small) or through other rare-earth orbitals, such as the 5d or
6s, of the Yb ions themselves or their associated bands in solid
(assumed to be high in energy). While the calculation for a
single ligand has been described in other works [11,13,25,62],
the two-ligand geometry introduces new exchange paths that
deserve some attention.

We write the Hamiltonian of this system as

H0 ≡ Hf,1 + Hf,2 + Hp,A + Hp,B, (17)

where Hf,1 and Hf,2 are atomic Hamiltonians for each of the
two rare-earth ions while Hp,A and Hp,B are for the two ligand
sites. On the two ligand sites, we consider only the cost of a
single hole on a ligand (the atomic potential), defined as 	, and
the (additional) cost to place two holes together on the same
ligand, which we define as Up. The rare-earth atomic physics
of Hf,1 and Hf,2 is discussed in some detail in Appendix B. We
will not invoke the form of the crystal-field part of the rare-earth
atomic Hamiltonian aside from the fact that its ground doublet
is approximately as given in Eq. (1), ignoring its effects on the
virtual states involved in the superexchange (the plausibility
of this approximation is discussed in Appendix B). We perturb
the atomic Hamiltonian H0 with the hybridization terms

V ≡
∑
αβ

∑
λ=A,B

[
t
αβ

1λ f
†
1αpλ,β + t

αβ

2λ f
†
2αpλ,β + H.c.

]
, (18)

that represent electron hopping between the 4f orbitals of the
rare-earth and the p-orbitals of the ligand ions. The hopping
matrices t1λ and t2λ can be estimated via a Slater-Koster–type
approach [63]. They depend on the local frames at sites 1 and
2 as well as the overlap parameters tpf σ and tpf π . Generically,
we expect that |tpf σ | > |tpf π | and that they have opposite sign.
A typical ratio that we will use is tpf π/tpf σ ∼ −0.3, though
most of our results are not particularly sensitive to its precise
value. Note that both the σ and π overlap are involved even in
the ideal geometry with a 90◦ X-Yb-X bond angle. While one
cannot construct an exchange path using only tpf σ (in the ideal
case), combinations of tpf π and tpf σ do contribute. This is a key
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difference from the case considered in Ref. [6] for transition
metal oxides where the restriction to the T2g states of the d

manifold allows only a single hopping parameter to appear. In
the calculations detailed below, the t1λ and t2λ matrices do not
appear independently, but only in the combinations

Tλ ≡ t1λt
†
2λ, (19)

where λ = A,B. Note that these matrices are symmetric, T ᵀ
λ =

Tλ, for all cases of interest.
In this approach, superexchange interactions are generated

at fourth order in perturbation theory in the ligand–rare-earth
hybridization [11]. Given the complexity of the rare-earth
site Hamiltonians Hf,1 and Hf,2, performing the fourth-order
perturbation theory is analytically challenging. To proceed, we
will first notice that the hybridization perturbation V neces-
sarily changes the charge state of the Yb3+ ion, connecting
the f 13 manifold to the f 14 or f 12 manifolds. Since the f 14

manifold is simply a closed shell, it produces particularly
simple contributions in perturbation theory. We define the
energy cost to excite from the f 13 ground state to the f 14 state
as U+

f . The f 12 manifold has some internal structure, with a

total of
(14

2

) = 91 states. Keeping only the free-ion interactions
(Coulomb and spin-orbit coupling), ignoring any crystal-field
splittings, these are distributed among 13 distinct energy levels
[64]. The composition and position of these levels is set by
the atomic physics of Yb4+, namely, through the Coulomb
interaction encoded in the Slater integrals F2, F4, and F6 as
well as in the spin-orbit coupling ζSO. We denote the minimal
excitation energy from the f 13 ground state to the f 12 manifold
as U−

f ; the full spectrum will then have the form U−
f + Ea

where the Ea are the energies of the Yb4+ ion (4f 12). The
required single-ion energies and states of the f 12 configuration
can be computed using diagonalization in this 91-dimensional
subspace with an appropriate choice of atomic parameters (see
Appendix B for details) [64]. The free-ion energy level scheme
for Yb2+, Yb3+, and Yb4+ is illustrated in Fig. 3.

In contrast to the cases considered in Refs. [11,13] the pres-
ence of two equally spaced ligands bridging the rare-earth ions
leads to additional exchange pathways. Explicitly, we consider
the fourth-order processes defined by the operator [65]

Heff = PV RV RV RV P, (20)

where P projects into the low-energy subspace of crystal-field
ground doublets at each site, R is the resolvent of the rare-earth
and ligand atomic states, and V is the perturbing hybridization
given in Eq. (18). For virtual states involving only f 14

configurations, the resolvent R is trivial and (effectively)
proportional to the identity. The processes that involve f 12

virtual states always have the ligands in their ground state
with one rare-earth ion in an f 12 configuration and the other
in a f 14 configuration. The corresponding resolvent is then

R =
∑
a∈f 12

P −
1,aP

+
2 + P +

1 P −
2,a

U+
f + U−

f + Ea

≡ Q1 + Q2

U+
f + U−

f

, (21)

where the sum runs over the distinct energy levels U−
f + Ea of

the f 12 configuration (relative to the f 13 ground state) and P −
a

projects into the subspace of the Ea level. The operator P +
projects into the closed-shell f 14 state. We have factored out

Yb2+ Yb3+ Yb4+
0

2

4

6

8

10

12

14

16

18

E
−
E 0
[e
V
]

4 f 14

4 f 13

4 f 12

U+
f

U−
f

FIG. 3. Schematic energy levels of ytterbium ions in solid, relative
to the Yb3+ ion ground-state energy E0, including the Yb2+, Yb3+,
and Yb4+ valences. The levels of Yb4+ are shown for the atomic
parameters described in Appendix B with a trigonal (point-charge)
crystal field added to illustrate the scale of these splittings. Minimal
charge transfer energies U±

f ≡ E0(4f 13±1) − E0 are indicated.

a 1/(U+
f + U−

f ) to define dimensionless resolvents Q1, Q2

for each site. Taking Ea = 0 recovers the so-called charging
approximation used in Refs. [11,13] since

∑
a∈f 12 P −

a simply
projects into the f 12 manifold.

The types of processes that involve only a single ligand
have been discussed in Refs. [11,13]. We go through the
details of all the processes involved in the two-ligand case in
Appendix C. The final effective Hamiltonian for the pair of
sites takes the form

Heff =
∑
αβμν

[
IαβμνO

αβ

1 O
μν
2 + Kαβμν

(
O

αβ

1 Õ
μν
2 + Õ

αβ

1 O
μν
2

)]
,

(22)

where at each site we have defined the operators

Oαβ ≡ Pf †
αfβP, (23a)

Õαβ ≡ Pf †
αQfβP. (23b)

The superexchange tensors I and K have the form

Iαβμν ≡ 2
∑

λ=A,B

[
(1 − κ)T αν

λ [T †
λ ]μβ + T αν

λ [T †
λ̄

]μβ

(U+
f + 	)3

]
, (24a)

Kαβμν ≡
∑

λ=A,B

[
T αν

λ [T †
λ ]μβ + T αν

λ [T †
λ̄

]μβ

(U+
f + 	)2(U+

f + U−
f )

]
, (24b)

where we have defined the parameter κ as

κ ≡ Up

2(U+
f + 	) + Up

. (25)
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Generally, we expect Up � 2(U+
f + 	) and thus κ � 1. More

suggestively, these expressions can be written in terms of the
total hopping T ≡ ∑

λ=A,B Tλ as

Iαβμν ≡ 2

(U+
f + 	)3

(
T αν[T †]μβ − κ

∑
λ=A,B

T αν
λ [T †

λ ]μβ

)
,

(26a)

Kαβμν ≡ T αν[T †]μβ

(U+
f + 	)2(U+

f + U−
f )

. (26b)

Thus, if we further take κ � 1, we can express the exchange
entirely in terms of the total hopping T . This is reminiscent of a
common approximate treatment of this physics [14,66] which
first integrates out the ligands to generate an effective f -f
hopping then considers superexchange physics in this setting.
In our approach, this corresponds toU±

f � 	, keeping only the
leading terms in 1/	. Effectively, this corresponds to taking
I � K. However, given that there is not a clear separation of
scales between U±

f and 	, we will consider such a limit only
for illustrative purposes.

Given the rarity of tetravalent ytterbium, as well as the
tendency for Yb to have valence fluctuations between trivalent
and divalent states in intermetallic compounds [67], there may
be another useful artificial limit obtained by excluding the
f 12 states entirely. This corresponds to taking 	,U+

f � U−
f

and thus having K � I. The exchange physics becomes much
simpler in this case; the resolvent Q is removed and the atomic
energy scales enter only through the overall scale (U+

f + 	)−3

(unimportant for determining the specific anisotropic exchange
regime of interest) and the ratio κ .

Neither of the simplified limits above are sufficiently real-
ized to be used reliably. To see this, consider estimates for the
various atomic parameters that appear here, such as U±

f , 	, Up,
and the energy splittings of the f 12 intermediate states. First,
note that the energies that appear in the resolvent Q can safely
be set to their free-ion values, given the screening of the higher
Coulomb integrals F2, F4, and F6 is not usually significant [68].
The parameters U±

f are more difficult to obtain. Estimates from
various spectroscopic probes in rare-earth metals [68] give
estimates of U+

f + U−
f ∼ 7 eV or so across the entire series of

rare-earth ions. This value is strongly reduced from their bare
(free-ion) values by screening effects. In insulating rare-earth
compounds, one may expect screening to be somewhat less
effective than in metals. Given the paucity of information on
the U±

f parameters, we adopt the values

U+
f = U−

f ∼ 5 eV. (27)

This gives U+
f + U−

f ∼ 10 eV, somewhat higher than the
value for metals found in Ref. [68]. We choose U+

f = U−
f

purely for convenience, noting that it is at odds with the
expectation of U+

f < U−
f from the disfavoring of tetravalent

Yb in materials. We estimate the ligand parameters from related
oxides; ab initio band-structure calculations for the series
R2Ti2O7 [69,70] give a gap between the rare-earth f states
and ligand p states as being 	 ∼ 4 eV. For simplicity, we will
assume this remains true for the various (nonoxygen) ligands
we consider below. For the repulsion, we use a valueUp ∼ 3 eV
for both the oxide and chalcogenide cases.

FIG. 4. Crystal structure of breathing pyrochlore lattice as in
Ba3Yb2Zn5O11. We show the lattice of nearly independent tetrahedra
formed by rare-earth ions (open circles) and the ligands which sit at
the corners of the cube defined by these tetrahedra. In the ideal case,
the ligands form a perfect octahedron around each rare-earth ion and
have a bond angle of 90◦. The dashed lines show the large tetrahedra
that connect the smaller tetrahedral units.

This set of numbers clearly shows that all the different
processes described in the previous section can appear on equal
footing with respect to the basic energy scales involved. Unless
otherwise stated, we will use the above atomic parameters
when computing the exchanges and comparing to materials.
To obtain the exchange parameters, we simply compute the
superexchange tensors I and K, as defined in Eq. (24) and
compute the projected operators Oαβ and Õαβ for all of the 4f

states, combining them as in Eq. (22). The projected operators
map to the pseudospins [Eq. (4)] of the crystal-field doublet

Oαβ = u0
αβ + uαβ · S, Õαβ = ũ0

αβ + ũαβ · S, (28)

where the u, ũ parameters depend on the 4f orbital and spin
states α,β as well as the composition of the crystal-field doublet
encoded in (η,ζ ). The constant pieces can be discarded and the
remaining factors then give an anisotropic exchange model, as
described in Sec. III, from which we can extract the symmetry-
allowed exchange parameters.

V. VALIDATION

We now validate our theoretical methodology in detail
for the breathing pyrochlore compound Ba3Yb2Zn5O11 (see
Fig. 4). The results of comparisons to experimental data
presented in Refs. [31–33], have identified a dominant anti-
ferromagnetic Heisenberg interaction J and large (indirect)
DM interaction D; specifically, one finds [31,71]

J ∼ +0.592 meV, K ∼ −0.011 meV,

� ∼ −0.010 meV, D ∼ −0.164 meV. (29)

The results of Refs. [32,33] are qualitatively (and essentially
quantitatively) identical. In the local basis, this corresponds to

Jzz = −0.040 meV, J± = +0.140 meV,

J±± = +0.160 meV, Jz± = +0.302 meV. (30)
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For the g factors, after further refinement using data in a mag-
netic field, one finds a (weak) Ising anisotropy, with (gz,g±) =
(2.72,2.30) [71] where we have left the signs arbitrary. For a
given pair of g factors, there are only a handful of consistent
crystal-field composition parameters [31]. We can thus hope to
find what values of (η,ζ ) to use for Ba3Yb2Zn5O11 from the g

factors. There is some ambiguity here; first, there is the duality
discussed in Secs. II and III that maps g± → −g± and Jz± →
−Jz±. Second, we can map (gz,g±) → (−gz,−g±) without
affecting the low-energy physics. The determination of the
crystal-field composition parameters (and thus the exchange
parameters) is, however, sensitive to these signs. With these
redundancies in mind, there are a total of eight different
possible crystal-field compositions that are consistent with the
experimentally determined g factors of Ba3Yb2Zn5O11.

To further narrow down the possible crystal-field composi-
tions, we will only consider those which give signs for the g

factors that match that of the �6 doublet expected in the ideal
octahedral limit. That is, we only consider solutions where
both gz and g± are negative. In particular, this expectation
can be corroborated through a point charge calculation of
the crystal-field Hamiltonian using the local ligand geometry
[29] of Ba3Yb2Zn5O11. Such a calculation does not produce
a quantitatively correct level structure, finding excitations at
25, 31, and 70 meV instead of the 38, 54, and 68 meV seen
experimentally. It does, however, produce a ground doublet
with gz ∼ −2.59 < 0 and g± ∼ −2.70 < 0. It thus appears
reasonable to expect that the correct crystal-field composition
parameters share these signs for the g factors. This narrows the
possible doublet compositions consistent with the g factors to
just two:

(η1,ζ1) � (+0.716,+1.692), (31a)

(η2,ζ2) � (+2.426,+1.450). (31b)

For both of these crystal-field compositions, we can compute
the expected exchange constants within the framework of
Sec. IV. Since we are comparing directly with Ba3Yb2Zn5O11,
we use the true bond angle of 92.94◦ rather than the idealized
90◦. For the Slater-Koster ratio we use tpf π/tpf σ = −0.3,
and the atomic parameters given in Sec. IV. We find that the
first solution [Eq. (31a)] gives a dominant antiferromagnetic
Heisenberg interaction with a subdominant DM interaction
and small symmetric anisotropies. The second solution gives
a dominant DM interaction with the remaining subdominant
exchanges being roughly equal. Note that this is a striking
example of two systems with identical g factors, but wildly
different anisotropic exchanges.

We thus assign Ba3Yb2Zn5O11 to the region near (η,ζ ) =
(+0.716, + 1.692) [Eq. (31a)], given that it has the same sign
structure for its g factors as the ideal cubic limit and produces
exchange in semiquantitative agreement with the values fitted
from experiment [31–33]. Explicitly, one finds that J > 0 and

K/J = −0.014, �/J = −0.011, D/J = −0.228. (32)

The exchanges obtained here are fairly insensitive to the
detailed parameter choices made in the calculation. As an
example, consider the variation of these exchanges with the
Slater-Koster ratio tpf π/tpf σ , shown in Fig. 5. Over the entire
range, one finds that the regime with large antiferromagnetic

FIG. 5. Variation of the exchange constants for Ba3Yb2Zn5O11 as
a function of the Slater-Koster overlap ratio tpf π/tpf σ . For all values
showing the Heisenberg interaction J is dominant and antiferromag-
netic. The leading subdominant part is an (indirect) DM interaction
(D < 0) of magnitude |D|/J ∼ 0.2–0.3. Over the entire range, the
symmetric anisotropies, the Kitaev interaction K and off-diagonal
term � are negligible relative to J and D. We have shaded the
experimentally determined [31] ratios given by Eq. (29).

exchange and subdominant DM interaction is maintained.
We have checked that this remains true under small varia-
tions of the crystal-field compositions and the various atomic
parameters U±

f , 	, and Up as well. We thus see that for
Ba3Yb2Zn5O11, the exchange regime is robust to changes in
both the theoretical parameters as well those extracted from
experiment.

Given there is some uncertainty in the g values, the Slater-
Koster ratio, and the atomic parameters, we do not attempt
to tune these numbers to reproduce the fitted exchanges. For
example, Ref. [33] reports g factors (ignoring the signs) of
(gz,g±) = (3.0,2.4) (from neutron scattering) and (gz,g±) =
(2.54,2.13) (from electron paramagnetic resonance), while
Ref. [31] reports (gz,g±) = (3.0,2.36) and Ref. [32] finds
(gz,g±) = (2.22,2.78). Given each pair of g factors implies
a different set of possible crystal-field compositions, we will
be content with the fact that the regime of J > |D| � K,�

exists for crystal-field compositions that are reasonable for
Ba3Yb2Zn5O11.

VI. CUBIC LIMITS

With the expression (24) for the exchange interactions
validated for Ba3Yb2Zn5O11, we now apply the framework
of Secs. II, III, and IV to the variety of crystal structures
discussed in the Introduction. We first look at the cubic limits
where the doublets are �6 or �7. For simplicity, we work in the
limit of ideal 90◦ bond angle and use the atomic parameters
defined in Sec. IV. We consider arbitrary Slater-Koster ratios,
using the shorthand ρ ≡ tpf π/tpf σ . In these two limits (with
an appropriate choice of ground-doublet basis), the distinction
between the two cases (uniform and local axes) no longer
exists, due to the absence of trigonal distortion. We will thus
discuss the results for �6 in the global frame and in the
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appropriate dual global frame for �7, where the exchange
interactions computed in each case can be directly compared.
This coincidence implies that only J , K , or � can be nonzero,
as the D and �′ interactions are not shared between the two
different parametrizations. Alternatively, one can note that the
ideal limit has higher (accidental) symmetry (inversion about
the bond center and a reflection symmetry) that force D = 0
and �′ = 0.

For the �6 doublet, we find that (with tpf σ in eV)

J (�6) = t4
pf σ (5.955ρ2 − 4.010ρ3 + 0.554ρ4),

K(�6) = t4
pf σ (0.071ρ2 + 0.099ρ3 + 0.027ρ4),

�(�6) = 0.

We thus see that for the usual |ρ| � 1, the exchange is strongly
Heisenberg type and antiferromagnetic, with K(�6) � J (�6),
and the symmetric off-diagonal exchange �(�6) is zero [72].
For the �7 doublet we find somewhat similar results:

J (�7) = t4
pf σ (−0.012ρ2 + 0.008ρ3 + 0.315ρ4),

K(�7) = t4
pf σ (0.036ρ2 + 0.038ρ3 − 0.016ρ4),

�(�7) = 0.

The overall scale for the �7 doublet is several orders of
magnitude smaller in absolute terms than the �6 case.
These exchanges are also significantly more anisotropic, with
the antiferromagnetic Kitaev interactions dominating some-
what over the antiferromagnetic Heisenberg exchange, i.e.,
J (�7)/K(�7) = 0.51 for ρ = −0.3. Explicitly, if |ρ| � 1 then

K(�6)/J (�6) ∼ 1.2 × 10−2, (33a)

K(�7)/J (�7) ∼ −3.07, (33b)

J (�7)/J (�6) ∼ −2.0 × 10−2. (33c)

We thus see that the separation of scales between J and K and
between the overall scales of�6 and�7 remains asρ → 0. Note
that the absence of O(ρ0) terms in the polynomials indicates
that tpf σ overlap alone cannot induce exchange interactions
(as mentioned in Sec. IV). Further, a pair of tpf π overlaps are
needed, as indicated by the lack of the O(ρ) term.

We can better understand these results by considering some
of the artificial limits discussed in Sec. IV. To this end, we
decompose the superexchange into two parts: one coming from
the I parts and one coming from K parts in Eq. (24). First,
consider the �6 limit for which one has

JI (�6) = t4
pf σ (3.397ρ2 − 2.080ρ3 + 0.318ρ4),

KI (�6) = 0,

JK(�6) = t4
pf σ (2.558ρ2 − 1.929ρ3 + 0.235ρ4),

KK(�6) = t4
pf σ (0.071ρ2 + 0.099ρ3 + 0.027ρ4).

We thus see that the contributions from I are entirely isotropic;
the finite Kitaev interaction stems from theK parts that involve
the f 12 intermediate states. One should note, however, that the
Heisenberg part receives roughly equal contributions from both
the I and K channels. This is not the case for the �7 doublet,

where one finds that

JI (�7) = t4
pf σ (0.162ρ4),

KI (�7) = 0,

JK(�7) = t4
pf σ (−0.012ρ2 + 0.0082ρ3 + 0.152 ρ4),

KK(�7) = t4
pf σ (0.036ρ2 + 0.038ρ3 − 0.016ρ4).

Here, we see that the I parts are purely isotropic, as they are
for �6, while the K parts are now mostly Kitaev.

These results for the �6 and �7 limits can be further
understood in a way similar to the Jeff = 1

2 case for transition
metal spin-orbit Mott insulators [2]. Essentially, this is a
reflection of the fact that this calculation is related to an
analogous one when taking the opposite order of limits, that is
taking the crystal field and spin-orbit energy scales to be large
first. This leads to a single half-filled band for the crystal-
field ground doublet. Due to the extra symmetries enjoyed
by the ideal pair of edge-shared octahedra, there is only a
single, pseudospin-independent hopping amplitude. Further,
since this is effectively a single-band model, there is only an
effective Hubbard-type onsite interaction. Thus, in this (very
artificial) limit, one naturally obtains a pseudospin rotationally
invariant antiferromagnetic Heisenberg interaction. If one were
to apply this same logic for edge-shared octahedra for Jeff = 1

2
states [6], one finds a complete cancellation of the hopping
amplitude [73] and thus no generation of exchange. For a Yb
ion, this does not occur for a �6 doublet, the ground state for
an ideal octahedral cage (as seen in the explicit expressions for
the exchange constants). One thus expects to obtain a robust
Heisenberg antiferromagnet. For the �7 doublet, the analog of
the Jeff = 1

2 doublet, one does find a similar cancellation and
the overall exchange scale is strongly suppressed. Just as in the
transition metal case, the exchange interactions are determined
by subleading parts of the superexchange [6]. In this regime, the
exchange constants are expected to be sensitive to the details of
the superexchange calculation, such as the Slater-Koster ratio
tpf π/tpf σ and the atomic energies U±

f and 	.
The behavior of the exchanges close to, but away from, the

cubic limits is important for understanding real materials where
trigonal distortions forbid reaching exactly the �6 or �7 points.
Since the �7 limit is sensitive to the details of the calculations,
and is unlikely to be robust, we only show deviations from the
�6 limit in detail. As shown in Fig. 6, one finds that the most
important deviation from the pure Heisenberg antiferromagnet
is then the DM interaction which grows linearly in both η − η�6

and ζ − ζ�6 . The symmetric anisotropies K , � (and �′ in the
uniform case) develop much more slowly. Consequently, the
local axes case is qualitatively different than the uniform case
where the DM interaction is forbidden on symmetry grounds.
Note that even in the case of local axes, extremely close to the
�6 limit, the symmetric Kitaev interaction is the subdominant
term, as it does not vanish, as the DM interaction does, upon
approaching very close to the cubic limits.

VII. GENERAL RESULTS

We now explore the full parameter space of compositions
(η,ζ ) for the ground doublet, given that it is unclear how
close to the cubic limits (considered in Sec. VI) real material
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FIG. 6. Exchange constants for when moving away from cubic
�6 limit. (a), (b) Local axes. Exactly at the �6 point the DM
interaction is zero, while away from this point it is the leading
subdominant exchange. (c), (d) Uniform axes. The Heisenberg limit
is significantly more robust due to DM interaction being forbidden,
with the symmetric anisotropic terms developing very weakly upon
deviating from the �6 limit.

examples may lie. For simplicity, we consider three Slater-
Koster ratios: ρ ≡ tpf π/tpf σ = −0.2,−0.3,−0.4 and fix the
bond angles to the ideal 90◦. We will show the results in
both the equivalent global and dual representations since the
(Jzz,J±,J±±,Jz±) representation proves less insightful. For
each representation, we rescale the exchanges by the absolute
value of the largest exchange, removing any dependence on
the overall energy scale set by tpf σ . The results are presented
in Figs. 7 and 8, with the different exchange regimes indicated.
We consider the case with local frames (Fig. 7) and the case
with uniform frames (Fig. 8) in turn.

A. Local frames

The results for the case of local frames are summarized
in Fig. 7. Here, we see that the nearly perfect Heisenberg
antiferromagnetic encountered in the �6 octahedral limit (see
Sec. VI) extends over a large region in parameter space in
both the global and dual parametrizations. As can be clearly

seen, these regions are robust and are not strongly affected
by variation of the Slater-Koster ratio. While much of the
phase space is not in a distinct parameter regime, there are
“islands” of more pronounced limits close to the �7 limit.
These include near-perfect Heisenberg ferromagnets (global)
and near-perfect antiferromagnetic Kitaev interactions (dual).
However, unlike the regions of Heisenberg antiferromagnet,
these islands are sensitive to the precise value of the Slater-
Koster ratio chosen. For example, the (dual) antiferromagnetic
Kitaev point at the �7 limit is present for ρ = −0.2, but
is absent for ρ = −0.3 and −0.4. Similar appearance and
disappearance of these islands as a function of ρ can also be
seen for the (dual) islands of dominant DM interactions and
dominant � interaction. Due to this dependence on the detailed
parameter choices made, which are heretofore unknown, we
can see that our predictions for the exchanges near the �7 point
are likely to be significantly less reliable than those near the
more robust �6 region (as expected from the considerations of
Sec. VI).

B. Uniform frames

The results for the uniform case are summarized in Fig. 8.
As in the nonuniform case, the �6 limit is embedded in a
robust region of antiferromagnetic Heisenberg interactions.
This occupies a significantly larger region of parameter space
here than in the case with local axes. This arises since the
antisymmetric DM interaction is now forbidden and, like in the
case with local axes, the symmetric anisotropies only develop
weakly as one moves away from the �6 point. Similar to
the case with local axes, the region around the �7 limit also
hosts other anisotropic regimes, in this case both ferromagnetic
and antiferromagnetic Kitaev limits in the global basis and
an antiferromagnetic Kitaev limit in the dual basis. Both of
these lie somewhat off of the pure �7 limit and are somewhat
sensitive to changes in the Slater-Koster ratio, though less
so than in the case with local axes. Also present for some
Slater-Koster ratios are (global) ferromagnets and dominant
(dual) � > 0 interactions.

VIII. APPLICATIONS TO MATERIALS

We now apply the general results of Sec. VII to some
specific ytterbium-based rare-earth magnets.

A. Spinels

The rare-earth chalcogenide spinels AR2X4 share
many structural features with the breathing pyrochlore
Ba3Yb2Zn5O11. Thus, given the success of these calculations
in reproducing those exchanges (see Sec. V), we expect the
methods of Sec. IV to work reasonably well for the spinels.
These compounds have space group Fd3̄m (no. 227) with
the rare-earth R (Wyckoff site 16d) forming a pyrochlore
lattice and the A ion (Wyckoff site 8a) being nonmagnetic.
The ligand, denoted as X (Wyckoff site 32e), forms distorted
octahedra around the rare earths. The ligand position, which
we denote as x, varies from material to material, but does not
stray too far [26] from x = 1

4 which yields ideal X octahedra.
These RX6 octahedra are joined together in an edge-sharing
network as illustrated in Fig. 1.
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FIG. 7. Exchange regimes for the local axes relevant for the breathing pyrochlore and spinels. If the largest and second largest exchange
are less than a factor of 3 apart in absolute value, we show only gray indicating no clear regime. Otherwise, we indicate the dominant exchange
(J , K , �, or D) and its sign via a color. Contours of the ratio of the dominant and subdominant (second largest) exchange are also shown.
Both global and dual representations are shown for three reasonable values of the Slater-Koster ratio tpf π/tpf σ = −0.2,−0.3,−0.4. The legend
shows eight possible exchange regimes, depending on which exchange is dominant and its sign: AFM (J > 0), FM (J < 0), AFK (K > 0),
FK (K < 0), �+ (� > 0), �− (� < 0), DM+ (D > 0), and DM− (D < 0).

Unfortunately, there does not appear to have been direct
measurements of the crystal-field spectrum, and thus the
composition of the ground doublet, for any of the ytterbium
spinels. While several estimates [27,43,44,74] exist in the lit-
erature, they are based on fitting of the magnetic susceptibility
and use restricted, mostly cubic, Ansätze for the crystal-field
interaction parameters. These thus produce nearly perfect �6

ground-state doublets and thus essentially reproduce the results
of Sec. VI. Given the ideal �6 limit hosts a near-perfect
Heisenberg antiferromagnet, the physics is highly sensitive to
any subdominant perturbations.

From the considerations of Sec. VI, we expect a subdom-
inant DM interaction to exist, with the qualitative features
depending on its sign. In the full phase diagram of the
anisotropic exchange model of Eq. (8) one generically expects
four magnetically ordered phases with zero wave vector:
an all-in/all-out (AIAO) state, a Palmer-Chalker (PC) state,
a splayed ferromagnet (SFM) state, or a �5 state [75]. To
illustrate this, we have computed the classical ground state for
the exchanges predicted for each crystal-field composition, as
shown in Fig. 9. For a Heisenberg antiferromagnet with small
direct DM interactions (D > 0), one expects an AIAO state
[76]. For small indirect DM interaction (D < 0), the situation

is more complex as this is phase boundary between the SFM
and �5 states when the symmetric anisotropies are included
[34,75–78]. These select the SFM state when K + � > 0 and
the �5 states when K + � < 0. The physics along the boundary
with K = � = 0 is more involved and includes an additional
one-dimensional degenerate manifold of states along with the
�5 states [34,76,77]. In Fig. 9, we see that, for the indirect
case, mostly the �5 state is selected by the subdominant K

and � exchanges, save for a small window of SFM emerging
from the pure octahedral limit. We thus see that it is natural
for the spinels to have either a �5 or AIAO ground state, given
some unknown deviations from the ideal �6 limit. Within the
�5 manifold, the ground state has an accidental continuous
degeneracy [20,79] which will be lifted through a number of
competing order-by-disorder mechanisms [17,20,25,79]. For
the pure nearest-neighbor model of Eq. (8) at zero temperature,
the leading effect is quantum order by disorder [20,79] which
selects either the noncoplanar ψ2 or collinear ψ3 state. Within
the �5 regions, we have computed the zero-point energies and
show the state selected by 1/S corrections in the usual linear
spin-wave theory [20]. We note that both ψ2 and ψ3 states are
found relatively close to the cubic �6 limit, with ψ3 appearing
immediately adjacent.
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FIG. 8. Exchange regimes for the uniform axes relevant for triangular or honeycomb compounds. If the largest and second largest exchange
are less than a factor of 3 apart in absolute value, we show only gray indicating no clear regime. Otherwise, we indicate the dominant exchange
(J , K , �, or �′) and its sign via a color. Contours of the ratio of the dominant and subdominant (second largest) exchange are also shown.
Both global and dual representations are shown for three reasonable values of the Slater-Koster ratio tpf π/tpf σ = −0.2,−0.3,−0.4. The legend
shows eight possible exchange regimes, depending on which exchange is dominant and its sign: AFM (J > 0), FM (J < 0), AFK (K > 0),
FK (K < 0), �+ (� > 0), �− (� < 0), �′

+ (�′ > 0), and �′
− (�′ < 0).

To make a more detailed prediction, we need some estimate
of the spectral composition of the crystal-field ground doublet.
To estimate the crystal fields in the ytterbium spinels, we
leverage the detailed analysis carried for the crystal field of the
related MgEr2Se4 spinel [80]. Through fitting to the results
of inelastic neutron scattering, it is found that the crystal-
field parameters are somewhat different than expected for an
approximately cubic crystal field. In addition, the trigonal
contributions are found not to be well described by a point-
charge model including only the nearest-neighbor ligands [81].
Similar results [26] have been found for CdEr2S4 though,
as in the ytterbium spinels, only bulk probes (in this case
the magnetization) were analyzed. Given these parameters,
we estimate the crystal field for the ytterbium spinels by
rescaling the fitted parameters found for MgEr2Se4 [80]. Such
a rescaling procedure was used in Ref. [82] and has been
found to be relatively accurate across the full series of rare-
earth pyrochlore titanates. In this procedure, the crystal-field
parameters, denoted as Bkq , for the AYb2X4 are determined
from the B0

kq relevant for MgEr2Se4 via

Bkq ≡ θ (k)〈rk〉
θ

(k)
0 〈rk〉0

(
a

a0

)−(k+1)

B0
kq, (34)

where the θ (k), 〈rk〉, and θ
(k)
0 , 〈rk〉0 are the Stevens’ parameters

[83] and radial integrals [84] for Yb and Er, respectively,
and a and a0 are the lattice constants of the target AYb2X4

spinel [27] and MgEr2Se4 [80]. We are able to reproduce the
results of Ref. [80] using the parameters [85], translated to the
conventional notation

B0
20 = −4.227 × 10−2 meV, B0

40 = −6.116 × 10−4 meV,

B0
43 = −1.338 × 10−2 meV, B0

60 = +3.315 × 10−6 meV,

B0
63 = −3.840 × 10−5 meV, B0

66 = +2.266 × 10−5 meV.

While this procedure is likely to be most accurate for the
selenides CdYb2Se4 and MgYb2Se4 given the common Se
ligand, we will apply to the sulphides as well. Note that this
procedure ignores variations in the ligand structural parameter
x. While this parameter is only reported in the literature for
CdYb2S4 (with x ∼ 0.2579 [26] and x ∼ 0.2594 [86]) and for
CdYb2Se4 (with x ∼ 0.2575 [86]), we note that this parameter
does not appear to vary strongly with the choice of A = Mg,
Cd or the ligand X = S, Se [26,80,86]. With these rescaled
parameters, one finds energy levels that are broadly consistent
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FIG. 9. Semiclassical phase diagram for exchange constants
computed for the spinel structure with a bond angle of 93.6◦ and
Slater-Koster ratio of tpf π/tpf σ = −0.3. The classical energy is
minimized over possible k = 0 ground states [75], with the accidental
degeneracy in the �5 (E) phase resolved by 1/S corrections of
linear spin-wave theory [20,79]. Contours show the combined relative
ratios of the subdominant to dominant exchange (for global and dual
parametrizations) as discussed in Sec. IV and as used in Figs. 7
and 8.

with that found from fitting the magnetic susceptibility [27]
for CdYb2S4 and MgYb2S4, as presented in Table I.

The resulting ground doublet for these crystal fields is
relatively close to a �6 doublet, with (η,ζ ) ∼ (0.5,2.2) for all
compounds (see Table I). These parameters yield weakly Ising-
type g factors with (gz,g±) ∼ (−3.6,−2.2). While still quite
close to the �6 limit, this composition is significantly further
away than what is obtained from the crystal-field parameters
reported in Ref. [27]. The predicted exchange constants lie in
the regime of strong antiferromagnetic Heisenberg coupling
with subdominant DM interactions near the �6 point (see
Sec. VI). In the global basis one finds

K/J ∼ −0.03, �/J ∼ −0.02, D/J ∼ −0.3, (35)

similar to what is found in Ba3Yb2Zn5O11 (see Sec. V). These
exchanges place the spinels into a region with a classical �5

ground state, with semiclassical 1/S corrections selecting ψ3

ordering. The presence of a large, positive J and subdominant,
indirect DM interaction are not sensitive to small changes
in the bond angle or Slater-Koster ratio. This is also true of
the selection of the �5 states over the SFM state, in spite of
the much smaller scale of these terms. We do note, however,
that if we assume the overall energy scale is of order of the
Curie-Weiss temperature, then the small symmetric exchanges
are of the same order as those expected from magnetic dipole
interactions, as discussed in Appendix D 1. Since we are close
to a phase boundary controlled by the sum K + � of these
subdominant terms, we must consider the dipolar contributions
carefully. However, one has that the contributions to the sum
K + � from the nearest-neighbor part of the dipolar interaction
approximately cancel and thus do not affect the selection of
the ground state. We note that the state selected via order
by thermal disorder near the ordering temperature can be in
principle different than that selected by quantum or thermal
fluctuations near T = 0 [76,87,88]. Indeed, if we consider
K = � = 0, thermal fluctuations select the ψ2 state near TN ,
but ψ3 near T = 0 (classically) [34,76,77]. Whether such an
intermediate ψ2 phase would be present for the parameter
regime of interest would likely depend on the precise values of
K , � and how strongly the quantum selection competes with
thermal selection.

Experimentally, one finds that each of the spinel compounds
has an antiferromagnetic Curie-Weiss constant of ∼9–10 K
[27], roughly consistent with the exchange scale found in
Ba3Yb2Zn5O11 [31]. At low temperatures, each of the four
compounds orders antiferromagnetically, with Néel tempera-
tures in the range TN ∼ 1.4–1.8 K [27], somewhat strongly
reduced from the naïve energy scale of 10 K [27]. Below TN,
the specific heat was found to decrease roughly as ∼T 3 as
T → 0, suggesting the presence of linearly dispersing gapless
modes [27]. Evidence for such gapless excitations in CdYb2S4

has also been suggested from electron spin-resonance (ESR)
measurements [89]. Of the possible ordered states expected
for the nearest-neighbor anisotropic exchange model, this is
only consistent with the (nearly) gapless spectrum expected in
a �5 state [90], as found in Er2Ti2O7 [12,20,91,92]. Indeed,
the presence of �5 order was recently directly observed in
the CdYb2S4 and CdYb2Se4 spinels by neutron diffraction
[86]. Given these considerations, the AYb2X4 may represent a

TABLE I. Survey of some experimental data on ytterbium spinels, including lattice constant [27,86], Curie-Weiss temperature [27,86],
and Néel temperature [27,86]. We show the excited crystal-field energy levels, g factors, and ground-doublet composition computed for the
AYb2X4 spinels using the crystal structures from Ref. [27]. The crystal-field parameters were obtained by rescaling from the fitted parameters
[Eq. (34)] for MgEr2Se4 found in Ref. [80]. For all spinels we assume a Yb-X-Yb bond angle of ∼93.6◦ as found in CdYb2S4 [26].

Spinel a (Å) θCW (K) TN (K) E1 (meV) E2 (meV) E3 (meV) gz g± η ζ

CdYb2S4 [27] 11.075 −10.0 1.8 23.47 33.46 63.69 −3.587 −2.188 0.4995 2.206
MgYb2S4 [27] 10.972 −10.4 1.4 24.83 35.06 66.67 −3.591 −2.185 0.4996 2.203
CdYb2Se4 [27] 11.539 −9.3 1.7 18.32 27.28 52.14 −3.560 −2.206 0.4999 2.222
MgYb2Se4 [27] 11.464 −9.2 1.4 19.06 28.17 53.82 −3.564 −2.204 0.4999 2.219

CdYb2S4 [86] 11.003 −13.0 1.92
CdYb2Se4 [86] 11.455 −11.0 1.75
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particular clean example of quantum order by disorder, free
from some of the potential complications of the Er2M2O7

family [25], similar to what has been proposed for Yb2Ge2O7

[12,18,21].
However, there are some key differences between these

compounds, in particular in the muon spin resonance (μSR)
signals for the CdYb2S4 and MgYb2S4 compounds [27].
One finds that the Cd compounds show well-defined [27,86]
oscillations in the mean asymmetry below TN, as expected for
an ordered state, while one of the Mg compounds shows no
such oscillations [27]. This absence of static internal field at the
muon site in MgYb2S4 was interpreted in Ref. [27] as a possible
signature of incommensurate order. However, given that the
muon implantation site is unknown and, further, the muon
can distort the crystal environment, it is unclear how directly
one can interpret these results. Further, a lack of pronounced
oscillations has also been seen in Er2Ti2O7 [93] which has
an uncontroversial ψ2 ground state [94] or in Yb2Ge2O7 [48],
where a ψ3 ground state may be expected [18]. In addition to
the difference in the μSR signals, there is also a difference in
the field-cooled vs zero-field-cooled magnetic susceptibility,
with CdYb2S4 showing a bifurcation at TN while MgYb2S4

does not [27]. These experiments are broadly consistent with
the scenario outlined where a �5 state is the ground state. The
simplest explanation may be that the ground state is �5, with
perhaps a difference in proximity to the phase boundary with
the SFM state [18,75] accounting for the differing μSR and
susceptibility measurements between CdYb2S4 and MgYb2S4.

On a more phenomenological level, one can look at the
trends found in the AYb2X4 series as one varies the ligand X

and theA ion (see Table I). One finds that while the Curie-Weiss
(θCW) temperature varies mostly with the choice of ligand [27],
both TN and the spin-wave velocity extracted from the specific
heat follow the choice of A = Cd or Mg [27]. One possibility
is that the lattice constant, which follows mostly with the
choice of ligand, determines the overall exchange scale (and
thus θCW), while TN is determined by subdominant exchanges
and thus details of the ground-doublet composition. Since we
obtained our ground-doublet composition from a rescaling of
the parameters found for the Mg-based spinel MgEr2Se4, the
crystal field could be somewhat different for a Cd-based spinel,
changing some of the details of the exchanges. We find that if
one rescales the fitted crystal-field parameters from Ref. [95]
for the CdEr2S4 or CdEr2Se4 spinels, the results are inconclu-
sive; there are small changes in the exchanges, but they do not
follow the trends described above. Whether this is a failure of
our superexchange calculation to capture these fine details, or
whether this is due to uncertainties in the rescaling procedure
used obtain the crystal parameters remains to be seen [96].

Finally, it is interesting to note that these exchanges are not
too far from those found in a recent study [22] of Yb2Ti2O7.
In the local basis, the exchanges of Eq. (35) have dominant
Jz± = −0.159 meV < 0 with

Jzz/|Jz±| ∼ −0.13, J±/|Jz±| ∼ +0.48,

J±±/|Jz±| ∼ +0.53,

quite similar, keeping in mind that the sign of Jz± can be
changed by a local spin rotation. Indeed, if one recasts the
exchanges of Ref. [22] for Yb2Ti2O7 to the dual language of

Eq. (13), then one has J̃ > 0 with

K̃/J̃ = 0.01, �̃/J̃ = +0.1, D̃/J̃ = −0.5, (36)

that is a large indirect DM interaction with (relatively) small
symmetric anisotropies. One can also note here that K̃ + �̃ >

0, selecting the SFM state classically, as (currently) expected
for Yb2Ti2O7 [22]. While the physics of Yb2Ti2O7 has been
proposed to be related to its proximity to the �5-SFM boundary
[18,21], it becomes particularly clear in this dual language
where it connects smoothly to the work of Refs. [34,76,77]
where the �5-SFM boundary is obtained by fixing K = � = 0
and varying D/J < 0.

We thus conclude that the physics of the AYb2X4 spinels
may be closely tied to that of the Yb2M2O7 pyrochlores. These
parallels are also manifest experimentally; for example, a
similar double-peak structure in the specific heat, as observed
in the Yb2M2O7 (M = Ti, Ge, Sn) compounds [35], is
also present in the AYb2X4 spinels [27,86]. Given that the
strong competition [18,75,78] between nearby �5 (found in
Yb2Ge2O7 [48,97]) and SFM phases (found in Yb2Ti2O7 and
Yb2Sn2O7 [98]) may be responsible for some of the physics
of the Yb2M2O7 family, it may be worthwhile to explore
whether some of the exotic dynamical properties [21,22,35]
found in (for example in Yb2Ge2O7 [35]) may carry over to
the AYb2X4 spinels. We see this as a highly promising avenue
for future experimental investigations.

B. Triangular

We now consider the triangular compound YbMgGaO4
which has recently attracted attention as a potential quan-
tum spin liquid candidate [23]. Here, the Yb3+ ions form
a triangular lattice, supported by a network of edge-sharing
oxygen octahedra (see the idealized form in Fig. 1). The
bond angle in this compound is the furthest from ideal we
consider, being close to 99◦ [23]. Additionally, there is the
complication of chemical disorder, with the Mg2+ and Ga3+

ions not forming a periodic structure [23]. Experimentally, one
finds no magnetic ordering down to ∼60 mK [23], well below
the expected magnetic energy scale of ∼1 K [23]. At the lowest
temperatures, the specific heat follows a power law ∼T 0.7

suggesting gapless excitations [99]. The excitation spectrum,
as probed by inelastic neutron scattering, is consistent with this,
showing a broad, gapless continuum with few distinct features
as a function of energy or momentum [45,100]. All of these
characteristics have been interpreted as evidence for a gapless
quantum spin liquid ground state in this compound [100].

While promising, there have been several challenges to
the interpretation of YbMgGaO4 as a quantum spin liquid.
First, is the absence of magnetic thermal conductivity at low
temperatures [101]. This is at odds with the expectation that
in a quantum spin liquid, gapless excitations, as seen in the
specific heat and in neutron scattering, should transport heat
[45,100]. Second, and perhaps more importantly, is how the
disorder on the Mg and Ga sites affects the magnetism [23]. It
has been suggested that the experimental data show evidence
for a distribution of g factors for the Yb spins due to the Mg/Ga
mixing [102]. Further, it has been argued that certain kinds of
exchange disorder could mimic some of the features that have
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been interpreted as evidence for a quantum spin liquid ground
state [103].

We first address what is known of the (suitably disordered
averaged) exchange constants. The work of Ref. [23] first ad-
dressed this question, obtaining values for all four exchanges;
in our notation these parameters read as

Jzz = +0.98 K, J± = −0.90 K,

J±± = ±0.15 K, Jz± = ±0.04 K,

where the signs of J±± and Jz± were undetermined [23]. These
exchanges were obtained by a sequence of experimental fits:
first the g factors were extracted from high-field magnetization,
then Jzz and J± from the Curie-Weiss constants, and finally
J±± and Jz± from ESR linewidths [23]. However, the first two
steps in this process, upon which the last relies, vary somewhat
in the literature. For example, the Curie-Weiss constants found
in Ref. [100] imply exchanges of Jzz = 2.13 K and J± =
−1.59 K. The estimates of Jzz/J± obtained in Ref. [45]
through fitting to inelastic neutron scattering in field and in
Ref. [104] through fitting to elastic diffuse neutron scattering
also differ somewhat from what was found in Ref. [23]. Given
these results, it seems unclear at present what exchanges are
reasonable for YbMgGaO4, with the only common thread
being that Jzz ∼ O(1 K) and J± < 0 with Jzz � |J±|.

Given this uncertainty, in this section we will apply the
exchange calculations developed in this work to YbMgGaO4.
Structurally, this compound has the same pattern of (approxi-
mately) edge-sharing YbX6 octahedra found in the breathing
pyrochlore and the spinels. The results of Sec. VII for the case
with uniform axes can thus be applied, once the larger bond
angle of [23] (approximately) ∼99◦ is taken into account in the
Slater-Koster overlaps of Eq. (18). As in the case of spinels,
determining the exchange regime relevant for YbMgGaO4
rests on an accurate determination of the composition of the
crystal-field ground doublet.

Estimates ignoring the Mg/Ga disorder (based on the
saturation of the magnetization in high field) give a weak
Ising anisotropy, with (gz,g±) ∼ (+3.721,−3.060), with only
a single combination of signs realizable within a strict �4

doublet. Including the Ga/Mg site disorder that locally modifies
the crystal field is a complex problem [102]. We follow
Ref. [102] and consider an ensemble of possible crystal-field
environments for the Yb ion, restricting to the seven distinct
Mg/Ga configurations considered there. This set of crystal-
field compositions and their associated g factors are listed in

TABLE II. Computed crystal-field ground doublets and g factors
for the seven Mg/Ga local environments and crystal-field parameters
proposed in Ref. [102].

Environ. η ζ gz g±

1 1.197 2.440 +3.697 −3.221
2 1.195 2.439 +3.670 −3.229
3 1.218 2.444 +3.873 −3.163
4 1.147 2.423 +3.213 −3.352
5 1.242 2.449 +4.066 −3.092
6 1.144 2.422 +3.182 −3.359
7 1.179 2.434 +3.530 −3.270

TABLE III. Computed exchanges for the seven Mg/Ga local
environments of Ref. [102] as a function of bond angle θ . We take
the Slater-Koster ratio to be tpf π/tpf σ = −0.3 and assume tpf σ is
independent of bond angle and crystal-field environment. The overall
scale is compared between different configurations relative to a
reference configuration (θ = 99◦, Environ. 1).

θ Environ. J±/Jzz J±±/Jzz Jz±/Jzz Jzz/J
0
zz

97◦ 1 −0.44 −0.06 0.03 1.63
2 −0.44 −0.06 0.03 1.65
3 −0.44 −0.07 0.04 1.49
4 −0.44 −0.06 0.02 2.0
5 −0.44 −0.07 0.04 1.34
6 −0.44 −0.06 0.02 2.02
7 −0.44 −0.06 0.03 1.76

99◦ 1 −0.36 −0.14 0.04 1.0
2 −0.36 −0.13 0.04 1.02
3 −0.36 −0.15 0.05 0.89
4 −0.38 −0.11 0.02 1.29
5 −0.35 −0.16 0.07 0.78
6 −0.38 −0.11 0.02 1.31
7 −0.37 −0.13 0.03 1.1

101◦ 1 −0.19 −0.3 0.05 0.56
2 −0.2 −0.29 0.05 0.57
3 −0.17 −0.32 0.08 0.49
4 −0.25 −0.24 0.01 0.76
5 −0.13 −0.36 0.11 0.42
6 −0.25 −0.23 0.01 0.78
7 −0.21 −0.27 0.04 0.63

Table II. We see that, for each of these crystal-field parameters,
one finds that gz > 0 and g± < 0, as found for a parameter set
which assumed no significant disorder [23]. It was suggested
in Ref. [102] that this modification of the crystal field due to
the Mg/Ga disorder is not primarily due to the direct effects
of the charge disorder, but due to its distortion of the oxygen
cage and off-centering of the Yb ion. This distortion modifies
both the distances and angles of the oxygen ligands relative to
the crystal axes [102], and thus affects the exchanges through
both the ground-doublet composition and through changes in
the ligand bond angles.

We now proceed to estimate the effects of the Mg/Ga
disorder on superexchange; this includes modification of the
crystal-field ground state and the change in Yb-O-Yb bond
angles. We will not aim at a detailed modeling of the local
distortions of the YbO6 octahedra, instead opting for a rough
estimate that captures the qualitative changes that can occur for
these kinds of substitutions. To this end, we consider the seven
crystal-field compositions [102] induced by Mg/Ga disorder
(as given in Table II) combined with small variations in the
bond angles, specifically taking bond angles of 97◦, 99◦, and
101◦. We fix the Slater-Koster ratio to be ρ = tpf π/tpf σ =
−0.3 and assume tpf σ does not vary strongly with disorder
configuration. As shown in Table III, for all cases we find that
Jzz is dominant and positive. The transverse coupling J± is
negative and is the second largest exchange for bond angles
97◦ and 99◦, while it is competitive with J±± for 101◦. For all
cases, Jz± is relatively small. This is broadly consistent with
two reliable features from the literature [23,45,99]: that Jzz is
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largest and J± is comparable, but smaller, with J± < 0. While
these exchange ratios vary somewhat between crystal-field
configurations, they do not change very significantly. The
overall scale, set here to be Jzz, also varies somewhat between
different crystal-field configurations, but much more strongly
as a function of bond angle. Specifically, as seen in Table III,
relative to the 99◦ case, the exchanges change by a factor of
2 when changing the bond angle by ±2◦. We thus tentatively
conclude that the primary effect of the Mg/Ga disorder in the
superexchange results is not through the variation in doublet
composition, but through the variation in bond angle. This
introduces strong variations in both the relative importance of
the anisotropic couplings, as well as in the overall magnitude
of the exchange interactions. This picture of strong exchange
disorder in YbMgGaO4, expected from these calculations,
supports the rough picture recently put forward in Ref. [103],
though it differs in details, and calls into question the spin liquid
interpretation of Refs. [45,100]. Exactly how this appears in
the physical properties of YbMgGaO4 will depend on the
details of the Mg/Ga disorder, for example, how spatially
correlated it is in the in-plane directions. Disorder with a very
short in-plane correlation length (comparable to the rare-earth
nearest-neighbor distance) would also introduce a significant
lowering of the bond symmetry. In this case, the minimal model
of Eq. (8) would be inapplicable; many additional exchange
terms (both symmetric and antisymmetric) would be allowed,
and thus likely appear, complicating the analysis considerably.

We should also note that the energy scale of the dipolar
interactions is non-negligible relative to the exchanges of
O(1 K) expected here. As discussed in Appendix D 2, one
expects dipolar contributions to the nearest-neighbor exchange
of order ∼0.1 K or so. Since these depend on the g factors, they
will also be affected by the crystal-field disorder, though not
(directly) by the changes in the ligand bond angle.

IX. DISCUSSION

In this section, we discuss some limitations of our method-
ology and explore some more speculative applications to rare-
earth pyrochlore oxides of the form R2M2O7 and to (potential)
Yb-based honeycomb magnets.

First, we comment on the approximations made in the su-
perexchange calculation of Sec. IV which forms the backbone
of this work. Three kinds of approximations were made: in
the atomic physics, in the hopping processes, and in the set
of processes included. The most mild are the approximations
made in the atomic physics of Yb2+, Yb3+, and Yb4+. As
discussed in Appendix B, we have not included some of the
smaller, more subtle corrections to the intrashell effective
Hamiltonian [64], or included the effect of the crystal-field
splitting on the excited levels of Yb4+ (note that the closed
shell Yb2+ is trivial). Both of these approximations lead to
energy shifts of order a few percent (see Appendix B) relative
to the bandwidth of the Yb4+ states and thus are not expected to
be important. This could in principle be remedied by including
the correction terms known in the literature [64] and through in-
clusion of the crystal field explicitly in the atomic calculations.
More serious is the uncertainty in the energy costs U±

f . While
these mostly contribute to the overall scale (which we largely
ignore), more precise knowledge of the ratio U+

f /U−
f would

be useful in refining these calculations. The uncertainty in the
ligand parameters 	 and Up also has similar features. Another
relatively mild, but ultimately less controlled, approximation
is the use of the two-center Slater-Koster approximation [63].
While this allowed us to reduce the number of free hopping
parameters to effectively two, it is unclear how realistic this
is. Ideally, the overlaps could be estimated by tight-binding
fits to ab initio band-structure calculations for such rare-earth
insulators. Finally, there is the inclusion of only the ligand-
mediated superexchange processes. This notably excludes any
processes that involve the higher rare-earth orbitals (such as
5d or 6s) or their intershell interactions with the 4f electrons.
While these processes involve intermediate states that are
expected to lie higher in energy than the ligands, and are
at higher order in perturbation theory, a detailed quantitative
estimate of their importance would be helpful in ruling them
in or out as significant contributions to the exchange.

Next, we comment on the applications of these results more
broadly, considering applications to the rare-earth pyrochlore
oxides R2M2O7 where R is a rare-earth and M a metal ion,
particularly the titanate family R2Ti2O7 [51,54]. The Yb-based
compounds Yb2M2O7 with M = Ti, Ge, Sn are of particular
interest, showing highly unusual dynamic properties [35].
While not directly applicable to these compounds due to the
presence of two inequivalent exchange paths, it would be
straightforward in principle to generalize the results of Sec.
IV to this case. However, this introduces additional modeling
complications, in particular the need to fix two additional
hopping parameters (within the Slater-Koster two-center ap-
proximation). Given the goal is to determine four exchange
parameters, having three tunable hoppings or hopping ratios
renders the outcome of the calculation somewhat subjective.
However, there are some useful insights that can be gleaned
for the idealized case where both exchange paths are taken as
equivalent. This corresponds to the case of a perfect cube of
oxygens around each Yb ion (with a �7-doublet ground state)
and a bond angle of cos−1(−1/3) ∼ 109.47◦. As in the case
of the �7 doublet for a 90◦ bond angle, one expects strong
suppression of the overall strength and thus exchange that
is highly sensitive to the details of the calculation, such as
the specific values of hopping parameters and the bond angle
(see Secs. VI and VII). While this further exacerbates the
difficulties discussed above, it also loosely suggests a rationale
for the sensitivity of some members of the Yb2M2O7 family to
small changes in stoichiometry [105] and mild applied pressure
[106].

To conclude, we speculate on some possible interesting
Yb-based magnets that have not yet been studied in de-
tail. In particular, one is tempted to consider magnets built
around the honeycomb of edge-shared octahedra shown in
Fig. 1, as has been considered in Kitaev materials such
a (Na,Li)2IrO3 and RuCl3. One could also consider more
complex three-dimensional honeycomb structures as in (β,γ )-
Li2IrO3. Indeed, the material YbCl3 has the needed Yb3+ ion
and crystallizes in the same structure found in RuCl3 (with
some monoclinic distortion), with bonds angles of ∼97◦–98◦
[107]. The results for the uniform case discussed in Sec. VII
apply directly to such unstudied honeycomb magnets; one
still expects a very robust region of nearly pure Heisenberg
antiferromagnet near the octahedral �6 limit. While the ground
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state would be conventional, the appearance of such a nearly
isotropic magnet in a rare-earth insulator with very strong
spin-orbit coupling would be very interesting in and of itself.
This would have clear experimental signatures, such as in the
appearance of nearly gapless pseudo-Goldstone modes (see,
for example, similar behavior in Sr2IrO4 [2]). However, as
seen in the case of YbMgGaO4, trigonal distortions could (in
principle) push the relevant ground-doublet composition far
from this limit. The existence of strongly Kitaev-type limits in
Fig. 8 then suggests it may possible, through luck or fine tuning
for these systems, to realize Kitaev’s honeycomb model in such
a rare-earth insulator.

We thus conclude that rare-earth systems, in particular
those based on Yb3+ and built from edge-shared octahedra,
have the potential to host many different types of anisotropic
spin models. In addition to the “weak” emergent anisotropy
found near the ideal octahedral limit, one can also find Kitaev
limits and, depending on the lattice, regions when symmetric
anisotropies dominate. We hope the varied behavior found
in this work and the potential opportunity to explore new
realizations of frustrated, anisotropic systems will motivate
further studies and development of ytterbium-based magnets.
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APPENDIX A: BASIS CONVENTIONS

Here, we outline our basis choices. For the pyrochlore and
breathing pyrochlore lattices we choose the four local frames
(x̂i , ŷi , ẑi):

ẑ1 = 1√
3

(+x̂ + ŷ + ẑ), x̂1 = 1√
6

(−2x̂ + ŷ + ẑ),

ẑ2 = 1√
3

(+x̂ − ŷ − ẑ), x̂2 = 1√
6

(−2x̂ − ŷ − ẑ),

ẑ3 = 1√
3

(−x̂ + ŷ − ẑ), x̂3 = 1√
6

(+2x̂ + ŷ − ẑ),

ẑ4 = 1√
3

(−x̂ − ŷ + ẑ), x̂4 = 1√
6

(+2x̂ − ŷ + ẑ), (A1)

where ŷi = ẑi × x̂i . The four basis sites of a tetrahedron r i

are then along the ẑi directions, with r i = √
3ẑi/4, where

the length scale is chosen so the nearest-neighbor distance is
1/(2

√
2).

For the triangular and honeycomb lattices, all sites are
equivalent and we define the frame (x̂0, ŷ0, ẑ0) with

x̂0 = 1√
6

(−2x̂ + ŷ + ẑ), ẑ0 = 1√
3

(+x̂ + ŷ + ẑ), (A2)

with ŷ0 = ẑ0 × x̂0. The magnetic ions lie in the plane perpen-
dicular to ẑ with one of the nearest-neighbor bonds being along
( ŷ − ẑ)/

√
2.

APPENDIX B: ATOMIC PHYSICS

To obtain the superexchange contributions that involve f 12

intermediate states, we need to understand the atomic physics
of the (nominal) Yb4+ ion. The associated energies and states
are determined by the Coulomb interaction and the spin-orbit
coupling [108]. Projecting into the f shell, the Coulomb
interaction can be written

HCoulomb = 1

2

(
e2

4πε0

)∑
i �=j

1

|r i − rj | (B1)

= 1

2

∑
k=0,2,4,6

akF
k

k∑
q=−k

O
†
kqOkq, (B2)

where we have defined the numerical coefficients a2 = 2/15,
a4 = 1/11, a6 = 50/429. Microscopically, the Coulomb inte-
grals Fk as defined to be

Fk ≡ e2

4πε0

∫ ∞

0
dr

∫ ∞

0
dr ′

(
rk
<

rk+1
>

)
r2(r ′)2R(r)2R(r ′)2,

(B3)
where r> = max(r,r ′), r< = min(r,r ′), and R(r) is the single-
particle radial wave function associated with the f -shell states.
The rank-k multipole operators Okq are defined as

Okq ≡
√

2l + 1

2k + 1

∑
σ

∑
mm′

(−1)m〈l,−m,l,m′|k,q〉f †
mσ fm′σ ,

(B4)
where l = 3, 〈l,−m,l,m′|k,q〉 is a Clebsch-Gordan coefficient,
and O

†
kq = (−1)qOk,−q . Note that we have ignored the F 0

Coulomb integral; this is encapsulated in the energy U−
f

defined in the main text. The spin-orbit coupling takes the form

HSO ≡ ζSO

∑
mm′

∑
σσ ′

[Lmm′ · Sσσ ′]f †
mσfm′σ ′, (B5)

where S = σ/2 (with σ being the Pauli matrices) and L are
the angular-momentum matrices for l = 3. The total (free-ion)
Hamiltonian is then

Hion ≡ HCoulomb + HSO. (B6)

Given the introduction of the solid environment, and the
associated screening effects, we will use Coulomb integrals
F 2, F 4, and F 6 and spin-orbit coupling ζSO tailored for Yb4+,
as determined in Ref. [64]. These are given by

F 2 = 14.184 eV, F 4 = 9.846 eV, F 6 = 6.890 eV,

ζSO = 0.380 eV. (B7)

The two-hole states of the f 12 configuration can be constructed
from the basis

|m1σ1,m2σ2〉 ≡ fm1σ1fm2σ2 |0〉, (B8)

where |0〉 is the filled f 14 state and m1σ1 �= m2σ2. Since
only one of each pair (m1σ1,m2σ2) and (m2σ2,m1σ1) are
independent, we can choose an ordering and thus have
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TABLE IV. Theoretical spectrum of Yb4+ found using the free-ion
model of Eq. (B6) with parameters given in Eq. (B7). The composition
indicates the largest contribution in terms of states constructed through
LS coupling. If there is no dominant component, all significant terms
are shown.

E (eV) Degeneracy Composition

0.000 13 3H6

0.752 9 3F4

1.187 11 3H5

1.785 9 3H4

2.040 7 3F3

2.094 5 3F2

2.985 9 1G4

3.924 5 3P2,
1D2

4.751 13 1I6

5.023 1 3P0

5.167 3 3P1

5.396 5 3H2,
1D2

10.558 1 1S0

(14
2

) = 91 states total. We can thus construct the matrix el-
ements of Hion within this subspace directly, given a repre-
sentation of the fermion operators fmσ . Diagonalization gives
the spectrum shown in Table IV [109]. Note that while most
of the levels can be identified with the state expected from
the LS-coupling approximation, there are several levels that
exhibit strong mixing. As expected from Hund’s rules, the
ground state is primarily composed of states of type 3H6

that is L = 5, S = 1, and J = 6. As noted in Sec. IV, this
spectrum spans roughly ∼5 eV (ignoring the high-lying singlet
at ∼10 eV). This bandwidth is comparable to the energy U−

f ,
thus invalidating the charging approximation [14].

These levels are close to, but not identical, to the experimen-
tal results for the spectrum of Yb4+ [64]. While the agreement
can be improved through the inclusion of effective operators
that incorporate various correlation effects [64], this level of
precision is fairly unimportant for virtual states. Typically, the
differences are likely on the order of ∼10–50 meV, with the
highest level having the largest discrepancy of ∼150 meV.
Given the size of U−

f and spread of the levels being ∼5–10 eV,
such deviations are on the order of ∼1%–5% and are thus
unlikely to be significant for the exchange interactions, at least
at the level of our treatment.

In principle, one could also include the crystal field in the
free-ion model of Eq. (B6). For the trigonal environments
considered in this work, this would take the form

HCEF = C2,0O2,0 + C4,0O4,0 + C6,0O6,0

+ C4,3(O4,+3 − O4,−3) + C6,3(O6,+3 − O6,−3)

+ C6,6(O6,+6 + O6,−6), (B9)

where the Ckq coefficients can be related to the more common
Bkq Stevens’ coefficients used when restricting to the single J

manifold. However, given that we expect these splittings to be
on the order of ∼100 meV or so, of the same order of the errors
in the free-ion levels themselves, we ignore such details in our
calculations. This also affords the advantage of parametrizing
the effects of the crystal field through the two ground-doublet

composition parameters (η,ζ ) [defined in Eq. (1)] rather than
the six Ckq variables.

APPENDIX C: SUPEREXCHANGE PROCESSES

There are 24 separate, nonzero contributions to the ex-
change. We classify these into four types of process separating
them based on which intermediate states, i.e., f 12 or f 14, are
involved, and whether one or both ligands A and B are invoked.
Within each type, only a few are independent; we can obtain
many others by interchanging sites f1 and f2 or interchanging
the ligands pA and pB . The first two processes involve only a
single ligand at a time (as considered in Refs. [11,13]), while
the final two involve both and are a kind of ring-exchange
involving both ligands.

To aid in enumerating the various contributions we will
divideK (see Sec. III) into two pieces,K1 that couples to O1Õ2

and K2 that couples to Õ1O2, keeping in mind that the bond
symmetries force K1 = K2 in the final result [see Eq. (23)].

1. Process 1

We first consider a class of process that involves both the f 14

and f 12 states. There are four such processes, but only one is
elementary; the remaining three can be obtained by swapping
f1 and f2 and pA and pB . This process is

P (1)
1 : f 13

1 p6
Ap6

Bf 13
2 → f 14

1 p5
Ap6

Bf 13
2 → f 14

1 p6
Ap6

Bf 12
2

→ f 14
1 p5

Ap6
Bf 13

2 → f 13
1 p6

Ap6
Bf 13

2 . (C1)

It contributes to the exchange the operator

−
∑
αβμν

∑
α′β ′μ′ν ′

t
αβ

1A [t†2A]νμt
α′β ′
2A [t†1A]ν

′μ′

(U+
f + 	)2(U+

f + U−
f )

× P (p†
Aν ′f1μ′)(f

†
2α′pAβ ′)Q2(p†

Aνf2μ)(f †
1αpAβ)P.

(C2)

Using the fact that the ligand part is given by

Ppp
†
Aν ′pAβ ′p

†
AνpAβPp = δβνδβ ′ν ′ , (C3)

the contribution of this process is then

+
∑
αβμν

[t1At
†
2A]αν[t2At

†
1A]μβ

(U+
f + 	)2(U+

f + U−
f )

× (P1f
†
1αf1βP1)(P2f

†
2μQ2f2νP2).

This is thus a contribution to K1. Swapping A and B gives an
additional contribution to K1, while swapping 1 and 2 gives
a contribution to K2. These contributions are identical so, in
total, one has a final contribution to K given by

Kαβμν :
∑

λ=A,B

T αν
λ [T †

λ ]μβ

(U+
f + 	)2(U+

f + U−
f )

. (C4)

Note that these contributions are Hermitian on their own since
T

ᵀ
λ = Tλ, [Oαβ]† = Oβα , and [Õαβ]

† = Õβα .
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2. Process 2

We next consider a process involving only the f 14 states and
only a single ligand at a time. There are eight exchange paths
in total. However, there are only two elementary processes; we
consider each in turn.

a. Process P (1)
2

The first process is given by

P (1)
2 : f 13

1 p6
Ap6

Bf 13
2 → f 14

1 p5
Ap6

Bf 13
2 → f 14

1 p4
Ap6

Bf 14
2

→ f 13
1 p5

Ap6
Bf 14

2 → f 13
1 p6

Ap6
Bf 13

2 . (C5)

This P (1)
2 process contributes

−
∑
αβμν

∑
α′β ′μ′ν ′

t
αβ

1At
μν

2A [t†1A]β
′α′

[t†2A]ν
′μ′

(U+
f + 	)2[2(U+

f + 	) + Up]

× P (p†
Aν ′f2μ′ )(p

†
Aβ ′f1α′ )(f

†
2μpAν)(f †

1αpAβ)P. (C6)

The ligand part is trivial and yields

Ppp
†
Aν ′p

†
Aβ ′pAνpAβPp = δβ ′νδβν ′ − δββ ′δνν ′ . (C7)

The second piece of Eq. (C7) gives terms that involve t1At
†
1A

and such; these do not contribute for Yb3+ once projected into
the ground-state manifold [13]. The final relevant pieces are
thus

+
∑
αβμν

[t1At
†
2A]αν[t2At

†
1A]μβ(P1f

†
1αf1βP1)(P2f

†
2μf2νP2)

(U+
f + 	)2(2(U+

f + 	) + Up)
.

(C8)

b. Process P (2)
2

The second process is given by

P (2)
2 : f 13

1 p6
Ap6

Bf 13
2 → f 14

1 p5
Ap6

Bf 13
2 → f 14

1 p4
Ap6

Bf 14
2

→ f 14
1 p5

Ap6
Bf 13

2 → f 13
1 p6

Ap6
Bf 13

2 . (C9)

This P (2)
2 process contributes

−
∑
αβμν

∑
α′β ′μ′ν ′

t
αβ

1At
μν

2A [t†2A]β
′α′

[t†1A]ν
′μ′

(U+
f + 	)2[2(U+

f + 	) + Up]

× P (p†
Aν ′f1μ′)(p

†
Aβ ′f2α′ )(f

†
2μpAν)(f †

1αpAβ)P. (C10)

The ligand part is again trivial and yields

Ppp
†
Aν ′p

†
Aβ ′pAνpAβPp = δβ ′νδβν ′ − δββ ′δνν ′ . (C11)

The first piece gives terms that involve t1At
†
1A and such; again

these do not contribute for Yb3+ once projected into the
ground-state manifold. The relevant pieces are thus

+
∑
αβμν

[t1At
†
2A]αν[t2At

†
1A]μβ(P1f

†
1αf1βP1)(P2f

†
2μf2νP2)

(U+
f + 	)2[2(U+

f + 	) + Up]
.

(C12)

We thus see that the extra sign from the ligand part is
compensated by the sign from rearranging the f operators.
This thus gives the same contribution as the first process, P (1)

2 .

c. Total

Both processes, P (1)
2 and P (2)

2 , contribute to I. Putting this
all together, swapping f1 and f2 as well as pA and pB , we find
the contribution from the eight processes of type 2 are given
by

Iαβμν : 4
∑

λ=A,B

T αν
λ [T †

λ ]μβ

(U+
f + 	)2[2(U+

f + 	) + Up]
. (C13)

3. Process 3

We next consider the simpler of the two ring-exchange
processes. This involves both f 14 and f 12 states. There is only
a single elementary process given as

P (1)
3 : f 13

1 p6
Ap6

Bf 13
2 → f 14

1 p5
Ap6

Bf 13
2 → f 14

1 p6
Ap6

Bf 12
2

→ f 14
1 p6

Ap5
Bf 13

2 → f 13
1 p6

Ap6
Bf 13

2 . (C14)

This P (1)
3 process contributes

−
∑
αβμν

∑
α′β ′μ′ν ′

t
αβ

1A [t†2A]νμt
α′β ′
2B [t†1B]ν

′μ′

(U+
f + 	)2(U+

f + U−
f )

× P (p†
Bν ′f1μ′ )(f

†
2α′pBβ ′)Q2(p†

Aνf2μ)(f †
1αpAβ)P. (C15)

The ligand part is (again) trivial and yields

Ppp
†
Bν ′pBβ ′p

†
AνpAβPp = δβ ′ν ′δβν. (C16)

We thus have

+
∑
αβμν

[t1At
†
2A]αν[t2Bt

†
1B]μβ(P1f

†
1αf1βP1)(P2f

†
2μQ2f2νP2)

(U+
f + 	)2(U+

f + U−
f )

.

(C17)

This is a contribution to K1. Swapping A and B generates
another contribution to K1 while swapping 1 and 2 generates
(identical) contributions to K2. One has thus has a net contri-
bution to K given by

Kαβμν :
∑

λ=A,B

T αν
λ [T †

λ̄
]μβ

(U+
f + 	)2(U+

f + U−
f )

, (C18)

where λ̄ is the other ligand, i.e., Ā = B and B̄ = A. The sum
over the two ligands renders these combined contributions
Hermitian.

4. Process 4

The final type of process involves only f 14 states and
both ligands. There are eight different paths; two of these are
independent.

a. Process P (1)
4

The first process is given as

P (1)
4 : f 13

1 p6
Ap6

Bf 13
2 → f 14

1 p5
Ap6

Bf 13
2 → f 14

1 p5
Ap5

Bf 14
2

→ f 14
1 p6

Ap5
Bf 13

2 → f 13
1 p6

Ap6
Bf 13

2 . (C19)
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This gives the contribution

−
∑
αβμν

∑
α′β ′μ′ν ′

t
αβ

1At
μν

2B [t†2A]β
′α′

[t†1B]ν
′μ′

2(U+
f + 	)3

× P (p†
Bν ′f1μ′)(p

†
Aβ ′f2α′ )(f

†
2μpBν)(f †

1αpAβ)P. (C20)

The ligand part is trivial and yields

Ppp
†
Bν ′p

†
Aβ ′pBνpAβPp = −δββ ′δνν ′ . (C21)

This then leads to the contribution

+
∑
αβμν

∑
α′μ′

[t1At
†
2A]αν[t2Bt

†
1B]μβ

2(U+
f + 	)3

× (P1f
†
1αf1βP1)(P2f

†
2μf2νP2). (C22)

b. Process P (2)
4

We next move on to the second process, which has the form

P (2)
4 : f 13

1 p6
Ap6

Bf 13
2 → f 14

1 p5
Ap6

Bf 13
2 → f 14

1 p5
Ap5

Bf 14
2

→ f 13
1 p5

Ap6
Bf 14

2 → f 13
1 p6

Ap6
Bf 13

2 . (C23)

This contributes

−
∑
αβμν

∑
α′β ′μ′ν ′

t
αβ

1At
μν

2B [t†1B]β
′α′

[t†2A]ν
′μ′

2(U+
f + 	)3

× P (p†
Aν ′f2μ′)(p

†
Bβ ′f1α′ )(f

†
2μpBν)(f †

1αpAβ)P. (C24)

The ligand part is trivial and yields

Ppp
†
Aν ′p

†
Bβ ′pBνpAβPp = δβ ′νδβν ′ . (C25)

This leads to

+
∑
αβμν

[t1At
†
2A]αν[t2Bt

†
1B]μβ

2(U+
f + 	)3

(P1f
†
1αf1βP1)(P2f

†
2μf2νP2),

(C26)

identical to the previous process P (1)
4 .

c. Total

We thus see that the total contribution of all the P (n)
4

processes is only to I, and is given by

Iαβμν : 4
∑

λ=A,B

T αν
λ [T †

λ̄
]μβ

2(U+
f + 	)3

. (C27)

APPENDIX D: DIPOLAR INTERACTIONS

Due to the small energy scale associated with rare-earth
superexchange, we must also consider direct magnetostatic
dipole-dipole interactions between the ytterbium ions when
comparing directly to materials. The full exchange interactions
will be the sum of these dipolar terms and the superexchange
interactions derived in Sec. IV. The dipolar interactions take
the form

HMDD = μ0

4π

∑
i<j

1

|r ij |3 [μi · μj − 3(r̂ ij · μi)(r̂ ij · μj )],

(D1)

where r ij ≡ r i − rj with r i the position of rare-earth ion
i and the magnetic moment μi is defined in terms of the
pseudospins Si in Eq. (5). For simplicity, we consider only
the nearest-neighbor part of the dipolar interaction. Since this
depends on the lattice geometry, we discuss the two cases of
experimental interest, the AYb2X4 spinels and the triangular
compound YbMgGaO4, separately.

1. Breathing pyrochlore and spinels

Given the local axes appropriate for the breathing py-
rochlore and the spinels, we can explicitly compute the form
of the nearest-neighbor part of HMDD and map it to the local
exchanges Jzz, J±, J±±, and Jz±. One finds in the notation of
Sec. III [78]

Jzz = +5

3
Dg2

z , J± = − 1

12
Dg2

±,

(D2)

J±± = + 7

12
Dg2

±, Jz± = − 1

3
√

2
Dg±gz,

where D ≡ μ0μ
2
B/(4πrNN)3 with rNN being the nearest-

neighbor distance. In Ba3Yb2Zn5O11, the nearest-neighbor
distance is ∼3.3Å [31] yielding D ∼ 0.0173 K. Combined
with the g factors gz ∼ −2.73 and g± ∼ −2.3 yields the
dipolar contribution to the exchanges (in the appropriate global
basis)

Jd ∼ −0.006 meV, Kd ∼ +0.015 meV,

�d ∼ −0.014 meV, Dd ∼ −0.002 meV. (D3)

These represent small perturbations to the dominant Heisen-
berg (J ∼ 0.6 meV) and DM (|D| ∼ 0.18 meV) exchanges.
Since for the parameters the ground state is a (symmetry-
protected) E doublet with a large gap to the higher excited
states [31], the small symmetric anisotropies of dipolar origin
can be ignored.

In the AYb2S4 spinels, the nearest-neighbor distance is
roughly ∼3.9 Å, while in the AYb2Se4 spinels, it is closer
to 4.1 Å [27]. For these distances, one has the energy scale
D ∼ 0.01 K which must be combined with typical g factors of
gz ∼ −3.6 and g± ∼ −3.2. In the global basis appropriate for
the spinels, this yields a very similar result to Ba3Yb2Zn5O11,
with the dipolar contribution to the nearest-neighbor exchanges
being roughly

Jd ∼ −0.006 meV, Kd ∼ +0.015 meV,

�d ∼ −0.014 meV, Dd ∼ −0.02 meV. (D4)

Note that the near equality of these contributions for the breath-
ing pyrochlore and spinels is an accident; both the moment size
(encoded in the g factors) and the nearest-neighbor distances
are different, but they nearly compensate each other.

For the spinels, in contrast to the breathing pyrochlore
case, since we are proximate to a phase boundary which is
controlled by the symmetric anisotropies, we must consider
these somewhat carefully. To estimate the importance of these
corrections in the spinels, we first set the overall scale of the
exchanges using the Curie-Weiss temperature [19]. This yields,
roughly, that J ≡ Js + Jd ∼ 0.3 meV–0.35 meV, depending
on the spinel under consideration (Js is the superexchange
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contribution and Jd the dipolar part). With this energy scale set,
the superexchange contribution to the symmetric anisotropies
are thus Ks ∼ −0.01 meV and �s ∼ −0.006 meV and DM
contribution is Ds ∼ −0.1 meV. In total, one then has D/J ∼
−0.3, K/J = +0.0125, and �/J = −0.05. We thus see that
K + � = Ks + Kd + �s + �d < 0 and thus we still expect
selection of a state from the �5 manifold (as opposed to an SFM
state). In summary, while small, the dipolar corrections can not
be ignored since the subdominant K , � interactions control
the ground-state selection for the relevant exchange regime.
However, since Kd + �d � Ks + �s, this does not affect the
conclusions of Sec. VIII A, which did not explicitly include
the dipolar interactions.

2. Triangular

For the triangular lattice of YbMgGaO4, the structure of the
dipolar interaction is simpler due to the frames being the same
from site to site. In the notation of Sec. III one finds that

Jd,zz = +Dg2
z , Jd,± = + 1

4Dg2
±,

Jd,±± = + 3
4Dg2

±, Jd,z± = 0, (D5)

where D ≡ μ0μ
2
B/(4πrNN)3 with rNN being the nearest-

neighbor distance. For YbMgGaO4, the nearest-neighbor dis-
tance is rNN ∼ 3.4Å [23] and thus one has D ∼ 0.0158 K.
Taking typical g factors to be gz ∼ 3.72 and g± ∼ −3.06 [23],
one arrives at

Jd,zz = +0.22 K, Jd,± = +0.04 K,

Jd,±± = +0.11 K, Jd,z± = +0.00 K. (D6)

TABLE V. Dipolar contributions to the nearest-neighbor
anisotropic exchange, as given in Eq. (D5), in YbMgGaO4 using
the seven Mg/Ga disorder-induced crystal-field environments of
Ref. [102].

Environ. Jd,zz (K) Jd,± (K) Jd,±± (K) Jd,z± (K)

1 0.22 0.04 0.12 0.00
2 0.21 0.04 0.12 0.00
3 0.24 0.04 0.12 0.00
4 0.16 0.04 0.13 0.00
5 0.26 0.04 0.11 0.00
6 0.16 0.04 0.13 0.00
7 0.20 0.04 0.13 0.00

The fitted exchange parameters (adapted to our notation) of
Ref. [23] are quite similar in scale to those listed here, with
Jzz ∼ |J±| ∼ 1 K with |Jd±±| ∼ 0.155 K and Jz± ∼ 0. We
thus see that to make any meaningful comparison of the
superexchange result to the fitted exchanges, this dipolar part
must be properly subtracted from the fitted result. Due to the
dependence on the g factors, the dipolar exchanges will also be
sensitive to the crystal-field disorder found in Ref. [102], and
discussed in Sec. VIII B. Using the appropriate crystal-field
parameters [102], one finds the dipolar contributions listed in
Table V. The most significant variation is in Jd,zz, given the
g-factor gz also experiences the largest changes as a function
of environment.
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